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Abstract

As a transplant surgeon, my interest in glycobiology began through my research into ABO-incom-

patible allotransplantation, and grew when my goal became overcoming the shortage of organs

from deceased human donors by the transplantation of pig organs into patients with terminal

organ failure (xenotransplantation/cross-species transplantation). The major target for human

“natural” (preformed) anti-pig antibodies is galactose-α(1,3)-galactose (the “Gal” epitope), which

is expressed on many pig cells, including the vascular endothelium. The binding of human IgM

and IgG antibodies to Gal antigens initiates the process of hyperacute rejection, resulting in destruc-

tion of the pig graft withinminutes or hours. Thismajor barrier has been overcome by the production

of pigs in which the gene for the enzyme α(1,3)-galactosyltransferase (GT) has been deleted by gen-

etic engineering, resulting in GT knockout (GTKO) pigs. The two other known carbohydrate antigenic

targets on pig cells for human anti-pig antibodies are (i) the product of the cytidine monophosphate-

N-acetylneuraminic acid hydroxylase (CMAH) gene, i.e.,N-glycolylneuraminic acid, and (ii) the prod-

uct of the β1,4 N-acetylgalactosaminyltransferase gene, i.e., the Sd(a) antigen. Expression of these

two has also been deleted in pigs. These genetic manipulations, together with others directed to

overcoming primate complement and coagulation activation (the latter of which also relates to gly-

cobiology) have contributed to the prolongation of pig graft survival in nonhuman primate recipients

tomanymonths rather than a fewminutes. Clinical trials of the transplantation of pig cells are already

underway and transplantation of pig organs may be expected within the relatively near future.
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I am sometimes reminded of the differences between a rhi-
noceros and a cardiac surgeon. One has a thick skin, a small
brain, and charges a lot. The other is a large animal that lives
in Africa.

David Wheatley (British cardiac surgeon)

Introduction

A cardiac surgeon does not generally expect to find him/herself in-
volved in the field of glycobiology. However, if the surgeon’s main re-
search interest becomes heart transplantation and, ultimately, heart

xenotransplantation (cross-species transplantation), then glycobiol-
ogy plays a significant role.

As a medical student at Guy’s Hospital in London in the late 1950s
and early 1960s I had little interest in—or aptitude for—biochemistry.
My intention was to become a cardiac surgeon and so the anatomy
and physiology of the cardiovascular system proved much more inter-
esting to me. After graduation and completion of house appointments
(internships) in London, and a year spent teaching anatomy at
Harvard Medical School in Boston, I began the prolonged surgical
residency program in the UK. I interrupted this program to spend
3 years obtaining a PhD degree at the University of London in
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which I studied how best to preserve the donor heart for purposes of
heart transplantation.

I was fortunate to be present at the first human heart transplant
carried out in the UK in 1968, and subsequently participated in the
first truly successful heart transplant program in the UK in 1979. In
1980, I obtained an appointment with the heart transplant pioneer,
Christiaan Barnard, at the University of Cape Town, where I had re-
sponsibility for the day-to-day care of heart transplant patients and
also participated in a very active experimental research program.

ABO-incompatible organ allotransplantation

Baboons were readily available for research in South Africa. As they
have the oligosaccharide AB blood groups (A, B and AB, but not O)
similar to humans, I used the baboon heart transplantation model as a
surrogate for ABO-compatible or incompatible organ transplantation
in humans (Cooper et al. 1988b). I found that approximately
one-third of AB-incompatible heart transplants in baboons were hy-
peracutely rejected (within 24 h) in comparison with approximately
two-thirds when heart transplantation was carried out across this bar-
rier in humans (Cooper 1990). These results confirmed previous stud-
ies by several other researchers that it would be risky to transplant an
ABO-incompatible heart. ABO-incompatibility also played a small
role in failure of grafts between closely related species (Cooper et al.
1989).

I moved from Cape Town to Oklahoma City in 1987, where
I shared responsibility for the development of a new clinical heart
transplant program. I was contacted by members of a small company,
Chembiomed (Edmonton, Canada; established through the work of a
carbohydrate chemist, Ray Lemieux), who were aware of my work on
ABO-incompatibility. These researchers had evidence to suggest that
the intravenous (i.v.) infusion of synthetic A or B oligosaccharides
would be bound by the respective anti-A or -B antibodies in the blood
and that this antibody–antigen complexwould be cleared, thus reducing
the antibody level in the blood and enabling an ABO-incompatible
organ graft to be transplanted without fear of hyperacute rejection. In
view of the model I had established of AB-incompatible heart trans-
plantation in baboons, they invited me to collaborate with them to
test the infusion of the relevant oligosaccharides.

I was somewhat doubtful that their hypothesis would be corrobo-
rated, but I readily agreed to carry out a series of heart transplants in
baboons. With the collaboration of one of their consultant scientists,
Egidio Romano, who (after testing the safety of i.v. infusion of these
oligosaccharides on himself ) had carried out preliminary clinical stud-
ies in hemolytic disease of the newborn (Romano et al. 1987a, b, c), we
began the study. To my relative surprise and satisfaction, the continu-
ous i.v. infusion of the A or B oligosaccharides into baboons allowed
AB-incompatible heart grafts to function until cellular rejection (unre-
lated toAB-incompatibility) developed, as it would in anAB-compatible
heart transplant (Cooper et al. 1993c; Ye et al. 1994b).

One of the major problems in translating this research to the clinic
at that time was the cost of the oligosaccharides. I estimated that, if
I had purchased the oligosaccharides we had infused, each baboon
would have received almost $1 million of synthetic oligosaccharide
every day—but, of course, the company provided these free of charge.

Xenotransplantation using pig organs

Previously, in the UK and South Africa, I had realized that one of
the major problems with heart transplantation was obtaining

sufficient hearts from deceased human donors to satisfy the needs of
those in terminal heart failure. Indeed, this is still a major limiting
factor today. In Cape Town, I had begun to explore different sources
of hearts. I initially considered the possibility of using baboons as
organ donors for humans (Neethling et al. 1990; Cooper 1992a;
Luo et al. 1996). To set up a relevant experimental model, I selected
cynomolgus (vervet) monkeys as donors with baboons as recipients (to
simulate the baboon-to-human species immunological discrepancy)
(Cooper et al. 1989; Reichenspurner et al. 1990; Cooper 1991).

Rejection of a heart from a closely related primate species was ra-
ther more rapid than after allotransplantation, but could be delayed by
standard immunosuppressive therapy. I soon realized, however, that
there were many reasons why pigs would be preferable sources of or-
gans and cells than nonhuman primates (Table I). However, a pig
organ transplanted into a baboon was rejected within minutes or
hours rather than days or weeks (Lexer et al. 1986; Cooper et al.
1988a).

On the basis of my experience with ABO-incompatible organ
transplants, I gave thought to whether the hyperacute rejection
that occurred uniformly after the transplantation of a pig organ
into a baboon was associated with recognition by the recipient of
a carbohydrate on the surface of the pig organ. I had seen nothing
to support this idea in the literature but the more I thought about
it, the more it appeared to be likely. My rather naive thinking at
the time was that, if we could overcome this single problem, we
would be able to use pigs as sources of organs for transplantation
into humans ( just as we could use ABO-incompatible allografts
when steps to overcome hyperacute rejection were undertaken).
The barriers to successful xenotransplantation, however, proved
much more complex.

By this time, I was collaborating on a daily basis with Eugene
Koren, my scientific colleague at the Oklahoma Medical Research
Foundation. He had suggested ways by which we could identify the
potential carbohydrate targets on pig organs against which humans
have anti-pig antibodies. The key proposal was to perfuse human plas-
ma through isolated pig kidneys and hearts ex vivo, then to elute the
antibodies that had bound to the vascular endothelium of the organ,
and send these antibodies to our colleagues at Chembiomed to identify
their carbohydrate specificities using a “glycan array” approach—a
large library of synthetic oligosaccharides that the company had
accumulated.

The role of Gal in xenotransplantation

Based on this approach, I was greatly excited when one of the
Chembiomed scientists, Heather Good, informed me that a major tar-
get for human anti-pig antibodies was the Gal epitope (galactose-α
(1,3)-galactose) (Cooper 1992b, 1994; Good et al. 1992; Cooper
et al. 1993a; ; Kobayashi and Cooper 1999). There were a few other
oligosaccharide targets, but Gal was by far the most important. I was
encouraged by the observation that there are similarities between the
structure of Gal and those of the ABO blood group antigens (Stussi
et al. 2006) (Figure 1), particularly between Gal and blood group B
(Galili et al. 1987; Galili 2006), suggesting that the human immune
response would be similar to both.

I had never heard of Gal previously, but the Chembiomed
team informed me that they had prior knowledge of it as they had
carried out some work for Uri Galili, who had identified that all
mammals below Old World monkeys express Gal whereas Old
World nonhuman primates and humans lack the requisite enzyme α

(1,3)-galactosyltransferase (GT), and thus lack Gal in their tissues
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and produce anti-Gal antibodies (Figure 2) (Galili et al. 1984; 1988b).
If they already knew this information, I asked them, why had they not
mentioned this to me when we were planning the study, but they were
at a loss to explain why.

I then avidly read all I could about Gal antigens and anti-Gal
antibodies, largely from thewritings of Galili and his colleagues (Galili
1999). Galili had put forward the hypothesis that humans, apes, and
Old World monkeys develop anti-Gal antibodies (so-called “natural”

Table I. The advantages and disadvantages of the pig as a potential source of organs and cells for humans, in contrast with those of the

baboon in this role

Pig Baboon

Availability Unlimited Limited
Breeding potential Good Poor
Period to reproductive maturity 4–8 months 3–5 years
Length of pregnancy 114 ± 2 days 173–193 days
Number of offspring 5–12 1–2
Growth Rapid (adult human size within 6 months)a Slow (9 years to reach maximum size)
Size of adult organs Adequate Inadequateb

Cost of maintenance Relatively low High
Anatomical similarity to humans Moderately close Close
Physiological similarity to humans Moderately close Close
Relationship of immune system to humans Distant Close
Knowledge of tissue typing Considerable (in selected herds) Limited
Necessity for blood type compatibility with humans Probably unimportant Important
Experience with genetic engineering Considerable None
Risk of transfer of infection (xenozoonosis) Low High
Availability of specific pathogen-free animals Yes No
Public opinion Generally in favor Mixed

aBreeds of miniature swine are ∼50% of the weight of domestic pigs at birth and sexual maturity, and reach a maximum weight of ∼30% of standard breeds.
bThe size of certain organs, e.g., the heart, would be inadequate (too small) for transplantation into adult humans.
Reproduced with permission from Cooper and Bottino (2015).

Fig. 1. Carbohydrate structure on human and pig RBCs. Pig RBCs express Gal epitopes on oligosaccharides that are similar in structure to the human blood type B

oligosaccharide (which has a fucose side arm).
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or “preformed” antibodies) during infancy as a “defensive” response
to the colonization of their gastrointestinal tracts by microorganisms
and viruses that express Gal (Galili et al. 1988a). My colleagues and
I later confirmed that infant humans and baboons do not make anti-
pig (or anti-Gal) antibodies (or anti-A or B antibodies) for the first
3 months or so of life (Neethling et al. 1995; Minanov et al. 1997;
Rood et al. 2007; Dons et al. 2012), at which time they begin to de-
velop these antibodies, presumably after colonization of the GI tracts.

The more I read, the more I was convinced that this antibody–anti-
gen reaction was key to xenotransplantation. In vitro studies by our
group showed this to be the case (Table II) (Koren et al. 1993; Oriol
et al. 1993, 1994, 1999; Kujundzic et al. 1994; Neethling et al. 1994,
1996; Neethling and Cooper 1999). The identification of Gal as the
prime target for anti-pig antibodies was presented at the First Inter-
national Congress on Xenotransplantation held in Minneapolis in
1991 (Cooper 1992b; Good et al. 1992), the first definitive identifica-
tion of the role of Gal in xenotransplantation (Cooper et al. 1996b;
Cooper 2009b). Others soon confirmed our conclusion (Sandrin
et al. 1993). Although Galili had carried out several studies on the na-
ture of anti-Gal antibodies, he had not directed his attention towards
xenotransplantation before this time (Galili 1993).

We reasoned that if we could obtain sufficient synthetic Gal oligo-
saccharide, or alternatively immunoaffinity columns of synthetic Gal,
we could test whether removal of anti-Gal antibodies in nonhuman
primates would allow prolonged survival of a pig organ graft. Initially,
we were unable to obtain sufficient synthetic Gal to carry out this
study, but through my reading I realized that melibiose had sufficient
similarity to Gal that it might have some effect in delaying hyperacute
rejection. We therefore perfused melibiose continuously at high con-
centrations into baboons, and indeed therewas some delay in rejection
of a pig heart graft (Ye et al. 1994a).

The difficulty in obtaining synthetic Gal led us to seek natural
sources of Gal. In Oklahoma City at that time, we were fortunate to
have the advice and collaboration of the well-known glycobiologist,
Richard Cummings, with whomwe explored other options for obtain-
ing Gal sugars and of reducing antibody binding (Li et al. 1995, 1996;
Luo et al. 1999). We even briefly explored the possibility of using or-
gans from non-mammal species, e.g., ratites (ostriches, emus) that do
not express Gal (Taniguchi et al. 1996a). Eventually, we were able to
obtain sufficient specific synthetic Gal from several different sources
(including Nicolai Bovin in Moscow) to test our hypothesis in vivo
in baboons (Rieben et al. 1995; Cooper et al. 1996a; Taniguchi

Fig. 2. Evolutionary time scale of mammals during the past 125million years. All mammals originally synthesized the Gal sugar, whichwasmade by the enzymeGT.

Evidence suggests that ∼10–25 million years ago the Old World higher primates were afflicted by a lethal infection caused by a microorganism that also expressed

the Gal determinant. Only those primates that could produce anti-Gal antibodies survived. This necessitated suppression of the synthesis of the Gal sugar by

mutation of the gene for the enzyme GT. (Modified from Galili 1998.)
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et al. 1996b), and indeed found that antibody-mediated rejection of a
pig heart was delayed (Simon et al. 1998; Romano et al. 1999).

Later, after I moved to the Transplantation Biology Research Cen-
ter (TBRC) at the Massachusetts General Hospital/Harvard Medical
School in 1996, we studied Gal expression in different tissues and cell
types in pigs (Chae et al. 1999; Gojo et al. 2002; Dor et al. 2004a), and
anti-Gal antibody in various species under differing circumstances
(Gojo et al. 2000; Teranishi et al. 2002b). We also carried out >300
extracorporeal immunoadsorptions of anti-Gal antibodies (using im-
munoaffinity columns of synthetic Gal) in baboons, some of whom
subsequently underwent organ or bone marrow transplantation
(Kozlowski et al. 1998a, b; Lambrigts et al. 1998; Xu et al. 1998;
Watts et al. 2000; Buhler et al. 2001; Kuwaki et al. 2004). We also
intravenously infused Gal conjugates (Teranishi et al. 2002a, 2003;
Gollackner et al. 2003; Kuwaki et al. 2004). In these studies, for a
short period of time, we were able to consult with Robert Sackstein
who, although then new to the field of glycobiology, was invaluable
to us for his expertise and advice in bone marrow transplantation as
a means to induce immune tolerance (Tseng et al. 2004, 2005b). These
data demonstrated that, although extracorporeal immunoadsorption
certainly delayed antibody-mediated rejection of a pig graft, the con-
tinuing production of anti-Gal antibodies resulted in the graft being
lost from a delayed form of antibody-mediated rejection known as
acute humoral xenograft rejection.

The generation of GTKO pigs

At the time of the Minneapolis meeting, in discussion with my two in-
valuable colleagues, Eugene Koren and Rafael Oriol (an immunogen-
eticist from Paris with a special interest in ABO blood group antigens),
we determined that, when the technology was available, it should be
possible to knockout the gene for the enzyme that attaches Gal to
underlying carbohydrate structures on the surface of the pig vascular
endothelium (Cooper et al. 1993b). This approach would involve pro-
ducing GTKO pigs.

It was soon possible to produce a GTKOmouse (Thall et al. 1995;
Tearle et al. 1996), but knockout of the GT gene in pigs only became
possible after the development of the technology that produced the
world’s first cloned mammal, the sheep known as “Dolly” (Campbell

et al. 1996) and, subsequently, the first cloned pig (Polejaeva et al.
2000). This would clearly be a more successful approach than i.v.
oligosaccharide infusion or extracorporeal immunoadsorption as
it would permanently delete Gal as a target for primate anti-pig
antibodies.

The first GTKO pigs did not become available until 2003 (Phelps
et al. 2003; Kolber-Simonds et al. 2004), and my colleagues and I at
the TBRCwere the first to test the transplantation of organs from these
pigs in immunosuppressed baboons (Kuwaki et al. 2005; Tseng et al.
2005a; Yamada et al. 2005; Hisashi et al. 2008; Shimizu et al. 2008).
The transplantation of a GTKO pig heart or kidney was associated
with markedly prolonged survival of the grafts, particularly of the
heart grafts (one of which functioned for almost 6 months), a major
advance in the field of xenotransplantation research.

I moved to the University of Pittsburgh in 2004 and, around that
time and subsequently, several studies were carried out on GTKO pigs
(Dor et al. 2004b; Knosalla et al. 2004; Ekser et al. 2012; Fang et al.
2012) and their cells were used for in vitro assays (Ezzelarab et al.
2006; Hara et al. 2006; Rood et al. 2006;Wong et al. 2006). Although
not anticipated, the absence of Gal expression on pig tissues was asso-
ciated with a reduction in the primate cellular response (as well as the
expected humoral response) to the graft, which has proved beneficial
in overcoming the immunological barriers to successful xenotrans-
plantation (Wilhite et al. 2012). Subsequently, GTKO pigs were gen-
etically engineered to express a human complement-regulatory
protein, which has further enhanced graft survival (Azimzadeh et al.
2015).

Nevertheless, in part due to low-grade activation of the vascular
endothelium of the transplanted pig organ by remaining anti-pig anti-
bodies (i.e., anti-non-Gal antibodies, the nature of which remained un-
known at the time), a thrombotic microangiopathy developed that
ultimately led to graft failure (Buhler et al. 2000; Houser et al.
2004). If the thrombotic microangiopathy became advanced (by ag-
gregation of platelets and fibrin in the graft), a consumptive coagulo-
pathy could develop that could be life-threatening to the recipient
baboon (Ierino et al. 1998; Kozlowski et al. 1999; Buhler et al.
2000; Ezzelarab et al. 2009). Emergent excision of the pig graft
would reverse the situation, confirming it was the presence of
the graft that was the major factor in the development of this
complication.

Coagulation dysregulation

These observations (and important previous studies by others
(reviewed in Robson et al. 2000), generated investigation into the na-
ture of the coagulation/anticoagulation discrepancies between pigs
and primates and eventually to the genetic modification of GTKO
pigs to express human coagulation-regulatory proteins, e.g., thrombo-
modulin, endothelial protein C-receptor, tissue factor pathway inhibi-
tor, and/or CD39, which, individually or in combination, to some
extent corrected this dysregulation. Efforts are currently underway
to replace porcine von Willebrand factor with human von Willebrand
factor. Our mutual interest in preventing this thrombotic microangio-
pathy has resulted in an ongoing collaboration with Umesh Desai and
his glycobiology colleagues at Virginia Commonwealth University to
create potent analogs of heparin (A Azimzadeh et al. in preparation).

The role of non-Gal oligosaccharides in

xenotransplantation

Soon after we identified Gal as the major target for human anti-pig
antibodies, others reported that it was already known that pigs

Table II. Micromolal concentration of each oligosaccharide needed

to obtain 50% inhibition of cytotoxicity of unmodified human or

baboon serum on pig kidney (PK15) cells

Inhibitor oligosaccharide Serum

Human Baboon

Fucα1–2Galβ1-R >10,000 >10,000
Galβ1-R >10,000 >10,000
Galα1–2Galβ1-R′ 7000 >10,000
Galα1–3Gal 386 ± 149a 301 ± 44e

Galα1–3Galβ1–4Gal 163 ± 73b 141 ± 60f

Galα1–3Galβ1–4Galα1–3Gal 54 ± 31c 119 ± 30g

Galα1–3Galβ1–4GlcNAc 27 ± 11d 31 ± 4h

Bold type indicates structural differences of the oligosaccharide with the
major pig vascular endothelium glycolipid Galα1–3Galβ1–4GlcNAcβ1–
3Galβ1–4Glcβ1-Cer. R represents 1–3 or 1–4 linkages to Gal or to GlcNAc;
R′ is –O(CH2)3NHCOCF3. The results of the strong inhibitors (a–h) are
expressed as mean ± SD (n = 3). Statistical significance: a vs. c (t = 3.0); a vs. d
(t = 3.9); b vs. d (t = 3.1); e vs. h (t = 9.7); f vs. h (t = 3.1); g vs. h (t = 5.4), all
with P < 0.02. The other comparisons did not reach the P = 0.05 level of
significance, but both human and baboon serum inhibition tests follow a
similar trend. Reproduced with permission from Neethling et al. (1996).
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expressed N-glycolylneuraminic acid (NeuGc) on the vascular endo-
thelium (Bouhours et al. 1996). NeuGc is not expressed in humans
(but was thought to be present in all other mammals) due to the ab-
sence of the enzyme creating this modified form of the monosacchar-
ide neuraminic acid, cytidine monophosphate-N-acetylneuraminic
acid hydroxylase (CMAH). The development of anti-NeuGc anti-
bodies in humans would therefore be detrimental to survival of a
pig organ graft transplanted into a patient (though not into a baboon).
Just as I had read all of Uri Galili’s papers on Gal, I now followed the
studies by Ajit Varki’s group on NeuGc (reviewed in Padler-Karavani
and Varki 2011).

The relevance of anti-NeuGc antibodies has been tested in vitro
using human serum and pig cells, but it has only been relatively recent-
ly that pigs in which expression of both Gal and NeuGc has been
deleted have become available (Figure 3) (Lutz et al. 2013; Lee et al.
2016a). The effect of CMAH gene-knockout has not yet been
explored in vivo because it was thought there was no relevant animal
model, but it has been recently demonstrated that NeuGc is not
expressed in NewWorld monkeys (Springer et al. 2014), which there-
fore can develop anti-NeuGc antibodies. Plans are afoot to carry out
organ transplants fromNeuGcKOpigs in NewWorldmonkeys, which
should provide evidence of the role NeuGc may play when clinical
xenotransplantation is introduced, and how well the grafts are
tolerated.

Despite considerable investigation (Cooper 1998; Ezzelarab et al. 2005;
Yeh et al. 2010), only one further oligosaccharide antigen has been defini-
tively identified as being of relevance to xenotransplantation, which is a
product of the gene, β(1,4)N-acetylgalactosaminyltransferase
(β4GalNT2) (Byrne et al. 2014). Like Gal, the oligosaccharide created
by this enzyme is not expressed in humans and Old World monkeys
and so it will be possible to test the effect of primate anti-β4GalNT2
antibodies on pig grafts in the pig-to-nonhuman primate transplant
model. Furthermore, β4GalNT2-knockout (β4GalNT2KO) pigs that
do not express the Sd(a) antigen are also now available (Estrada
et al. 2015), and transplants using organs from GTKO/β4GalNT2KO
pigs are being carried out in monkeys by a group of investigators at the
University of Indiana and Emory University, though in vivo data have
not yet been reported.

Recent studies using human serum and cells from pigs in which the
enzymes GT+/− CMAH+/− β4GalNT2 have been knocked out pro-
vide great encouragement for the future of clinical transplantation
as human antibody binding to these cells is often minimal (Figure 4).
Tector and his colleagues have demonstrated that∼25%of humans do
not appear to have natural antibodies to any other targets on these
“triple-knockout” pig cells (Estrada et al. 2015).

The future of pig organ and cell xenotransplantation

When pigs in which these three carbohydrate antigens have been de-
leted and which also express one or more human complement-
regulatory proteins and one or more human coagulation-regulatory
proteins, a clinical trial of kidney or heart xenotransplantation will
likely be justified (Cooper 2015; Cooper and Bottino 2015; Cooper
et al. 2016). However, there are numerous other genetic manipula-
tions that may benefit the outcome of a xenotransplant, and these in-
clude the expression of anti-inflammatory genes and manipulations
that reduce or suppress the adaptive immune response (Table III).
Currently, there are an estimated 40 different genetically modified
pigs worldwide, with up to 7 modifications combined in a single pig.

We and other groups have extended our interest in the glycobiol-
ogy of xenotransplantation to include the transplantation of the pig
liver, lung, pancreatic islets, corneas, neuronal cells, and red blood
cells. For example, the transplantation of pig pancreatic islets could
provide a cure for the millions of patients worldwide with diabetes
(Cooper and Bottino 2015). Neuronal cells from genetically engi-
neered pigs may cure neurodegenerative diseases, such as Parkinson’s
disease (Leveque et al. 2011). The absence of Gal and NeuGc expres-
sion on erythrocytes takes us one step closer to being able to use pig
red blood cells for transfusion in humans (Rouhani et al. 2004; Coo-
per et al. 2010; Wang et al. 2014). Genetically engineered pigs could
also be a source of corneas for the hundreds of thousands of patients
worldwide with corneal blindness (Hara and Cooper 2011; Lamm
et al. 2014; Lee et al. 2016b). Bioprosthetic heart valves from pigs
(that are implanted in their thousands each year into patients with car-
diac valve disease) will almost certainly function for longer periods if
obtained fromGTKO/CMAHKO/β4GalNT2KO pigs (Cooper 2009a;
Manji et al. 2014).

Fig. 3. (Left to right) Expression of Gal and NeuGc on aortas from wild-type, GTKO/CD46 and GTKO/CD46/CMAHKO pigs, and also on a human aorta. Expression of

Gal was determined by staining with the isolectin B4 from Bandeiraea simplicifolia, and expression of NeuGc by staining with a chicken-derived anti-NeuGc

immunohistochemistry set. Therefore, it is not possible to make a direct quantitative comparison of the level of expression between the two oligosaccharides.

However, Gal (green) is expressed mainly on the vascular endothelium (indicated by red arrowheads), whereas NeuGc (red) is much more widely expressed in

all layers, including the vascular endothelium. (Cell nuclei—blue; Gal—green; NeuGc—red. Magnification ×200.) (Figure kindly provided by W. Lee, MD).
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Conclusions

In summary, therefore, my career has taken an unexpected turn to-
wards glycobiology, a field that, as I have shared here, has played

center-stage in my research activities. My firm belief is that the trans-
plantation of pig organs and cells into humans will be achieved suc-
cessfully within the foreseeable future and that its success will be

Fig. 4. Human IgM (A) and IgG (B) antibody binding to pig and human aortic endothelial cells by flow cytometry (n = 6). Human IgM and IgG binding to GTKO/CD46

pAECs was significantly decreased compared with wild-type (WT, i.e., genetically unmodified) pAECs (*P < 0.05), and was further decreased to GTKO/CD46/

CMAHKO pAECs (*P < 0.05). There was significantly greater IgM binding to GTKO/CD46/CMAHKO pAECs than to human AECs, but there was no statistical

significance in the extent of IgG binding between them. (Figure kindly provided by H. Hara, MD, PhD)

Table III. Selected genetically modified pigs currently available for xenotransplantation research

Complement regulation by human complement-regulatory gene expression
CD46 (membrane cofactor protein)
CD55 (decay-accelerating factor)
CD59 (protectin or membrane inhibitor of reactive lysis)

Gal or non-Gal antigen “masking” or deletion
Human H-transferase gene expression (expression of blood type O antigen)
Endo-β-galactosidase C (reduction of Gal antigen expression)
α(1,3)-galactosyltransferase gene-knockout (GTKO)
Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene-knockout (CMAHKO)
β4GalNT2 (β(1,4)-N-acetylgalactosaminyltransferase) gene-knockout (β4GalNT2KO)

Suppression of cellular immune response by gene expression or downregulation
CIITA-DN (MHC class II transactivator knockdown, resulting in swine leukocyte antigen class II knockdown)
Class I MHC-knockout (MHC-IKO)
HLA-E/human β2-microglobulin (inhibits human natural killer cell cytotoxicity)
Human FAS ligand (CD95L)
Human N-acetylglucosaminyltransferase III gene
Porcine CTLA4-Ig (cytotoxic T-lymphocyte antigen 4 or CD152)
Human tumor necrosis factor-α-related apoptosis-inducing ligand

Anticoagulation and anti-inflammatory gene expression or deletion
von Willebrand factor-deficient (natural mutant)
Human tissue factor pathway inhibitor
Human thrombomodulin
Human endothelial protein C receptor
Human CD39 (ectonucleoside triphosphate diphosphohydrolase-1)

Anticoagulation, anti-inflammatory, and anti-apoptotic gene expression
Human A20 (tumor necrosis factor-α-induced protein 3)
Human heme oxygenase-1
Human CD47 (species-specific interaction with SIRP-α inhibits phagocytosis)
Porcine asialoglycoprotein receptor 1 gene-knockout (decreases platelet phagocytosis)
Human signal regulatory protein α (decreases platelet phagocytosis by “self”-recognition)

Prevention of porcine endogenous retrovirus (PERV) activation
PERV siRNA

Modified from Cooper et al. (2016).
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due in no small part to the developments that have taken place in gly-
cobiology during the past 30 years.

History tells us that procedures that were inconceivable yesterday,
and barely achievable today, often become routine tomorrow.

Thomas Starzl (American transplant pioneer)
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