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SUMMARY

Analysis of matched case-control studies is often complicated by missing data on covariates. 

Analysis can be restricted to individuals with complete data, but this is inefficient and may be 

biased. Multiple imputation (MI) is an efficient and flexible alternative. We describe two MI 

approaches. The first uses a model for the data on an individual and includes matching variables; 

the second uses a model for the data on a whole matched set and avoids the need to model the 

matching variables. Within each approach, we consider three methods: full-conditional 

specification (FCS), joint model MI using a normal model, and joint model MI using a latent 

normal model. We show that FCS MI is asymptotically equivalent to joint model MI using a 

restricted general location model that is compatible with the conditional logistic regression 

analysis model. The normal and latent normal imputation models are not compatible with this 

analysis model. All methods allow for multiple partially-observed covariates, non-monotone 

missingness, and multiple controls per case. They can be easily applied in standard statistical 

software and valid variance estimates obtained using Rubin’s Rules. We compare the methods in a 

simulation study. The approach of including the matching variables is most efficient. Within each 

approach, the FCS MI method generally yields the least-biased odds ratio estimates, but normal or 

latent normal joint model MI is sometimes more efficient. All methods have good confidence 

interval coverage. Data on colorectal cancer and fibre intake from the EPIC-Norfolk study are used 

to illustrate the methods, in particular showing how efficiency is gained relative to just using 

individuals with complete data.
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1 Introduction

Case-control studies are used to investigate associations between disease and putative risk 

factors. Confounding of observed associations can be handled at the design stage by 

matching cases and controls on confounders, at the analysis stage by adjusting for 

confounders using a regression model, or by a combination of these. In matched case-control 
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studies, each case is individually matched with one or more controls on a subset of 

confounders and the (usual) analysis uses conditional logistic regression (CLR) to control 

for the remaining confounders.

Often, the analysis is complicated by missing data on covariates (i.e., exposures and 

remaining confounders). A common solution is to restrict analysis to individuals with 

complete data. Although appealing for its simplicity, this “complete-case analysis” (“case” 

here means any individual, rather than an individual with disease) is inefficient and may be 

biased. In particular, where exclusion of a case or control leaves a matched set in which 

remaining members are either all cases or all controls, the whole set ceases to contribute 

information to the CLR estimating equations.

To improve efficiency and reduce bias, several alternatives have been proposed. Lipsitz et al. 

(1998) allow for one partially observed covariate. They assume data are missing at random 

(MAR) and fit a missingness model, i.e., a model for the probability that an individual is a 

complete case. Functions of the fitted probabilities are then used as offsets in CLR. This 

consistently estimates odds ratios (ORs) when the missingness model is correctly specified, 

but is inefficient as it only uses data on complete cases. Paik and Sacco (2000) also allow for 

just one partially observed covariate and assume MAR. They assume a model for the 

distribution of the partially observed covariate given the other covariates, matching variables 

and binary disease status. When this covariate model is correctly specified, consistent 

estimation of the ORs can be achieved by CLR after imputing the missing covariate as its 

fitted value when the disease status variable is set to 0.5. Rathouz (2003) notes that this 

method implicitly assumes missingness does not depend on disease status, and generalizes it 

to allow for such dependence, as well as for multiple missing covariates. His method 

assumes the partially observed covariates are all observed or all missing on each individual. 

Sinha and Wang (2009) take a similar approach, but instead of a parametric covariate model, 

kernel density estimation is used for those functions in the estimating equations that depend 

on the distribution of the partially observed covariate. They find their OR estimator is less 

biased than that of Paik and Sacco (2000) when the latter’s covariate model is misspecified. 

A drawback is that categorical variables are handled by stratifying individuals on these 

variables and performing kernel density estimation separately in each stratum, which limits 

the feasible number of categorical variables (and categories). Paik (2004) extends Paik and 

Sacco’s (2000) method to allow for data missing not at random (MNAR).

The forementioned methods all reduce to standard CLR when there are no missing data: the 

assumed missingness or covariate model then becomes irrelevant. Other methods for missing 

data derive information from an assumed covariate model even when data are complete. 

These methods may be more efficient but at the cost of possible bias when the covariate 

model is misspecified. Satten and Carroll (2000) propose such a method. This allows for 

multiple partially observed covariates, but assumes these are all observed or all missing on 

each individual. Ahn et al. (2011) generalize it to allow for MNAR and multiple disease 

states. Rathouz et al. (2002) elaborate Lipsitz et al.’s (1998) method to use a covariate model 

and so gain efficiency. The resulting estimator is doubly robust but difficult to implement. 

They also propose a more practical approximation which, though not doubly robust, still 

gains efficiency. Liu et al. (2013) use empirical likelihood to develop a semiparametric-
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efficient competitor to Rathouz et al.’s (2002) estimator. Gebregziabher and DeSantis (2010) 

assume all covariates are categorical and carry out multiple imputation (MI) using a latent-

class model. A drawback is that imputation of a individual’s missing value makes no use of 

data on matching variables, covariate values of other individuals in the same matched set, or 

disease status, which may cause bias (Moons et al., 2006) and inefficiency.

The methods described so far assume the distribution of the partially observed covariate(s) 

given fully observed covariates, disease status, and matching variables can be modeled 

parametrically. Sometimes this is not feasible. For example, if cases are matched with 

controls from the same family, from the same postcode area, or from the set of patients 

attending the same general practice, it could be difficult to model parametrically the 

matching via explicit matching variables, while the alternative of allowing a separate 

nuisance parameter for each matched set may cause problems with model fitting and induce 

bias and even inconsistency of estimators. Even when matching could, in principle, be 

modeled parametrically, this is only possible if the analyst has data on matching variables, 

which is not always so, and some analysts may prefer to avoid modeling effects of matching 

variables, since CLR makes no assumptions about the association between disease and 

matching variables. One solution, adopted by Sinha et al. (2005), is to allow each matched 

set to have its own parameter in the covariate model but treat these as random effects. They 

assume a single partially observed covariate and that the random effects are generated by a 

Dirichlet process. They fit their Bayesian model using a Hastings–Metropolis algorithm with 

specially written computer code.

Though useful, these methods have limitations. Many assume only one partially observed 

covariate or that partially observed covariates are collectively observed or missing on each 

individual. Many require bespoke computer code. Most require parametric modeling of 

matching variables. In this article, we advocate the use of MI, proposing, and comparing six 

MI methods suitable for matched case-control data that can be easily implemented in 

commonly used statistical packages. MI has several advantages. First, it is increasingly 

being used to handle missing data and many researchers are familiar with the technique. 

Second, MI software is readily available and easy to use. Third, MI allows for multiple 

partially observed covariates without needing them to be collectively observed or missing. 

Fourth, MI can easily incorporate information on variables that are not included in the CLR 

model but are predictive of missing covariates in that model. This can increase efficiency 

and can also reduce bias when these extra variables are required to make the MAR 

assumption more plausible. Fifth, we propose both methods that parametrically model 

matching variables and methods in which this is not required. Arguably, a sixth advantage is 

that, unlike some of the methods proposed earlier, MI reduces to standard CLR when there 

are no missing data. Although this means MI does not offer the potential efficiency gain 

associated with methods that make use of a covariate model even when data are complete, it 

should make it more robust to misspecification of that model.

We illustrate the use of MI for matched case-control data on a study of association between 

fibre intake and colerectal cancer nested within the European Prospective Investigation of 

Cancer (EPIC) Norfolk cohort. This is one of the studies in the UK Dietary Cohort 

Consortium, which combines case-control studies nested within several cohorts. Results 
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from this study have been described elsewhere (Dahm et al., 2010). Cases were individuals 

in the EPIC Norfolk cohort diagnosed with colorectal cancer between recruitment to the 

cohort (1993–1998) and the end of 2006. Seven-day diet diaries were completed by 

participants shortly after recruitment to the underlying cohort and stored for later use. The 

diet diaries were processed for individuals selected for the case-control sample to obtain 

measures of average daily intake of foods and nutrients (Dahm et al., 2010). There were 318 

colorectal cancer cases and each was matched with four controls on sex, age within 3 years, 

and date of diary completion within 3 months. Controls had to be alive and have not been 

diagnosed with colorectal cancer at the end of 2006. In the original analysis, the association 

between fibre intake and colorectal cancer was adjusted for several potential confounders 

using CLR : smoking status (three categories), education (four categories), social class (six 

categories), and physical activity level (four categories), and height, weight, exact age, 

alcohol intake, folate intake, intake of energy from fat, and intake of energy from nonfat (all 

continuous). We wished also to adjust for aspirin use (two categories). Many other studies 

have adjusted for aspirin use (Aune et al., 2011), which is known to be associated with 

reduced risk of colorectal cancer (Asano and McLeod, 2004; National Cancer Institute, 

2014). It was omitted from the original analysis (Dahm et al., 2010) because it was not 

measured in some of the contributing studies. Of the 1590 individuals in the study, 328 (78 

cases and 250 controls) were missing one or more adjustment variables, most commonly 

aspirin use or social class; the main exposure, fibre intake, and the matching variables were 

fully observed. A complete-case analysis uses only 240 (75%) matched sets and 1012 (64%) 

individuals.

The article is structured as follows. Section 2 discusses CLR with complete data. Section 3 

describes MI in general. For matched case-control studies, Section 4 proposes three MI 

methods that parametrically model the matching variables, and Section 5 three analogous 

methods that avoid this. Section 6 contains a simulation study comparing the methods. 

Section 7 describes their application to the EPIC study. We end with a discussion in Section 

8.

2 Analysis of Matched Case-Control Studies with Complete Data

For each individual in the population, let D = 1 if he/she has disease and D = 0 otherwise. 

So, D = 1 for cases and D = 0 for controls. Let S denote the variables used to match controls 

with cases. Let Xcat and Xcon denote categorical and continuous covariates, respectively. A 

categorical variable with m > 2 levels is coded as m − 1 dummy variables. Assume

(1)

where q(S) = logit P (D = 1 | Xcat = 0, Xcon = 0, S). Let M denote the number of controls 

matched with each case. We se subscript j (j = 1, … , M + 1) to index individual within set 

and assume cases and controls have been ordered so that D1 = 1 and D2 = … = DM+1 = 0.
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In ordinary logistic regression the log ORs βcat and βcon are estimated by maximizing the 

likelihood based on expression (1) and the data on the sampled individuals. This requires 

that either q(S) is modeled or a separate baseline parameter is included for each matched set. 

The former corresponds to breaking the matching and adjusting for S, which there is often a 

reluctance to do, because it requires a functional form to be specified for the effect of 

matching variables on disease risk. The alternative of including a baseline parameter for 

each set yields inconsistent maximum likelihood estimates (Breslow and Day, 1980). For 

this reason, CLR is often used instead. CLR includes a baseline parameter for each set, but 

then eliminates these from the likelihood by conditioning on the number of cases and 

controls in each set. Let  denote the conditional probability 

that  given that 

 for some 

permutation  and 

given that D1 = 1 and D2 = … = DM+1 = 0 and S1 = … = SM+1. Equation (1) implies

(2)

and vice versa (Web Appendix A). CLR finds the values of βcat and βcon that maximize the 

product of expression (2) over the matched sets; these consistently estimate the log ORs .

3 Joint Model MI and Full-Conditional Specification (FCS) MI

We briefly review the most commonly used forms of MI: joint model MI and FCS MI (Web 

Appendix B has more detail). In joint model MI, a Bayesian model with non-informative 

priors is specified for the distribution of the partially observed variables given fully observed 

variables. This “imputation model” is fitted to the observed data, and values for missing 

variables are then sampled from their joint posterior predictive distribution. The model of 

interest (“analysis model”) is fitted to each resulting complete (or “imputed”) dataset 

separately, and the parameter and variance estimates obtained are combined using simple 

equations called Rubin’s Rules. When the imputation model is correctly specified and is 

compatible with the analysis model, i.e., there exists a model for the joint distribution of all 

the variables that implies the analysis and imputation models as submodels, and data are 

MAR, joint model MI gives consistent parameter and variance estimates for the analysis 

model. Thus, compatibility, if possible, is desirable. The first of the methods described in 

each of Sections 4 and 5 are based on imputation models that are compatible with the CLR 

analysis model.

Instead of requiring a joint model for the partially observed variables, FCS MI involves 

specifying a model for the conditional distribution of each partially observed variable given 

all other variables. The FCS algorithm cycles through these models, sampling missing 
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values for the dependent variable in the current model given the observed and most recently 

sampled values of all the other variables, until convergence is achieved. This may be easier 

than specifying and fitting a joint model. In special cases, FCS corresponds to joint model 

MI (Hughes et al., 2014). Otherwise, FCS is less theoretically justified, but there is much 

evidence that it works well in terms of approximate unbiasedness of parameter and variance 

estimates and coverage of confidence intervals (van Buuren, 2012; Hughes et al., 2014; Lee 

and Carlin, 2010). An important theoretical result was given by Liu et al. (2014). They 

defined the set of conditional models to be compatible with a joint model if, for each 

conditional model and every possible set of parameter values for that model, there exists a 

set of parameter values for the joint model such that the conditional and joint models imply 

the same distribution for the dependent variable of that conditional model. They showed that 

when this compatibility holds, the distribution of the data imputed by FCS MI converges, as 

sample size tends to infinity, to the posterior predictive distribution of the missing data under 

that joint model. Hence, FCS MI is asymptotically equivalent to joint model MI in this case. 

The first of the MI methods in each of Sections 4 and 5 use this asymptotic result.

4 MI Using Matching Variables

Let R denote the missingness pattern in (Xcat⊤, Xcon⊤)⊤. Assume D and S are fully observed 

and the data are MAR. In this section, we propose multiply imputing missing (Xcat⊤, 

Xcon⊤)⊤ from its conditional distribution given S and D. We call this “MI using matching 

variables.” It is analogous to breaking the matching and adjusting for the matching variables. 

However, matching is broken only to impute missing data; matching is then restored and the 

imputed data analyzed using CLR. Most methods reviewed in Section 1 effectively break the 

matching for the individuals with missing data. In Section 5, we describe an alternative (“MI 

using matched set”), which imputes without breaking the matching. We now propose three 

ways of modeling the distribution of (Xcat⊤, Xcon⊤)⊤ given S and D.

The first model for (Xcat⊤, Xcon⊤)⊤ given S and D is a restricted general location model 

(Schafer, 1997). This has a log-linear model for Xcat and normal model for Xcon given Xcat:

(3)

(4)

where a(xcat, S; ζ) includes a main effect for Xcat and all pairwise interactions between Xcat 

and S and between pairs of elements of Xcat. Vectors λ, ζ, α and ϕ and matrices γ, δ and Σ 

are unknown parameters. In Web Appendix C, we prove that (3)–(4) imply that equation (2) 

holds with βcat = λ − γ⊤Σ−1ϕ and βcon = Σ−1ϕ. Hence, this model is compatible with the 

CLR analysis model.
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Bayesian modeling software, such as WinBUGS (Lunn et al., 2000), can be used to impute 

missing (Xcat⊤, Xcon⊤)⊤ from its posterior predictive distribution implied by joint model 

(3)–(4). However, such software requires specialist programming skills. Instead, we propose 

using FCS MI with a set of conditional models that is compatible with this joint model, and 

hence is asymptotically equivalent to joint model MI. FCS MI is widely available in general-

purpose statistical packages, e.g., Stata, R, and SAS. In Web Appendix D, we show that a 

compatible conditional model for a partially observed continuous covariate (an element of 

Xcon) is a linear regression of this covariate on S, D, Xcat and the remaining elements of 

Xcon. Likewise, a compatible conditional model for one of the partially observed categorical 

covariates making up Xcat is a multinomial logistic regression of this categorical covariate on 

S, D, Xcon and those elements of Xcat that are not dummy indicators for this categorical 

covariate. Conveniently, these conditional models are the default options in many MI 

packages.

Although asymptotically equivalent, in finite samples this FCS MI method may be 

inefficient compared to joint model MI, because it estimates the parameters of the 

conditional model for Xcat using only part of the available data on Xcon (Hughes et al., 

2014). Our second proposed model for (Xcat⊤, Xcon⊤)⊤ given S and D is a latent normal 

model (Carpenter and Kenward, 2013). This is not compatible with the CLR analysis model, 

but it has the advantage that it can be used for joint model MI without needing specialist 

Bayesian software. For simplicity, suppose that all the categorical covariates are binary (see 

Carpenter and Kenward (2013) for general case). The latent normal model is

(5)

where Wcat is a vector of latent variables (each with unit variance), one for each element of 

Xcat, and such that an element of Xcat equals 1 if its corresponding element of Wcat is 

positive and 0 otherwise. αLN, ϕLN, δLN, and ΣLN are unknown parameters. Joint model MI 

using (5) can be done using the software REALCOM-MI or the jomo package in R. The 

realcomImpute program provides an interface between Stata and REALCOM-MI.

When all partially observed covariates are continuous, our FCS MI method and joint model 

MI using (5) both reduce to joint model MI using the normal model (4). Use of this normal 

model for MI even when some partially observed variables are categorical was originally 

promoted by Schafer (1997) and has become common. Although the model is obviously 

misspecified, this method has been found to work well in many situations and software is 

widely available, e.g., mi mvn impute in Stata and norm in R. Thus, our third proposed 

model for (Xcat⊤, Xcon⊤)⊤ given S and D is expression (5) with Wcat replaced by Xcat. 

Following Bernaards et al. (2007), we use “adaptive rounding” after imputation to handle 

non-integer imputed values of Xcat.
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5 MI Using Matched Set

Now, we propose three models for 

unconditional on S, thus allowing imputation without using the matching variables. These 

are analogous to the models in Section 4 but involve a matched-set-specific random effect, u.

The first is a restricted general location model. Assume that for each matched set,

(6)

with

(7)

where  includes a main effect of each element of  and an interaction between 

each pair of these elements, and  includes all pairwise interactions between 

one element of  and one element of  This allows correlation between Xcat of 

members of the same matched set. Also assume that for j = 1, … , M + 1 independently,

(8)

and

(9)

where  Note that ψ and Ω allow correlation between one 

individual’s Xcon and the Xcat and Xcon of other members of the same matched set. In Web 

Appendix E, we show this model implies equation (2) holds with βcat = τ − ρ⊤(F − C)ξ and 

βcon = (F − C)ξ, where C−1 = Λ + Ω − Ω(Λ + MΩ)−1MΩ and F = −(Λ + MΩ)−1ΩC.
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As in Section 4, we propose using FCS MI with conditional models compatible with this 

joint model. In Web Appendix F, we show that a compatible conditional model for a 

partially observed element of  is a linear regression of that element on 

 and all the remaining elements of  Likewise, a 

compatible conditional model for one of the partially observed categorical variables making 

up  is a multinomial logistic regression of this categorical variable on 

 and those elements of  that are not dummy indicators for 

this categorical variable. These conditional models are not the default options in MI 

software, because some predictors in the regression are sums of conditioning variables, e.g., 

. However, specification of non-default conditional models is straightforward (see 

Web Appendix H).

As with the FCS method in Section 4, this method is asymptotically equivalent to joint 

model MI, but in finite samples may be inefficient. Our second proposed model for Xset is a 

latent normal model with random effects (Carpenter and Kenward, 2013). Like the latent 

normal model of Section 4, this is not compatible with equation (2), but its use may improve 

efficiency. The latent normal model is the same as model (5), but with δLNS replaced by u 
and now conditioning on all of D1, … , DM+1: for j = 1, … , M + 1 independently,

(10)

where u is normally distributed with mean zero and unstructured variance given D1 = 1, D2 

= … = DM+1 = 0. Again, joint model MI can be done using REALCOM-MI or jomo.

As in Section 4, there is a normal version of this model. This assumes (10) but with 

replaced by . Joint model MI with this model can be done using the pan package of R.

6 Simulation Study

One thousand datasets were generated for each of 24 scenarios resulting from considering 

two sample sizes (N = 100 or 500 matched sets), two numbers of matching controls (M = 1 

or M = 4), three missingness mechanisms, and two proportions of missing data. Each dataset 

was generated using the model defined by expressions (3)–(4). Specifically, there were two 

matching variables, one binary (Scat) and one continuous (Scon), and three covariates, one 

categorical (Xcat) and two continuous (XconA and XconB). We assumed P (Scat = 1 | D = 1) = 

0.6 and Scon | Scat,D = 1 ~ N(0, 1). These could represent, for example, sex and standardized 

age. Among cases, the sex with greater risk would be more common, while age might be 

approximately normal if risk increases with age but total population size diminishes due to 

all-cause mortality. We assumed logit P (Xcat = 1 | Scat, Scon, D) = −2.5 + 0.5Scat + 0.5Scon 

+ 0.75D (so about 10% of controls and 20% of cases have Xcat = 1), and (XconA, XconB) 

given Xcat, Scat, Scon,D is bivariate normal with univariate marginal distributions N(0.5Xcat 

Seaman and Keogh Page 9

Biometrics. Author manuscript; available in PMC 2016 April 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



+ 0.5Scat + 0.5Scon + 0.5D, 1) and covariance 0.5. From βcat = λ − γ⊤Σ−1ϕ and βcon = Σ−1ϕ 

the true log ORs of Xcat, XconA, and XconB are βcat = 5/12, βconA = 1/3, and βconB = 1/3.

Missingness was imposed on Xcat and XconA assuming either missing completely at random 

(MCAR) or one of two MAR mechanisms. For MCAR data, each individual’s Xcat and 

XconA variables were independently missing with probability pmiss. Two values, pmiss = 0.1 

and pmiss = 0.25, were considered. Thus, either 19 or 44% of individuals had at least one 

missing variable. For the first MAR mechanism (MAR-A), each individual’s Xcat and XconA 

variables were independently missing with logit probability cmiss + 0.25(XconB + Scat + Scon 

+ D). For the second (MAR-B), it was cmiss + 0.25(XconB + Scat + Scon + D + XconBD). In 

both cases, cmiss was chosen to give pmiss = 0.1 or pmiss = 0.25 missingness in each of Xcat 

and XconA.

Each dataset was analyzed using CLR with Xcat, XconA and XconB as covariates. Missing 

data were handled in seven ways: complete-case analysis; FCS MI using matching variables 

or matched set (using ice in Stata); latent normal MI using matching variables or matched 

set (jomo in R); and normal MI using matching variables (mi impute in Stata) or matched set 

(pan in R). We used 25 imputed datasets when pmiss = 0.1, and 50 when pmiss = 0.25. In 

addition, the complete data were analyzed before imposing missingness on the covariates.

Tables 1 and 2 show results for the MCAR mechanism with 1:1 matching (M = 1) and 1:4 

matching (M = 4) when N = 500. The results from these scenarios also give a good 

indication of the general patterns observed for MAR-A, MAR-B and N = 100 (see Web 

Tables 1–10). We shall focus on βcat and βconA, since for βconB (the fully-observed 

covariate), differences between the three MI methods using matched variables were small, as 

were differences between those using matched set. To ease comparison of the six MI 

methods, Tables 3 and 4 show, for pmiss = 0.25, the bias, ratio of empirical SEs, ratio of 

mean estimated SEs, and relative efficiency (i.e., ratio of mean squared errors, MSE) of each 

method, averaged over the three missingness mechanisms, separately for βcat and βconA, for 

N = 100 and 500, and for M = 1 and M = 4. Unsurprisingly, differences between methods 

were smaller when pmiss = 0.1; we focus on pmiss = 0.25 below.

The two FCS methods are approximately unbiased when N = 500 and usually when N = 

100. Exceptions are when N = 100 and M = 1, where the complete-data method is also 

biased (with biases similar to those of FCS MI), and when N = 100 and M = 4, where there 

is bias for βcat when using matched set. Normal MI has some negative bias for βcat, 

especially when using matching variables (except when N = 100 and M = 1, where its 

negative bias cancels out the positive bias of the complete-data estimator). Latent normal MI 

has some positive bias for βcat when M = 1; latent normal MI using matched set also has 

negative bias for βconA. The complete-case estimators are generally approximately unbiased, 

but note that the estimator of βconB is severely biased under MAR-B (Web Tables 2, 4, 7, and 

10).

Empirical standard errors (SEs) from MI are almost always smaller when using matching 

variables than when using matched set, and negatively biased estimators tend to have smaller 

SEs. For βcat, the SEs from FCS MI and latent normal MI are usually similar (when using 
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matched set with N = 100, FCS MI has the smaller SE); the smallest SEs come from normal 

MI. For βconA, latent normal MI has the smallest SEs; the SEs from normal MI are similar to 

those from FCS MI when using matching variables and larger when using matched set. 

These differences are less marked when M = 4.

Efficiency (mean square error, MSE) is a function of bias and SE. For βcat, normal MI is 

most efficient, despite its bias; FCS MI and latent normal MI are usually about equally 

efficient, with neither uniformly better than the other. For βconA, latent normal MI is more 

efficient than FCS and normal MI when using matching variables; FCS and normal MI are 

equally efficient. When using matched set, FCS MI is more efficient for βconA than normal 

MI; latent MI is more efficient than FCS MI when M = 1, but is the least efficient of all the 

methods when N = 500 and M = 4, where its bias dominates its smaller SE. All MI methods 

are more efficient than the complete-case analysis.

The MI methods show a tendency to slightly overestimate SEs. Mostly, this is fairly mild, 

but is more severe for normal MI with βcat when M = 1, and for latent normal MI with βconA 

when M = 1 or 4. Thus, although normal and latent normal MI are most efficient for βcat and 

βconA, respectively, this advantage is not apparent in the width of the estimated confidence 

intervals. Indeed, the average estimated SEs of the three MI methods using matching 

variables were generally rather similar; the same was true of the methods using matched set. 

Coverage of 95% confidence intervals was between 93% and 97% for all methods.

We also performed two simulation studies using modified data-generating mechanisms that 

make our imputation models misspecified. In the first, there was an interaction between Scat 

and Scon; in the second, XconA and XconB were log-normally distributed. See Web Appendix 

G and Web Tables 11–16 for details and results. Briefly, none of the MI methods showed 

considerable bias for either of these data-generating mechanisms, and all MI methods were 

much more efficient than the complete-case analysis.

In summary, all the MI methods appear to work well. Using matching variables is more 

efficient than using matched set. If using matching variables, normal and latent normal MI 

appear to be preferable to FCS MI, which is less efficient; normal MI is more efficient for 

βcat, but latent normal MI more efficient for βconA. Of these, one might prefer latent normal 

MI, because of the bias in βcat for normal MI. If using matched set, FCS MI might be 

preferred when M = 4, on bias and efficiency grounds. However, when M = 1 and using 

matched set, no method appears better than any other.

7 Analysis of EPIC-Norfolk Data

Table 5 shows the estimated adjusted log OR for fibre intake from the complete-case 

analysis. This analysis excludes all matched sets in which the case had missing data, as well 

as any controls with missing data. It uses 240 (75%) matched sets consisting of 240 cases 

and 772 controls. Also shown are the results of the three MI methods using matching 

variables, including sex, age and date of diary completion as S in the imputation model. The 

complete-case and MI analyses produce similar log OR estimates (differing by less than 

20% of an SE), but the latter are more efficient, because they use all 318 cases and 1272 
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controls i.e., 33% more matched sets, and this is reflected by a 17% reduction in estimated 

SE.

MI using matching variables imputes missing values assuming that age, sex, and time of 

diary completion have linear and additive effects on the logit probability of disease. 

Furthermore, the way that recruitment took place in the EPIC-Norfolk cohort means that 

date of diary completion is predictive of which GP surgery the individual was registered 

with, and hence matching by the former tends to induce some degree of matching by the 

latter. Treating date of diary completion as a continuous variable will not fully account for 

this. For these two reasons, one might prefer MI using matched set, or might wish to check 

that the results from the two methods do not differ substantially.

Table 5 shows that the results from MI using matching variables and MI using matched set 

are very similar, providing some reassurance about the validity of both sets of results. In this 

study, both approaches can be used, but had matching been on GP practice itself, MI using 

matched set might have been the only feasible option.

8 Discussion

We have described two broad MI approaches to the analysis of matched case-control studies 

with missing values in covariates, and three methods within each approach. One approach 

involves parametric modeling of the association between the matching variables and the 

partially observed covariates; the other instead treats matched set as a random effect. Our 

simulation results suggest that the first approach is preferable when it can be done, as it is 

more efficient. However, in studies where matching is on, e.g., family, GP practice or 

postcode area of residence, or if data on the matching variables are not available to the 

analyst, the first approach is not feasible and the second approach can be used instead. The 

second approach might also be preferred if one were reluctant to specify a form for 

association between matching variables and covariates in the imputation model, because, for 

example, there were several matching variables, including continuous ones and potential 

interactions.

Of the three MI methods within each approach, FCS MI based on a restricted general 

location model and joint model MI using a multivariate normal distribution can be 

implemented in many statistical packages, whereas joint model MI using a latent normal 

distribution is currently limited to R and the specialist software REALCOM-MI. All three 

methods are easy to use, appear to work well, and are more efficient than the complete-case 

analysis. They can all handle continuous and nominal categorical covariates, multiple 

partially-observed covariates, non-monotone missingness patterns, and multiple controls per 

case. Computer commands to implement the methods are given in Web Appendix H.

FCS MI has the theoretical appeal of being asymptotically equivalent to joint model MI 

using an imputation model (the restricted general location model) that is compatible with the 

CLR analysis model. It nearly always gave the least-biased estimates in simulations. 

However, when using matching variables, normal MI and latent normal MI were more 

efficient. When using matched set, FCS MI was marginally better than normal and latent 
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normal MI for a 1:4 matched study (M = 4); no method was obviously best or worst for 1:1 

matching (M = 1). A drawback of FCS MI using matched set when M > 1 is that the 

estimates may depend on the arbitrary order chosen for the M controls in each matched set. 

Any order produces valid imputations, but one could avoid this dependence by randomly 

permuting indices of controls within matched sets before generating each imputed dataset. 

However, that is only likely to be worthwhile if the sample size is small and there are a lot of 

missing data. Normal MI was, in general, the most biased of the three methods, but even its 

biases were fairly modest. A slight drawback of normal MI is the need manually to post-

process imputed values of categorical variables, e.g., using adaptive rounding. None of the 

MI methods was uniformly superior to the others in simulations, and we regard use of any of 

them as entirely acceptable.

All methods can handle the situation where the number of matched controls, M, varies 

between cases, although this is slightly more complicated for FCS MI using matched set. 

For this method, extra controls with completely missing data would have to be added to 

those matched sets with fewer than the maximum number of controls, before performing MI, 

and then deleted again before analyzing the imputed datasets.

Another method, which merits further research, is joint model MI using the restricted 

general location model. This requires specialist Bayesian software and more advanced 

programming skills, and the focus of this article is on methods that are easy to implement in 

standard packages. Nevertheless, it would be worth investigating whether this method is 

significantly more efficient than our FCS MI method based on the same model. The mix 

package in R (Schafer, 1997) may also be of interest. This uses a model similar to (3)–(4), 

but additionally assumes the continuous part of S is normally distributed given D, Xcat and 

the rest of S. The MI methods considered in this article assume, like the CLR analysis 

model, nothing about the distribution of the matching variables. Mix cannot be used for MI 

using matched set.

Finally, we note that, as always with missing data methods, it is important to consider the 

plausibility of the assumption about the missing data mechanism. Often, the MAR 

assumption can be made more plausible by including in the imputation model additional 

variables that are associated with the partially observed covariates.

9 Supplementary Materials

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Results from 1000 simulated datasets of N = 500 cases and M = 1 control per case with MCAR missingness 

mechanism. “LOR” is mean estimated log odds ratio, “SE” is empirical standard error, “estSE” is mean 

estimated standard error, “MSE” is mean-squared error ×1000, and “cv” is coverage of 95% confidence 

interval. True log odds ratios are 0.417, 0.333, and 0.333 for Xcat, XconA, and XconB, respectively.

Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.426 0.213 0.206 45.3 94 0.336 0.078 0.082 6.15 96 0.337 0.083 0.082 6.88 95

10% missing

Complete cases 0.431 0.264 0.256 70.0 96 0.337 0.100 0.102 10.1  96 0.340 0.103 0.102 10.6  96

Match var: FCS 0.429 0.224 0.219 50.2 94 0.335 0.083 0.087 6.92 96 0.338 0.085 0.084 7.17 94

    Normal 0.410 0.214 0.218 45.7 96 0.336 0.083 0.087 6.85 96 0.339 0.084 0.083 7.16 95

    Latent norm 0.435 0.223 0.218 50.0 95 0.330 0.081 0.087 6.63 96 0.340 0.084 0.084 7.12 94

Match set: FCS 0.429 0.225 0.219 51.0 95 0.334 0.084 0.087 7.05 96 0.338 0.085 0.084 7.23 94

    Normal 0.420 0.221 0.223 49.0 96 0.340 0.086 0.089 7.44 96 0.335 0.086 0.084 7.34 95

    Latent norm 0.437 0.226 0.220 51.6 95 0.320 0.082 0.087 6.83 96 0.340 0.085 0.084 7.35 95

25% missing

Complete cases 0.449 0.379 0.377 145 96 0.341 0.144 0.149 20.8  97 0.342 0.150 0.149 22.4  96

Match var: FCS 0.431 0.240 0.241 57.6 96 0.336 0.090 0.096 8.06 96 0.337 0.087 0.086 7.51 95

    Normal 0.386 0.215 0.235 47.1 97 0.338 0.090 0.095 8.04 97 0.341 0.086 0.086 7.49 95

    Latent norm 0.446 0.238 0.241 57.7 96 0.322 0.085 0.095 7.31 97 0.343 0.085 0.086 7.39 95

Match set: FCS 0.430 0.247 0.243 61.0 95 0.335 0.094 0.097 8.81 96 0.339 0.088 0.086 7.69 95

    Normal 0.407 0.238 0.251 56.8 96 0.350 0.098 0.101 9.93 96 0.329 0.090 0.088 8.08 94

    Latent norm 0.455 0.249 0.247 63.7 95 0.300 0.085 0.095 8.27 95 0.344 0.088 0.088 7.89 95
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Table 2

Results from 1000 simulated datasets of N = 500 cases and M = 4 controls per case with MCAR missingness 

mechanism. “LOR” is mean estimated log odds ratio, “SE” is empirical standard error, “estSE” is mean 

estimated standard error, “MSE” is mean-squared error ×1000, and “cv” is coverage of 95% confidence 

interval. True log odds ratios are 0.417, 0.333, and 0.333 for Xcat, XconA, and XconB, respectively.

Xcat XconA XconB

LOR SE estSE MSE cv LOR SE estSE MSE cv LOR SE estSE MSE cv

Complete data 0.418 0.150 0.144 22.4 94 0.334 0.058 0.061 3.37 97 0.337 0.062 0.061 3.89 94

10% missing

Complete cases 0.419 0.179 0.169 32.1 94 0.333 0.069 0.071 4.72 96 0.338 0.073 0.071 5.38 94

Match var: FCS 0.418 0.158 0.153 25.1 95 0.333 0.062 0.065 3.82 97 0.337 0.064 0.062 4.07 94

    Normal 0.407 0.154 0.152 23.8 96 0.335 0.062 0.064 3.82 96 0.339 0.064 0.062 4.06 94

    Latent norm 0.424 0.158 0.153 25.1 94 0.329 0.061 0.065 3.69 97 0.339 0.063 0.062 4.05 94

Match set: FCS 0.415 0.159 0.153 25.4 94 0.332 0.062 0.065 3.80 96 0.338 0.064 0.062 4.08 94

    Normal 0.411 0.157 0.154 24.7 95 0.336 0.062 0.065 3.89 97 0.337 0.064 0.062 4.08 94

    Latent norm 0.424 0.159 0.153 25.2 95 0.320 0.060 0.065 3.83 97 0.340 0.064 0.062 4.15 94

25% missing

Complete cases 0.411 0.242 0.225 58.5 93 0.337 0.089 0.093 7.90 97 0.338 0.095 0.093 8.99 95

Match var: FCS 0.417 0.176 0.168 30.8 94 0.335 0.069 0.071 4.75 97 0.337 0.066 0.064 4.36 94

    Normal 0.389 0.164 0.165 27.7 95 0.338 0.069 0.071 4.73 96 0.340 0.066 0.064 4.37 94

    Latent norm 0.432 0.174 0.168 30.4 94 0.323 0.066 0.070 4.42 97 0.343 0.065 0.064 4.37 94

Match set: FCS 0.409 0.176 0.168 31.0 94 0.333 0.068 0.071 4.68 96 0.338 0.066 0.064 4.41 94

    Normal 0.398 0.170 0.170 29.3 95 0.343 0.070 0.072 5.04 95 0.335 0.067 0.064 4.47 94

    Latent norm 0.431 0.177 0.170 31.4 94 0.302 0.065 0.070 5.23 95 0.344 0.067 0.065 4.59 94
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Table 3

Biases (“bias”), ratios of empirical SEs (“ratio SE”), ratios of mean estimated SEs (“ratio empSE”), and 

relative efficiencies (%, “rel. eff.”) of six MI methods when N = 500 and pmiss = 0.25. Ratios and relative 

efficiencies are calculated relative to the corresponding complete-data estimators. Each reported ratio or 

relative efficiency is the average over three ratios or relative efficiencies: one from each of the MCAR, MAR-

A, and MAR-B scenarios. Reported biases are the signed average absolute bias over these three scenarios.

βcat βconA

bias
ratio
SE

ratio
estSE

rel.
eff. bias

ratio
SE

ratio
estSE

rel.
eff.

M=1

Complete data 0.010 1.000 1.000 100.0 0.003 1.000 1.000 100.0

Match var: FCS 0.014 1.136 1.188 77.4 0.002 1.142 1.161 76.7

    Normal −0.046 1.018 1.156 92.2 0.006 1.137 1.157 77.2

    Latent norm 0.026 1.126 1.183 78.1 −0.010 1.081 1.150 84.4

Match set: FCS 0.013 1.181 1.207 71.7 −0.002 1.196 1.184 70.0

    Normal −0.015 1.132 1.245 77.9 0.014 1.251 1.223 62.7

    Latent norm 0.035 1.187 1.220 69.7 −0.035 1.082 1.157 73.0

M=4

Complete data 0.001 1.000 1.000 100.0 0.001 1.000 1.000 100.0

Match var: FCS −0.001 1.195 1.200 70.0 0.002 1.188 1.172 70.8

    Normal −0.051 1.108 1.171 73.9 0.005 1.184 1.169 70.9

    Latent norm 0.010 1.177 1.195 72.0 −0.010 1.129 1.163 76.6

Matchset: FCS −0.006 1.220 1.210 67.3 −0.002 1.190 1.187 70.5

    Normal −0.036 1.149 1.206 72.0 0.007 1.215 1.196 67.0

    Latent norm 0.008 1.200 1.211 69.3 −0.034 1.126 1.168 62.4
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Table 4

Biases (“bias”), ratios of empirical SEs (“ratio SE”), ratios of mean estimated SEs (“ratio empSE”), and 

relative efficiencies (%, “rel. eff.”) of six MI methods when N = 100 and pmiss = 0.25. Ratios and relative 

efficiencies are calculated relative to the corresponding complete-data estimators. Each reported ratio or 

relative efficiency is the average over three ratios or relative efficiencies: one from each of the MCAR, MAR-

A and MAR-B scenarios. Reported biases are the signed average absolute bias over these three scenarios.

βcat βconA

bias
ratio
SE

ratio
estSE

rel.
eff. bias

ratio
SE

ratio
estSE

rel.
eff.

M=1

Complete data 0.038 1.000 1.000 100.0 0.018 1.000 1.000 100.0

Match var: FCS 0.048 1.199 1.227 69.7 0.025 1.164 1.192 73.5

    Normal −0.017 1.068 1.186 88.3 0.027 1.150 1.185 75.2

    Latent norm 0.066 1.193 1.219 69.9 0.008 1.080 1.178 86.4

Match set: FCS 0.041 1.221 1.277 67.3 0.022 1.234 1.231 65.7

    Normal 0.029 1.160 1.309 74.7 0.051 1.321 1.295 55.6

    Latent norm 0.099 1.304 1.301 57.9 −0.013 1.085 1.203 85.3

M=4

Complete data −0.015 1.000 1.000 100.0 0.003 1.000 1.000 100.0

Match var: FCS −0.018 1.200 1.217 69.5 0.005 1.130 1.183 78.3

    Normal −0.065 1.099 1.184 80.3 0.008 1.124 1.176 78.9

    Latent norm −0.009 1.191 1.210 70.7 −0.008 1.073 1.172 86.6

Match set: FCS −0.037 1.157 1.213 74.3 −0.011 1.091 1.183 83.7

    Normal −0.040 1.136 1.228 76.7 0.012 1.172 1.211 72.5

    Latent norm −0.010 1.234 1.237 65.8 −0.026 1.079 1.185 83.6
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Table 5

Association between fibre intake and colerectal cancer estimated from EPIC-Norfolk. Log odds ratio is for 

six-gram per day increase in fibre intake, conditional on smoking, education, social class, physical activity, 

height, weight, age, alcohol intake, folate intake, intake of energy from fat and non-fat, aspirin use, and the 

matching variables. Missing data are handled by restriction to complete cases or by MI.

Method log OR SE 95% CI p-value

Complete cases −0.196 0.126 (−0.444, 0.052) 0.121

MI using matching variables:

    FCS −0.176 0.104 (−0.380, 0.027) 0.090

    Normal −0.177 0.104 (−0.380, 0.027) 0.088

    Latent normal −0.176 0.104 (−0.380, 0.027) 0.089

MI using matched set:

    FCS −0.175 0.104 (−0.378, 0.028) 0.092

    Normal −0.181 0.104 (−0.384, 0.023) 0.082

    Latent normal −0.174 0.104 (−0.377, 0.030) 0.094
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