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Abstract

Regulatory oversight of toxic emissions from industrial plants and understanding about these 

emissions’ impacts are in their infancy. Applying a research design based on the openings and 

closings of 1,600 industrial plants to rich data on housing markets and infant health, we find that: 

toxic air emissions affect air quality only within 1 mile of the plant; plant openings lead to 11 

percent declines in housing values within 0.5 mile or a loss of about $4.25 million for these 

households; and a plant’s operation is associated with a roughly 3 percent increase in the 

probability of low birthweight within 1 mile.

Industrial plants that emit toxic pollutants are ubiquitous in the United States today, and 

many lie in close proximity to major population centers. These plants emit nearly 4 billion 

pounds of toxic pollutants in the United States annually, including 80,000 different chemical 

compounds.1 Whereas criteria air pollutants like particulate matter have been regulated for 

decades, regulation of airborne toxic pollutants remains in its infancy. The nascent state of 

regulation of these emissions is controversial because, on the one hand, most of the 

chemicals emitted have never undergone any form of toxicity testing (US Department of 

Health and Human Services 2010)2, and, on the other hand, they are widely believed to 

cause cancer, birth defects, and damage to the brain and reproductive systems (Centers for 

†Go to http://dx.doi.org/10.1257/aer.20121656 to visit the article page for additional materials and author disclosure statement(s).

Correspondence to: Reed Walker.
1US Government Accountability Office, http://www.gao.gov/highrisk/risks/safety-security/epa_and_toxic_chemicals.php (accessed 
March 19, 2012).
2The Environmental Protection Agency characterizes their risk assessments as “not completely accurate” because “scientists don’t 
have enough information on actual exposure and on how toxic air pollutants harm human cells. The exposure assessment often relies 
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Disease Control and Prevention 2009). The unveiling of the Mercury and Air Toxics 

Standards in December 2011 represents the first time the US government has enforced limits 

on mercury and other toxic chemicals.

Toxic emissions are one of the reasons why siting industrial plants is so controversial. 

Policymakers must balance the negative externalities associated with industrial plants with 

their potential to create jobs, increase local economic activity, and lead to positive economic 

spillovers (Greenstone, Hornbeck, and Moretti 2010). While negative externalities often 

generate intense local opposition (e.g., “not in my backyard” or NIMBY movements), there 

is also frequently intense competition among communities to entice industrial plants to 

locate within their jurisdictions. If siting decisions are to be made efficiently, it is crucial that 

policymakers have reliable measures of the different costs and benefits.

This paper represents a first step toward understanding the external costs of industrial plants 

that emit toxic pollutants in terms of both individuals’ willingness to pay to avoid these 

facilities and population health. In order to address this question, we have assembled an 

extraordinarily rich dataset on the location and economic activity of industrial plants in five 

large US states. Our analysis focuses, in particular, on plants that report toxic emissions to 

the US Environmental Protection Agency’s Toxic Release Inventory. We link information on 

these “toxic” plants with administrative data that provides detailed information on the near-

universe of housing transactions and birth outcomes in these states. All three datasets 

provide geographic coordinates, so we are able to perform the analysis with an unusually 

high degree of spatial detail.

Since the previous literature offers little guidance about how far toxic air pollutants travel, 

our first contribution is to measure the relationship between toxic emissions and air quality. 

Using data from pollution monitoring stations and a difference-in-differences estimator, we 

document that there are significantly higher levels of ambient toxic pollution within one mile 

of operating plants but no significant effect at further distances. On average, each birth in our 

sample lies within 1 mile of 1.27 toxic plants, so our results imply that the total amount of 

exposure could be substantial.

The findings on the distance that toxic air emissions travel guide our research design, which 

is based on the sharp changes in local amenities that result from more than 1,600 toxic plant 

openings and closings.3 Our estimates are based on comparing housing prices and birth 

outcomes within 0.5 miles or 1 mile of plants with these same outcomes measured 1–2 miles 

away from plants, after adjustment for all unobserved time-varying factors that are common 

within 2 miles of the plants.4 Further, the estimates are based on millions of births and 

hundreds of thousands of housing transactions.

on computer models when the amount of pollutant getting from the source(s) to people can’t be easily measured. Dose-response 
relationships often rely on assumptions about the effects of pollutants on cells for converting results of animal experiments at high 
doses to human exposures at low doses” (EPA 1991).
3Our approach is inspired by pioneering studies by C. Arden Pope and collaborators who examined the health effects of opening and 
closing the Geneva steel mill near Provo, Utah in the late 1980s (Pope 1989; Ransom and Pope 1992; Pope, Schwartz, and Ransom 
1992). These studies have been influential largely because the resulting sharp changes in airborne particulates over a short period of 
time make the empirical analyses transparent and highly credible.
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This research design reveals that housing prices within 0.5 miles of a toxic plant’s site 

decrease by about 11 percent after a plant opens, relative to the period before the plant was 

constructed. This decline implies an aggregate loss in housing values of approximately $4.25 

million for the average plant opening. Housing prices are largely unaffected by a plant 

closing, relative to the period when the plant was operating, implying that toxic plants 

continue to negatively affect housing prices after they cease operations. Potential 

explanations for a plant’s lasting effect include persistent visual disamenities, concerns 

about local contamination, or an expectation that the plant will reopen.

Many toxic pollutants are colorless, odorless, and not well monitored, making them less 

salient than other negative externalities. Thus, it is valuable to contrast housing prices with 

health outcomes, which should immediately respond to changes in plant activity. We find 

that the incidence of low birthweight increases by roughly 3 percent within 1 mile of 

operating toxic plants, with comparable magnitudes between 0 and 0.5 miles and 0.5 and 1 

miles. Like the housing price impacts, the impacts on infant birthweight appear to be highly 

localized, with no impact beyond one mile.

We believe our study is the first large-scale empirical analysis of the external costs of toxic 

plants.5 The availability of 1,600 plant openings and closings allows us to begin to 

characterize the heterogeneity of effects across plants. In additional results, we stratify plants 

by size, the amount and toxicity of emissions, and local demographic characteristics and find 

that the housing price and health impacts are experienced broadly across different types of 

plants. There is some evidence that housing price responses are stronger in lower income 

communities, whereas the estimated health effects are relatively uniform across plant and 

community types.

The rest of the paper proceeds as follows: Section I presents an analytical framework which 

helps motivate the empirical analysis. Section II discusses the data, and Section III discusses 

the research design. Sections IV and V outline the econometric specifications and results for 

housing values and infant health respectively. Finally, Section VI interprets the results, and 

Section VII concludes.

I. Conceptual Framework for the Incidence of Toxic Plant Openings

To motivate our empirical strategy, we outline a partial equilibrium model of housing 

incidence in the context of toxic plant externalities.6 A local economy consists of a 

continuum of agents of measure one (denoted L) who choose to live in one of two locations 

g ∈ {N, F}; some choose to live near a plant (g = N) and others choose to live further away 

from a plant (g = F), but in the same local labor market. Toxic plant activity is assumed to 

generate local economic benefits for both sets of residents in the form of wage income, w. 

4There have been attempts to study the health and housing price responses of toxic emissions at the county level (Agarwal, 
Banternghansa, and Bui 2010; Bui and Mayer 2003; Currie and Schmieder 2009), but counties are too large due to the short transport 
distances of most airborne toxic pollutants (see Figure 1).
5Studies of individual plants include the studies by C. Arden Pope mentioned above, as well as Blomquist (1974), Nelson (1981), and 
Kiel and McClain (1995). For studies of multiple plants see, e.g., Bui and Mayer (2003) and Davis (2011).
6The results from this partial equilibrium exercise generalize into a model of general equilibrium of the sort found in Kline (2010) and 
Moretti (2011). These models are themselves generalizations of the canonical models of Rosen (1974) and Roback (1982).
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Wages are assumed to be an exogenous function of local productivity and are the same 

across groups. Residents in each location enjoy location-specific amenities net of any 

housing costs, Ag, associated with their location. Lastly, each resident i has some 

idiosyncratic preference for both locations, ϵig, representing heterogeneity in the valuation of 

local amenities. The ϵigs are independently and identically distributed across individuals and 

assumed to possess a continuous multivariate distribution with mean zero.

An individual seeks to maximize utility by choosing over locations

where ν g represents mean utility in location g. Individuals will locate in whichever 

community yields the highest utility. Without heterogeneity in locational preferences, all 

individuals will locate in the community that offers the highest amenities. With 

heterogeneity in tastes, individuals in location N will have νN − νF > ϵiF − ϵiN. Define the 

distribution function ηi ≡ ϵiF − ϵiN by G(·). Then, LN ≡ Pr(ηi < νN − νF) is the measure of 

individuals in location N.

Write the total welfare of workers in location N and F as

and consider a positive economic shock stemming from a toxic plant opening in the 

community. We model this shock as a marginal improvement in productivity in the local 

community, which is assumed to increase wages in both the near and far locations equally. 

The plant opening, however, creates a negative externality for residents living near the plant 

through, for example, air pollution and related health effects.

Taking the derivative of workers’ welfare with respect to the economic shock associated 

with a plant opening yields the expression:

(1)

where dθ represents the marginal effect of a plant opening and .7 Equation (1) 

suggests the incidence of the plant opening may be summarized by two terms. The first term 

is the total wage effect associated with the plant opening. Since in our empirical application, 

all residents near or far live within two miles of a plant, we assume that the wage effects are 

similar for both nearby residents and those a little further from a plant. The second term 

consists of the non-wage changes in amenities associated with a plant opening for residents 

7The relationship  follows directly from assuming that preference heterogeneity is drawn from a Type I Extreme Value 
distribution (Train 2003). However, this relationship also holds independent of the distribution of the taste heterogeneity. See Busso, 
Gregory, and Kline (2013).
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near the plant. Since negative plant externalities in the form of noise or air pollution are 

highly localized, these costs will only accrue to the residents living near the plant.

After the plant opening some “marginal” residents who initially lived near the plant are 

better off moving further away. However, since workers are assumed to be optimizing with 

respect to location decisions, a simple envelope result suggests that workers who switch 

locations in response to a change in local amenities experienced small gains in private utility 

by doing so.8 Therefore, the incidence of the plant opening may be approximated simply by 

the change in prices experienced by the immobile population.9

This paper aims to estimate the local disamenities of toxic plant operation, , holding all 
other factors fixed. We do this by comparing residents near a plant to those within the same 

local labor market who live slightly further away. Since, by assumption, both groups are 

affected similarly by the productivity shock, the difference- in-differences estimate will 

approximate . By explicitly controlling for the first component of equation (1) in this 

way, our estimates will reflect the gross external costs/benefits of a toxic plant opening or 

closing rather than the net external costs/benefits after accounting for any local economic 

gains associated with toxic plant production.

II. Data Sources and Summary Statistics

A. The Toxic Release Inventory Data

We identify plants that emit airborne toxic pollutants using the Toxic Release Inventory 

(TRI), a publicly available database established and maintained by the US Environmental 

Protection Agency (EPA).10 The TRI was established by the Emergency Planning, 

Community Right to Know Act (EPCRA) in 1986, in response to the Bhopal disaster and a 

series of smaller spills of dangerous chemicals at American Union Carbide plants. Bhopal 

added urgency to the claim that communities had a “right to know” about hazardous 

chemicals that were being used or produced in their midst. EPCRA requires manufacturing 

plants (those in Standard Industrial Classifications 2000 to 3999) with more than 10 full-

time employees that either use or produce more than threshold amounts of listed toxic 

substances to report releases to the EPA.11

8Although the change in amenities induces changes in behavior, these behavioral responses cannot have a first-order effect on private 
welfare; if they did, agents would not be optimizing. Alternatively, in this model the marginal migrant is indifferent between location 1 
and location 2. Thus, any marginal shift in amenities in location 1 cannot make the agent much better off given the pre-intervention 
indifference between the two locations. Of course, plant openings and closings might not be marginal changes.
9In the case of non-marginal changes in productivity or local amenities, the envelope theorem no longer holds, and taste-based sorting 
may also have first-order implications for welfare. However, in the case of localized disamenities such as a single plant, Bartik (1987) 
and Palmquist (1992) show that the slope of the hedonic price function is an approximate measure of the willingness to pay for a non-
marginal change. See Greenstone and Gallagher (2008) for a more complete discussion of non-marginal changes in the context of 
environmental amenities. Equilibrium sorting models may also yield insight into the welfare effects of non-marginal changes in the 
context of environmental disamenities. See Kuminoff, Smith, and Timmins (2013) for a recent review.
10See EPA (2009a) and EPA (2012) for detailed descriptions of the TRI.
11Currently, facilities are required to report if they manufactured or processed more than 25,000 pounds of a listed chemical or 
“otherwise used” 10,000 pounds of a listed chemical. For persistent bio-accumulative toxins, the thresholds are lower. These 
thresholds have changed periodically over the life of the program. For example, in 1998, EPA added the receipt or disposal of 
chemical waste to the definition of “otherwise used.”
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The toxic emissions measures in the TRI have been widely criticized (de Marchi and 

Hamilton 2006; Koehler and Spengler 2007; Bennear 2008). The emissions data are self-

reported, and believed to contain substantial measurement error.12 Moreover, coverage has 

expanded over time to include additional industries and chemicals, making comparisons of 

total emissions levels over time extremely misleading. 13 Finally, because of the minimum 

thresholds for reporting, plants may go in and out of reporting even if they are continually 

emitting toxic chemicals. This feature of the TRI introduces additional measurement error, 

and also makes the TRI poorly suited for identifying plant openings and closings.

The TRI is extremely useful, however, for identifying which US industrial plants emit toxic 

pollutants. The approach we adopt in this paper is to ignore the self-reported magnitudes and 

instead exploit variation introduced by plant openings and closings. Using the publicly 

available TRI data, we create a list of all US “toxic” plants by keeping every plant that ever 

reported toxic emissions to the TRI in any year. This method sidesteps the problems 

introduced by changes in reporting requirements because plants end up being classified as 

“toxic” plants, even if, for example, they are in industries which were not included in the 

early years of the TRI. We then link this list of toxic plants to establishment-level data from 

the US Census Bureau to determine the years in which each plant opened (and closed, if 

applicable).

B. The Longitudinal Business Database

We determine the exact years in which plants open and close using the US Census Bureau’s 

Longitudinal Business Database (LBD). Started in 1975, the LBD is a longitudinal, 

establishment-level database of the universe of establishments in the United States.14 The 

LBD has been used widely by economists, for example, in studying plant-level employment 

dynamics (Davis et al. 2010), and is by far the most accurate existing record of US plant 

activity.

These data must be accessed at a Census Research Data Center under authorization from the 

Census Bureau. In addition to the year of opening and closing (if applicable) for each plant, 

these data report mean annual employment and mean annual total salaries.15 We merge the 

LBD with a second restricted access Census database called the Standard Statistical 

Establishment List (SSEL), which contains plant names and addresses for all plants in the 

LBD. Finally, we merge the LBD/SSEL dataset with the EPA’s TRI database via a name- 

and address-matching algorithm.16

12The EPCRA explicitly states that plants need not engage in efforts to measure their emissions. The EPA provides guidance about 
possible estimation methodologies, but plants estimate their emissions themselves, and estimating methodologies vary between plants 
and over time. In addition, EPA enforcement of TRI reporting has typically taken the form of ensuring compliance rather than 
accuracy (de Marchi and Hamilton 2006).
13Federal facilities were added in 1994. Mining, electric utilities, hazardous waste treatment and disposal facilities, chemical 
wholesale distributors, and other additional industrial sectors were added in 1998. Treatment of persistent bio-accumulative toxins was 
changed in 2000. By the EPA’s own admission, the TRI is not well suited for describing changes in total amounts of toxic releases 
over time (EPA 2012).
14For more information about the LBD, see Davis, Haltiwanger, and Schuh (1998) and Jarmin and Miranda (2002).
15The year of a plant opening is left-censored for those plants that were operating on or before 1975.
16See Walker (2013) for further details pertaining to the match algorithm.
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C. Housing Values

The housing data for this project includes housing transactions in five large states (Texas, 

New Jersey, Pennsylvania, Michigan, and Florida). These data report the date, price, 

mortgage amount, and address of all property sales for these five states from approximately 

1998 to 2005.17 The data also include the exact street address of the property, which allows 

us to link the housing data with plant level data from the TRI based on the latitude and 

longitude of the geocoded address (described in more detail below). The main limitation of 

the housing data is that it contains very little information pertaining to housing unit 

characteristics.18 These data include both residential and commercial real estate 

transactions; we focus only on single-family, residential properties. To limit the influence of 

outliers and focus on “arms length” transactions, we exclude properties that sold for less 

than $25,000 or more than $10 million. All housing prices have been adjusted to year 2000 

dollars.

D. Vital Statistics Data

Data on infant health comes from vital statistics natality and mortality data for the same five 

large states: Texas, New Jersey, Pennsylvania, Michigan, and Florida, from 1990 to 2002. 

Together, these states accounted for 10.9 million births between 1990 and 2002, 

approximately 37 percent of all US births. The substantial advantage of these restricted-

access data is their geographic detail, including the residential address of the mother. This 

precision is crucial in our context because the health consequences of toxic plants are highly 

localized.

These data include detailed information about the universe of births and infant deaths in 

each state. We focus, in particular, on whether the infant is low birthweight defined as 

birthweight less than 2,500 grams. Low birthweight is not uncommon, affecting about seven 

percent of the births in our sample. Low birthweight is also one of the most widely used 

overall indicators of infant health, in part because it has been shown to predict adult well-

being.19 Other birth outcomes that we examine include a continuous measure of 

birthweight, very low birthweight (defined as birthweight less than 1,500 grams), 

prematurity (defined as gestation less than 37 weeks), congenital abnormalities, and infant 

mortality (death in the first year).20 Focusing on infant health is advantageous, relative to 

adult outcomes, because infants do not have a long unobserved health history, reducing 

concerns about time lags between exposure and outcomes.

In addition to these health outcomes, the vital statistics data include a number of important 

maternal characteristics including age, education, race, and smoking behavior. In the 

17The transaction records are public due to state information disclosure acts, but the raw data are often housed in PDF images on 
county websites making them inaccessible for computational analysis on a large scale. We used an external data provider who 
compiled the information from the county registrar websites into a single dataset. Data availability and temporal coverage varies by 
county but is fairly consistent between 1998–2005, the years of our housing analysis.
18For example, we observe square footage of the housing unit for less than half of the transactions.
19Black, Devereux, and Salvanes (2007) use twin and sibling fixed effects models on data for all Norwegian births over a long time 
period to show that birthweight has a significant effect on height and IQ at age 18, earnings, and education. Using US data from 
California, Currie and Moretti (2007) find that mothers who were low birthweight have less education at the time they give birth and 
are more likely to live in a high poverty zip code. They are also more likely to have low birthweight children.
20These are all outcomes that have been previously examined in the environment-infant health literature (e.g., Chay and Greenstone 
2003; Currie, Neidell, and Schmieder 2009; Currie, Greenstone, and Moretti 2011; and Currie and Walker 2011).
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empirical analyses below we control explicitly for these factors, as well as for month of 

birth, birth order, and gender of child. In all analyses we exclude multiple births since they 

are likely to have poor birth outcomes for reasons that have little to do with environmental 

pollution. We also test whether plant openings and closings have affected these 

characteristics directly, either by changing the composition of neighborhoods near plants 

and/or by changing fertility.

The fact that the LBD data is annual, while births are reported monthly raises the question of 

how to appropriately structure the empirical models for infant health outcomes. We focus the 

analysis on a data file comprised of births in November, December, January, and February. 

Births in November and December are merged to LBD data from the same calendar year, 

while births from January and February are merged to LBD data from the preceding 

calendar year. The idea is that a baby born January 1, 2002 has not been exposed to any of 

the toxic plant activity for calendar year 2002, but was exposed to toxic emissions in 9 out of 

12 months of 2001. Similarly, a baby born in November 2001 was exposed to toxic 

emissions for 9 out of 12 months of 2001. This restriction has the additional advantage of 

limiting the extent to which seasonality in plant activity or birth outcomes affects our 

findings. The robustness of the results to alternative timing assumptions is explored in the 

subsequent analysis.

E. Data Linkages and Aggregation

We link plants in the TRI and LBD to the housing and vital statistics, based on the latitude 

and longitude of the plants, houses, and mother’s residence. Specifically, we first create a 

large dataset consisting of all pairwise combinations of plants and outcome variables (i.e., 

births and/or housing transactions). We keep outcome and explanatory variables within two 

miles of a plant. This means that any house or birth observation within two miles of more 

than one plant will contribute one observation for each plant-outcome pair. For the primary 

specifications, we collapse the outcome measures into various distance bins surrounding 

plants in a given year to minimize the computational burden of working with the universe of 

birth and housing transactions crossed with plants. That is, for each plant-year, we construct 

the mean of the outcome variable and key covariates for outcomes that occurred within 0 to 

0.5, 0.5 to 1.0, 0 to 1.0, and 1.0 to 2.0 miles of a plant. In addition to easing the 

computational burden, the collapsing of the data accounts for issues pertaining to inference 

when the identifying variation occurs at a more aggregate level. In supplementary 

specifications, we analyze subsamples using the underlying microdata.

F. Summary Statistics

Panel A of Table 1 presents summary statistics for the 3,438 plants that form the basis for 

our analysis. The three columns reflect the sample characteristics for plants that were always 

open, newly opened, and newly closed within our sample frame respectively. A plant can 

appear in both columns 2 and 3, and we have about 1,600 total plants that either open or 

close. In practice, the plants in our sample tend to be long-lived, with a median age of 

around 17 years.21 For continuously operating plants, the mean value of plant equipment 

and structures is $22 million, and mean annual salary and wages is $11.7 million.22 Mean 

salary and wages is lower for plants that opened or closed. The table also reports mean 
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annual toxic emissions, which exceeds 17,000 pounds in all three columns. These are the 

self-reported measures of airborne toxic emissions from the TRI, and are averaged over all 

non-missing observations (i.e., if a plant does not report to the TRI during a particular year 

in which we know the plant is operating, we treat this as missing rather than zero).

Panel B of Table 1 describes community characteristics near plants that either opened or 

closed during our sample period. Statistics are reported separately by distance to the plant 

and observations are restricted to the two years after a plant opening or the two years before 

a plant closing. Note that a house or birth can be close to more than one plant, and so the 

same house or birth can appear in more than one column. Within columns, we have 

restricted houses and births so that they appear only once in this panel, implicitly giving 

equal weight to each birth and housing outcome.

Both housing values and maternal characteristics tend to improve with distance from the 

plant. The average housing value is $124,424 within a half mile of a plant compared to 

$132,227 for houses between one and two miles away. Similarly, average maternal education 

rises from 11.93 to 12.22 over the same distance. Rather than rely on equality of levels, our 

difference-in-differences-style identification strategy relies on the assumption that trends in 

the unobserved determinants of the outcomes are evolving equally in the 0–1 (or 0–0.5 and 

0.5–1.0) and 1–2 mile distance from the plant categories. The subsequent analysis provides 

graphical evidence supporting the validity of this assumption.

III. The Transport of Airborne Toxic Pollutants as the Basis of a Research 

Design

Our difference-in-differences strategy compares houses and births in areas “near” a toxic 

plant to those in areas slightly farther away. While this is a simple idea conceptually, there is 

little guidance in the literature about how near a household must be to a plant for proximity 

to affect either housing prices or birth outcomes (or alternatively, about how far toxic 

emissions are transported). Hence the first step in our analysis is to characterize this 

relationship empirically. This evidence is of significant independent interest and an 

important contribution of our paper.

Our approach uses data from monitoring stations about ambient levels of hazardous air 

pollution. While the EPA has been monitoring criteria air pollutants for four decades, they 

have only recently begun monitoring hazardous air pollutants (HAPs).23 The first year of 

data availability was 1998, and monitors have been gradually added over time. As of 2005, 

the last year of our sample, there were 84 pollutants being monitored across the 5 states we 

examine. We investigate the ways in which plant operating status maps into local ambient 

21Plant age in the LBD is left-censored in 1975 (the first year the plants are observed in the sample). Therefore, the median age of the 
plants in our sample is likely to be a bit larger.
22The capital stock measures come from the Annual Survey of Manufacturers, and are computed using a modified perpetual inventory 
method (Mohr and Gilbert 1996). Since the ASM is a sample and oversamples large establishments, these statistics are not available 
for all plant years and reflect statistics for larger plants.
23Hazardous air pollutants, also known as toxic air pollutants, are defined by the EPA as “pollutants that are known or suspected to 
cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects” (EPA 
2011). In contrast, criteria air pollutants, are the more commonly found air pollutants that are regulated according to the EPA’s 
National Ambient Air Quality Standards (NAAQS), such as particulate matter.
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hazardous air pollution in two separate ways. First, we take the eight most monitored 

pollutants in our data and examine pollutant-by-pollutant heterogeneity in emissions 

transport as a function of plant operating status and distance between a plant and a monitor. 

Second, we combine all pollutants into a single summary measure by standardizing each 

pollutant to have mean zero and standard deviation of one.24

We matched the monitoring station data to our data on toxic plants using latitude and 

longitude, keeping monitor-plant pairs in which the plant had ever reported releasing the 

monitored pollutant and in which the monitor was less than four miles away from the plant. 

We then estimate the following linear regression model:

(2)

where the dependent variable is one of the pollution measures described in the previous 

paragraph for monitor m linked to plant j in year t. The regression includes an indicator 

variable for whether a plant is operating in a given year, and the interaction between the 

indicator and a quartic polynomial in the distance between the plant and the monitor.25, 26 

We also include monitor-plant pair fixed effects, ηjm, which are collinear with the main 

effect of the distance polynomial. The inclusion of these fixed effects ensures that 

identification comes from plant openings and closings. Lastly, we include year fixed effects, 

τt, to control for overall trends in ambient pollution concentrations. The standard errors are 

two-way clustered on monitor and plant.

Figure 1 plots the marginal effect of an operating plant on hazardous air pollution as a 

function of distance from the plant for eight of the most widely monitored pollutants. Each 

panel of Figure 1 presents the pollutant-specific distance gradient, showing how the 

marginal effect of plant operation fades with distance. Each pollutant has been standardized 

by subtracting the pollutant-specific mean and dividing by the standard deviation so that the 

distance gradient may be interpreted as standard deviations from the mean value. Below 

each graph is a histogram showing the number of monitors in 0.1 mile increments. There is 

some heterogeneity across pollutants, and in future work it might be possible to take 

advantage of these differences to disentangle the impacts of specific pollutants. For the most 

part, however, pollution levels tend to fall exponentially with distance from the plant. In 

most cases, pollution is only detectable within one mile of a plant.

Figure 2 plots the standardized pollution measure pooling over all 84 pollutants in our 

sample. Average levels of ambient hazardous air pollution are one standard deviation higher 

immediately adjacent to an operating plant, and decline exponentially with distance, 

reaching zero at roughly one mile from a plant. Most previous analyses of the economic 

24Note that some pollutants are more toxic or hazardous than others. For the purposes of this particular econometric exercise, we are 
simply trying to understand if any detectible relationship exists between toxic plant activity and ambient levels of hazardous air 
pollutants, irrespective of the toxicity of a given pollutant.
25We have also examined different functional forms for distance and the results are similar. Models using more flexible distance 
specifications, such as replacing a continuous distance measure with dummy variables for different distance bins yield similar results, 
but the models are less precisely estimated.
26The LBD provides information on the first year and last year that a plant is observed in the data. We define 1[Plant Operating]jt = 1 
if year t is greater than or equal to the first year the plant is observed in the data and less than or equal to the last year the plant is 
observed in the data.
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impacts of toxic emissions have used county-level data, making it impossible to measure 

these highly localized impacts. An important exception is Banzhaf and Walsh (2008), who 

use block-level aggregates from the 1990 and 2000 censuses for urban areas in California to 

examine localized changes in average household income.

Documenting this relationship between toxic plant activity and ambient levels of hazardous 

air pollution helps to motivate our empirical specification. There are several ways for an 

industrial plant to affect housing values and human health including aesthetics, congestion, 

and noise. Toxic emissions may be among the channels that have the most distant effects, 

and the evidence suggests that on average emissions do not reach further than one mile.27 

This finding underscores the importance of performing the analyses that follow using spatial 

data at a high level of resolution. In most analyses below, we define “near” as within 0.5 or 1 

mile of a plant and “far” as one to two miles away. That is, houses and households between 

one and two miles are used as comparison groups. We also present results using alternative 

distances. As discussed above, the underlying assumption is that the comparison groups are 

close enough to experience the wage and productivity effects of the plant. A second 

assumption is that outcomes in the near and far areas are evolving with similar trends. Under 

these assumptions, differences in the impact of plant operations reflect the effects of the 

local disamenities of plant operation.

IV. Housing Values

A. Housing Values: Empirical Strategy

We begin our investigation of the effects of toxic plants on housing values by fitting the 

following econometric model:

(3)

where Yjdt denotes the natural log of average housing values near plant site j, within distance 

group d, in year t. For each plant j, there are two observations per year. In each plant-year, 

one observation consists of average housing prices “near” a plant (i.e., within 0.5, 0.5 to 1.0, 

or 1 mile of the plant). The second observation per plant-year consists of average house 

prices for houses within 1–2 miles of the plant; this second group provides a counterfactual 

for housing prices near the plant. The availability of these two groups allows for a 

difference-in-differences-style estimator.

The variable 1 [Plant Operating]jt is an indicator equal to one if a toxic plant j is operating in 

year t and zero otherwise. It is equal to one for both distance groups associated with a plant. 

The indicator 1 [Near]jd is equal to one for observations from the near category, regardless 

of whether the plant is currently operating. Equation (3) also includes plant-by-distance 

fixed effects ηjd to control for all time-invariant determinants of house prices in a plant-by-

27A recent literature also finds that other forms of housing externalities are very localized (see, for example, Linden and Rockoff 
2008; Harding, Rosenblatt, and Yao 2009; Rossi-Hansberg, Sarte, and Owens 2010; and Campbell, Giglio, and Pathak 2011).
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distance group, which in practice is collinear with the indicator 1 [Near]jd. Additional 

controls include 1990 census tract characteristics, X1990jd, interacted with quadratic time-

trends Tt.28

Equation (3) also includes time fixed effects, τt, to flexibly account for trends in housing 

values over time. We report specifications that include either state-by-year fixed effects to 

account for state-level trends in housing prices or plant-by-year fixed effects to account for 

highly localized trends. The richer specification adds approximately 10,000 fixed effects, 

one for each plant-year.

The parameter of interest in equation (3) is β3, the coefficient on the interaction term: 

1[Plant Operating]jt × 1 [Near]jd. It captures the differential impact of an open plant on 

locations “near” the plant, relative to those one to two miles away. Given that our models 

include plant-by-distance fixed effects, ηjd, β3 is identified by changes in the operating status 

of a plant (i.e., plant openings and closings). The model with plant-by-year and plant-by-

distance fixed effects provides an average of the estimates that would be derived from the 

roughly 1,600 case studies of plant openings and closing that underlie this analysis. 

Specifically, β3 is identified by within-year differences in the change in house prices among 

houses “near” and 1–2 miles from toxic plant openings and closings.

We also estimate a “repeat-sales” model with individual-level, rather than grouped, data. The 

advantage of this model is that our housing value data contain few housing characteristics, 

so the estimates of β3 from equation (3) may confound willingness to pay to avoid a toxic 

plant with changes in the composition or type of house sold. To distinguish between these 

two possibilities we focus on a sample of houses that sold more than once between 1998–

2005, allowing us to difference out the unobserved time invariant qualities of a house.

We use several versions of the following first differenced specification:

(4)

where Δ Yijt,t−α denotes the difference in ln(house price) between sales of house i, near plant 

site j, in years t and t − α. Notice that the time between sales varies across houses so α takes 

different values across houses. Since houses are in fixed locations, there is no variation in 

Δ1[Near]ij and it is infeasible to obtain estimates of β2.

The coefficient of interest remains β3, which captures the variation in housing prices when 

there is a change in plant operating status for houses “near” sites, relative to the change in 

housing prices among houses 1–2 miles from the site. It is important to recognize that β3 

does not compare the operating period to either the period before a plant opened or to the 

period after it closed. Rather, it compares the operating period to a weighted average of 

28Census tract characteristics were mapped to plant radii using ArcGIS, where the radius characteristics consist of the area weighted 
averages of census tracts that intersect the distance circle/radius. Results are similar with and without these controls.
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periods before the plant opened and periods after the plant closed that is specific to this 

sample, so that its external validity may be limited.

Because of these important issues of interpretation, we also estimate an alternative version 

of equation (4) that allows us to separately identify the effects of plant openings and plant 

closings. For these models, the variable 1[Plant Operating]jt is replaced by two separate 

indicators 1[Plant Opened]jt and 1 [Plant Closed]jt. The variable 1 [Plant Opened]jt is an 

indicator equal to zero before the plant opens, and equal to one in all years after the plant 

opens, even if the plant subsequently closed. The variable 1 [Plant Closed]jt is an indicator 

variable equal to zero before the plant opens and while it is operating, and then equal to one 

for all years after the plant closes.29 These indicators are then interacted with 1 [Near]jd.

The result is that the 1[Plant Opened]jt interaction measures the effect on housing prices in 

near locations, relative to the 1–2 mile locations, during the period that the plant is 

operating, relative to the period before it opened. Because of the way that the indicators are 

defined, the interaction with 1[Plant Closed]jt tests for an additional effect on housing prices 

in near locations, relative to 1–2 mile locations, after the plant has closed, relative to the 

period when it was operating; so, the coefficient associated with this interaction provides a 

direct test of whether plant closings affect housing prices, relative to the period that the plant 

was operating. We also report on tests of the hypothesis that the parameters associated with 

the two interactions are equal and of opposite sign, which would be the case if a plant’s 

closing completely reversed the effect of its opening.

Note that housing values reflect both current and expected future amenities. In our setting, 

these expectations are likely to include valuations of local air pollution, visual disamenities, 

traffic related to plant activity, and soil and water pollution, as well as expectations about 

how long the plant will operate and whether it will reopen if it closes. These expectations 

are, of course, unobservable (see, e.g., Bishop 2012), but it is nevertheless important to keep 

in mind that housing values reflect the present discounted value of the entire stream of 

amenities associated with a particular location when interpreting the estimates.

B. Housing Values: Results

We first present event study graphs that motivate the regression analyses that follow. These 

graphs are derived from the estimation of versions of equation (3) that include plant-by-year 

fixed effects and allow the coefficients on 1[Plant Opened]jt × [Near]jd and 1[Plant Closed]jt 

× 1[Near]jd to vary with event time; here, year zero is the year that the plant’s operating 

status changes (i.e., the year of the plant opening or closing). The figures plot these 

coefficients and their 95 percent confidence intervals.30 They provide an opportunity to 

judge the validity of the difference-in-differences-style approach that is based on the 

assumption of similar trends in advance of the opening or closing.

29Formally, we define 1[Plant Closed]jt = 1 if year t is greater than the last year the plant is observed in the LBD and 1 [Plant 
Opened]jt = 1 if year t is greater than or equal to the first year the plant is observed in the LBD.
30The available housing price data only allow for the estimation of the coefficients for event years −3 through +5 for plant openings 
and −5 through +5 for plant closings since plant openings are concentrated in the earlier part of our sample.
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Figure 3 plots event study coefficients from two separate regressions. Panel A of Figure 3 

plots event study coefficients for years before/after a plant opening, and panel B plots event 

time coefficients before/after a plant closing. The plotted coefficients represent the time path 

of housing values within 0–1 miles from a plant, relative to 1–2 miles from a plant, 

conditional on plant-by-distance and plant-by-year fixed effects. Both panels support the 

validity of the design as there is little evidence of differential trends in housing prices 

between houses 0–1 and 1–2 miles from the plant in the years preceding the opening or the 

closing. There is clear evidence that plant openings lead to housing price declines in the year 

that the plant opens. The plant-closing figure provides less decisive evidence, although on 

average prices rise slightly after the year of a closing.

Table 2 reports baseline estimates for the effect of toxic plants on housing values. Panel A 

shows least squares estimates from various versions of equation (3), in each case reporting 

the coefficient and standard error associated with the interaction of 1[Plant Operating]jt × 

Nearjd. We estimate these models on a balanced panel of plant-by-distance-by-year 

observations, excluding a subset of plants for which no housing values occurred in a specific 

distance-by-year cell.31 Panels B and C report estimates of equation (4), where panel B 

reports the coefficient and standard error associated with the interaction of 1[Plant 
Operating]jt × Nearjd, and panel C allows the effects of openings and closings to differ.

In all regressions the comparison group is homes located between one and two miles from 

the plant, whereas the definition of “near” changes across regressions, as indicated by the 

column headings. The odd-numbered columns report estimates from specifications that 

include state-by-year fixed effects and the even-numbered columns report estimates from 

specifications that use plant-by-year fixed effects (or county-by-year fixed effects in the 

repeat sales analysis).32

The estimates in columns 1 and 2 of panel A show that an operating toxic plant within a 

half-mile is associated with a 2 to 3 percent decrease in housing values. The point estimates 

in columns 3 and 4 are smaller in magnitude, suggesting that the effects of plant operations 

on housing values tend to fade with distance. For example, the point estimate in column 3 

suggests that the effect of an operating plant falls to one percent in the half mile to one mile 

range. The standard errors are large enough, however, that their 95 percent confidence 

intervals overlap the 95 percent confidence intervals of the estimates in columns 1 and 2. 

Hence, in columns 5 and 6 we compare the entire zero to one mile area with the one to two 

mile zone.33 Not surprisingly given the previous estimates, the overall impact on housing 

values within one mile is about −1.5 percent.

31Results using an unbalanced panel are similar. Models estimated using plant-by-year fixed effects are estimated in two steps. The 
first step demeans all regression model variables by plant-by-year. The second step then estimates the model on the remaining 
covariates using the demeaned data. Given all the fixed effects in these models, it is not surprising that they explain a lot of the 
variation in housing prices. The R2s are around 0.7 and 0.9 for models with and without the repeat sales, respectively.
32We ran into computational challenges when estimating the full set of plant-by-year fixed effects in the first difference setting, and 
thus we rely on county-by-year fixed effects as a compromise. This being said, estimates using equation (3) with county-by-year or 
plant-by-year fixed effects are almost identical.
33The column 6 specification is the difference-in-differences analogue to the event-time regression plotted in Figure 2.
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The last two columns of Table 2 report estimates from specifications that restrict 

observations to within two years of a change in plant operation. In the short-run, prices will 

do a better job of capturing the full welfare effects because supply is relatively inelastic over 

short periods of time; over the longer run, the full welfare effects are captured by 

adjustments in prices and quantities (which are unobservable in our data). This restriction 

attenuates the point estimates, but the 95 percent confidence intervals overlap those 

associated with the estimates in columns 5 and 6.

Panels B and C present the repeat sales estimates from fitting equation (4). For the most part, 

the estimates in panel B are similar to those found in panel A, albeit somewhat smaller in 

absolute magnitude. The differences between the two panels are consistent with the 

interpretation that some of the estimated impacts in panel A are driven by less expensive 

houses selling near to a plant whenever a plant is operating. The disparities between the 

results in panels A and B are also consistent with greater attenuation due to measurement 

error in a first difference setting. However, the 95 percent confidence intervals overlap across 

all estimates, and thus we are not able to make strong conclusions about the difference in 

magnitudes.

Panel C presents parameter estimates associated with 1[Plant Opened]jt × 1[Near]jd and 

1[Plant Closed]jt × 1[Near]jd. Within 0.5 miles, a plant’s operation is associated with a 10 

percent–11 percent decline in housing prices; these estimates are economically large and 

statistically significant. There is little evidence of an effect on housing prices between 0.5 

and 1.0 miles from the plant. As Figure 3 foreshadowed, plant closings appear to modestly 

increase housing prices, but this effect is small economically (less than 2 percent, even less 

than 0.5 miles from a plant) and statistically indistinguishable from zero.

The final row reports the results from a test that the opening and closing coefficients are 

equal and opposite in sign. This null hypothesis can be rejected in the 0–0.5 mile range. One 

possible interpretation is that households expect closed plants to reopen. However, we 

measure closings using the last year that a plant is observed in the LBD. Consequently, our 

data generally pick up permanent (not temporary) plant closures, though home buyers and 

sellers may not realize this at the time of the closure.34 Other potential explanations for a 

plant’s lasting effect include persistent visual disamenities and concerns about local 

contamination.

Thus far we have concentrated on the average effect of plant openings and closings. We next 

explore heterogeneity in our baseline estimates by stratifying plants by observable 

characteristics. Since the housing price impacts are almost entirely concentrated within 0.5 

miles of a plant, we focus on housing values within this range.

34We also tested whether plant openings and closings affect the volume of housing transactions. We used the baseline housing 
regression approach (aggregated at the plant-distance-year level), but replaced mean log(sales price) with the number of houses sold 
(in logs). While the housing price regressions weight cells by the number of houses sold, we excluded regression weights from this 
volume regression so as to not weight observations by the outcome variable. The results suggest that the number of transactions 
decreases when there is an operating toxic plant nearby, especially within 0.5 miles after plants open. It is difficult to draw definitive 
conclusions, however, because most of the estimates are not statistically significant.
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We group plants into whether the median value of a particular variable (taken over all years 

of plant operation) is above or below the population median (taken over the plant-level 

medians). The plant characteristics we explore are plant employment, payroll, stack 

emissions, fugitive emissions, and total emissions, as well as the mean and maximum 

toxicity of the chemicals that are released. Plants in the TRI report both stack and fugitive 

emissions. Stack emissions occur during the normal course of plant operations, and are 

emitted via a smoke stack or some other form of venting equipment which is, in many cases, 

fitted with pollution abatement equipment. Because stacks are often extremely high, these 

emissions tend to be dispersed over a wide geographic area. Fugitive emissions are those 

that escape from a plant unexpectedly, generally without being treated. These emissions may 

be more likely to be manifest to households in the form of noxious odors or residues. The 

toxicity measures were calculated using the EPA’s Risk-Screening Environmental 

Indicators.35 We also stratify plants based on the characteristics of the nearby communities 

(i.e., within 2 miles), including the fraction of the population that is college educated, the 

fraction of the population that is Caucasian, the median housing value surrounding a plant, 

and median income.

Table 3 reports the results of this exploration. We focus on the baseline first-differences 

specification, augmenting equation (4) to include an additional interaction term for whether 

or not a plant is above the median for each of the above listed characteristics. We then 

estimate the full three-way interaction, allowing for all lower order interaction terms. The 

estimates indicate that the housing results are fairly homogeneous across various plant types 

(columns 1–6) but that the negative impacts appear to be concentrated in relatively 

disadvantaged communities (columns 7–10). If households were aware of the toxicity 

measures and they were valued (negatively) by households, then one might have expected to 

see relative toxicity reflected in housing price differentials. A possible explanation for the 

absence of such a pattern is that households have imperfect information. Given the lack of 

scientific evidence about the health effects of exposure, such ignorance would not be 

surprising.

The online Appendix presents estimates from several additional specifications. Appendix 

Table A2 examines the sensitivity of the baseline estimates to varying sets of controls. The 

qualitative findings are unchanged across several different approaches. Appendix Table A3 

presents estimates of equation (3) that use a comparison group of two to four miles from a 

plant instead of one to two miles, and the results are similar to the baseline results in Table 2. 

This is reassuring because it suggests that the results are not driven by patterns in housing 

prices in the one to two mile zone. Appendix Table A4 presents regressions identical to the 

baseline estimates of equation (3) except that each regression is estimated using only 

observations from a single distance bandwidth (e.g., 0 to 0.5 miles, 0.5 to 1 miles, 1 to 1.5 

miles, 1.5 to 2.0 miles, etc…) for each plant. Identification in these models comes from 

differential timing of openings and closings across plants. Estimates from this specification 

corroborate our baseline findings and choice of comparison group; the effects of plant 

35Surprisingly little is known about the relative toxicity of different chemicals. Although animal testing is broadly used for evaluating 
the toxicity of chemical compounds, these studies are of limited relevance for evaluating which chemicals are likely to be most 
damaging for human health.
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operating status are highly localized, and there seems to be little negative effect of plant 

openings in areas more than one mile away from a plant.

V. Infant Health

A. Infant Health: Empirical Strategy

The empirical strategy for examining infant health outcomes is very similar to the approach 

used for housing values. Again, our main focus is on comparing outcomes “near” a plant 

with outcomes one to two miles away. We estimate models of the form:

(5)

where Zjdt denotes the average incidence of low birthweight or another measure of infant 

health near plant site j, within distance group d, in year t. As before, the specification 

includes plant-by-distance fixed effects, ηjd, year fixed effects τt (which in practice are state-

by-year or plant-by-year fixed effects), and census controls, X1990 jd, interacted with 

quadratic time-trends Tt

As in the housing equations, the coefficient of interest, now denoted α3, is the differential 

impact of an operating plant within one mile. We again explore a version of this 

specification that replaces the 1[Plant Operating]jt variable with the 1[Plant Opened]jt and 

1[Plant Closed]jt variables. For this richer specification, we again test whether the 

coefficients on the interactions of these variables with 1[Near]jd are equal and opposite in 

sign. If air toxic emissions are the channel for any infant health effects, then the plausibility 

of this null is stronger than in the housing price regressions where plant closings may be 

perceived as temporary and visual disamenities could remain after a closure.

The vital statistics data include a rich set of mother’s characteristics that can be used to 

control for possible changes in the composition of mothers. However, the identifying 

variation in our models comes at a much higher level of aggregation; hence, in order to avoid 

overstating the precision of our estimates and to limit the computational burden of our most 

stringent specifications we control for mother’s characteristics using a two-step, group-level 

estimator (Baker and Fortin 2001; Donald and Lang 2007). In the first step, we estimate the 

relationship between low birthweight (Zjdt) and plant-by-distance by year indicators (gjdt), 

after controlling for mother’s characteristics (mit):

(6)

The vector mit controls for maternal characteristics including indicators for: age categories 

(19–24, 25–34, and 35+), education categories (< 12, high school, some college, and college 

or more), race (African American or Hispanic), smoking during pregnancy, month of birth, 

birth order, and gender of child.36 The estimated  provides group-level, residualized 

averages of each specific birth outcome after controlling for the observable characteristics of 

Currie et al. Page 17

Am Econ Rev. Author manuscript; available in PMC 2016 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the mother. These averages are used as the dependent variable in equation (5), instead of 

Z jdt. In this second step, the equation is weighted by the group-level cell size.37, 38

B. Infant Health: Results

We start by presenting event study graphs for the incidence of low birthweight (i.e., an infant 

born weighing less than 5.5 pounds or 2,500 grams) based on a version of equation (5). The 

plotted estimates and 95th percentile confidence intervals correspond to the interaction of 

event-time indicators with 1[Plant Opened]jt × 1[Near]jd and 1[Plant Closed]jt × 1[Near]jd. 

The specification includes plant-by-distance and plant-by-year fixed effects, as well as the 

census controls interacted with a quadratic time trend. The birth data cover a longer period 

than the housing prices data and we can estimate the parameters of interest for all event 

years from five years before an opening/closing through five years after an opening/closing.

Figure 4 suggests that operating plants raise the incidence of low birthweight. There is little 

evidence of differential trends in the adjusted incidence of low birthweight between mothers 

living 0–1 and 1–2 miles away during the years leading up to plant openings or closings, 

which supports the validity of the design. After plant openings, there is a relative increase in 

the incidence of low birthweight among mothers living within one mile of a plant. After 

plant closings, there is some evidence of an opposite effect. Specifically, the incidence of 

low birthweight within one mile decreases modestly relative to what is observed between 

one and two miles although the decline is less sharp than in the plant opening panel.

Table 4 presents regression estimates, and is structured similarly to panels B and C of Table 

2 which reports the housing price results. We focus on the panel B results, which have a 

clearer counterfactual and greater external validity. Further, due to the finding that toxic air 

emissions travel roughly 1 mile on average, we concentrate on the 0–1 mile results.

The final four columns suggest that an operating toxic plant increases the incidence of low 

birthweight by 0.0024 – 0.0037 percentage points or 3.3 percent–5.1 percent. The effects 

among infants born to mothers in the 0–0.5 mile and 0.5–1 mile ranges are nearly identical. 

It is also interesting that the larger estimates come from the restricted sample that only 

includes births within 2 years of a change in operating status.

The results are less conclusive on the question of whether a plant closing reverses the 

negative effects of a plant’s operation on the incidence of low birthweight. On the one hand, 

all of the point estimates suggest that low birthweight declines after a plant closing. This 

decline, however, is only statistically significant at the 95 percent level of confidence in 

36For a small number of observations there is missing data for one or more of these control variables and we include indicator 
variables for missing data for each variable.
37To limit the computational burden of estimating the first stage of the full sample, the first stage is estimated separately by state. 
Alternative group-level weights include the inverse of the sampling error on the estimated fixed effects, but since we are estimating 
state by state, the estimated standard errors are likely to be inefficient (although the group level estimates are still consistent) making 
this weighting mechanism less attractive. Donald and Lang (2007) present an alternative feasible GLS specification where the weights 
come from the group level residual and the variance of the group effect. Since all of these weights are proportional and highly 
correlated, the choice of weights has little effect on the results. We follow Angrist and Lavy (2009), who weight by the group cell size. 
These models have R2s of about 0.3.
38We obtain similar results from group-level models that convert micro-level covariates into indicator variables and take means within 
cells.
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column (8), though this specification is perhaps the most reliable one. The null that the 

coefficients are equal and of opposite sign cannot be rejected in any of the specifications.

Table 5 examines plant heterogeneity, stratifying plants as was done in the housing 

regressions (i.e., Table 3) using the version of equation (5) that includes plant-by-year fixed 

effects. There is little evidence of heterogeneity across these cuts of the data, except that 

there are no effects on low birthweight in areas with above median housing values. It is 

possible that richer households are better able to take compensatory measures to protect 

themselves.

We probed the robustness of these results in several ways. The results are qualitatively 

similar when we vary the set of controls used in our baseline regressions (see online 

Appendix Table A5), and when we use a comparison group of births that occur two to four 

miles from a plant, rather than one to two miles (see online Appendix Table A3). The results 

are also similar when we estimate the regressions separately by distance group (see online 

Appendix Table A4). These alternate specifications corroborate the main results, again 

indicating that the effects of plant operating status are highly localized, and providing 

additional empirical support for the choice of comparison group.

We also tested for changes in the composition of mothers giving birth in online Appendix 

Table A6. Documenting this type of compositional change is of significant independent 

interest (see, for example, Cameron and McConnaha 2006; Banzhaf and Walsh 2008; and 

Currie 2011). Overall, impacts of plant openings and closings on mothers’ characteristics are 

small and generally statistically insignificant, suggesting that the low birthweight estimates 

are not driven by changes in the composition of mothers who live near plants. If anything, 

toxic plants appear to be associated with a small increase in the socioeconomic status of 

mothers; if the regressions fail to adequately adjust for these changes, then the measured 

health effects may modestly understate the true effects.

When assigning plant events to birth outcomes, there is some ambiguity as to whether the 

plant event occurred before or after a birth because we observe plant operating status just 

once a year in the LBD. In online Appendix Table A7 we investigate the sensitivity of our 

results to alternative approaches to timing. Estimates from these alternative specifications 

are largely consistent with our baseline findings. See the online Appendix for details.

C. Alternative Measures of Infant Health: Results

This section presents estimates for alternative measures of infant health. We begin by 

examining the influence of toxic plant activity on the birthweight distribution. We first create 

indicators for births falling within 500-gram birthweight intervals, and we aggregate these 

outcomes to the plant-by-distance bin by year level. We then use these binned averages as 

the dependent variable when estimating nine different versions of equation (5), one per bin. 

The resulting estimates of the parameter associated with 1[Plant Operating]jt × 1[Near]jd are 

plotted in Figure 5. All regressions compare birth outcomes for mothers less than one mile 

from a plant to those of mothers living one to two miles away, so that these models are 

comparable to those presented in columns 5 and 6 of Table 4. Figure 5 suggests that when a 

plant is operating the birthweight distribution is skewed to the left, increasing the likelihood 
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of births below 2,500 grams. Appendix Table A8 reports the regression results that underlie 

this figure, as well as results that replace the 1[Plant Operating]jt variable with the 1[Plant 
Opened]jt and 1 [Plant Closed]jt variables.

Table 6 reports estimates of equation (5) using additional measures of infant health as the 

dependent variables. These estimates support the hypothesis that toxic plants damage infant 

health; birthweight decreases and the incidence of prematurity increases. The other birth 

outcomes are not individually statistically different from zero although this is perhaps 

unsurprising given that many of these outcomes, such as the incidence of very low 

birthweight (i.e., an infant born weighing less than 3.3 pounds or 1500 grams) and infant 

deaths, are an order of magnitude more rare than low birthweight.

In light of this issue of precision, the last two columns show models using a summary index 

measure of infant health as the dependent variable. We first convert each birth outcome 

measure so that they all move in the same direction (i.e., an increase is undesirable) and then 

subtract the mean and divide by the standard deviation of each outcome. We construct our 

summary measure by taking the mean over the standardized outcomes, weighting by the 

inverse covariance matrix of the transformed outcomes in order to ensure that outcomes that 

are highly correlated with each other receive less weight than those that are uncorrelated, 

and thus represent new information, receive more weight (Hochberg 1988; Kling, Liebman, 

and Katz 2007; Anderson 2008).39 An operating plant has a small but statistically significant 

positive effect on the index, increasing the probability of a bad health outcome by 0.016–

0.017 standard deviations.

VI. Interpretation

The estimates in Table 2 indicate that the opening of a toxic plant reduces housing values by 

roughly 11 percent within 0.5 miles and this effect appears to persist even after the plant 

ceases operations.40 As with all of our estimates, this effect is measured relative to homes 1 

to 2 miles away. Since the mean housing value within 0.5 miles of a plant is $125,927, this 

decrement corresponds to about $14,000 for the average house. In our sample, the value of 

the housing stock within 0.5 miles of a toxic plant is $38.5 million. Multiplying this figure 

by 11 percent yields a decline in local housing values of about $4.25 million per plant. 

Although non-negligible, these housing price changes are small compared to the capital cost 

of new industrial plants; for example, a typical natural gas power plant (620MW) costs about 

$570 million to build.41

It is important to bear in mind that this is an incomplete measure of these plants’ total 

welfare consequences. For example, it misses the effects of increased emissions of criteria 

pollutants, such as particulates, ozone, and sulfur dioxide, which may harm human health 

over a much broader geographic area. Further, it does not include any impacts on non-

39Alternatively, we have created summary index measures that weight each outcome variable equally, as in Kling, Liebman, and Katz 
(2007), with little appreciable effect on our results.
40Potential explanations for a plant’s lasting effect on property values even after it closes include persistent visual disamenities, 
concerns about local contamination, and an expectation that the plant will reopen.
41US Department of Energy, Energy Information Administration. 2013. “Updated Capital Cost Estimates for Utility Scale Electricity 
Generation Plants.” http://www.eia.gov/forecasts/capitalcost/ (accessed May 2012).
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residential property (which could even be positive if there are spillovers in production 

efficiency).42 Moreover under our imposed assumption that the economic benefits of plant 

production accrue equally to homes within two miles of the plant, this estimate reflects an 

upper bound on the net costs associated with toxic plants. As we have emphasized 

throughout, these plants have positive as well as negative externalities, bringing jobs to local 

communities and potentially raising wages and housing prices over a wide area.

An appealing feature of the analysis is that it provides estimates of the effect of toxic plant 

openings on both housing prices and on an important health outcome. It is interesting to 

compare the estimates from the housing value analysis with a valuation of the low 

birthweight impacts. The point estimate in Table 4, column 6 implies that an operating toxic 

plant within one mile reduces the incidence of low birthweight by 0.0024 percentage points 

or 3.1 percent. There is an average of 67 births within 1 mile of each toxic plant per year. 

Thus, the estimate implies that there are approximately 0.16 additional low birthweight 

births per toxic plant per year. Using estimates in the literature, this corresponds to about 

$5,600 in decreased lifetime earnings per toxic plant per year.43 This measure is small 

compared to the estimated value of losses in the housing market but, of course, low 

birthweight is only one of many potential health consequences of exposure to toxic plants. 

Further, the finding that housing prices remain depressed after the plant has closed and air 

toxic emissions have ceased suggests that willingness to pay is comprised of more than 

health effects in this setting.

VII. Conclusion

Toxic emissions are widely believed to cause birth defects, cancer, and other severe health 

impacts, yet there is little evidence about their effects on humans. Governments have only 

recently begun to regulate these emissions. In many respects, this state of affairs resembles 

the situation that prevailed more than four decades ago when the Clean Air Act compelled 

the EPA to begin to regulate airborne particulate matter and other criteria air pollutants. This 

paper represents a first step toward understanding the local external effects of toxic plant 

production on the health and well-being of local residents.

The application of a research design based on more than 1,600 plant openings and closings 

matched to extraordinarily detailed, geocoded data yields three primary findings. First, on 

average, toxic air pollutants affect ambient air quality only within 1 mile of the plants, 

suggesting that health effects from these emissions should be concentrated in this range. The 

highly localized range differs substantially from particulate matter emissions, which can 

affect ambient air quality several hundred miles away from their source. Second, the opening 

of a plant that emits these pollutants leads to a roughly 11 percent decline in housing prices 

42The $4.25 million measure does not capture changes to the value of industrial, commercial, or undeveloped property. While some 
industrial uses may not be substantially affected by toxic plant proximity, commercial property and, perhaps more importantly, the 
price of undeveloped land may be affected.
43Black, Devereux, and Salvanes (2007) estimate that each 1 percent decrease in birthweight decreases expected earnings by about 
0.13 percent. Based on our analysis of the distribution of birthweight, the impact appears to be more births 1,000–2,000 grams, 
compared to about 3,200 grams for the average birth, for a back-of-the-envelope average reduction of about 50 percent. So a low 
birthweight birth would be associated with approximately 6.5 percent lower lifetime earnings. Isen, Rossin-Slater, and Walker (2014) 
calculate that the mean present value of lifetime earnings at age zero in the US population is $542,000 (2000$) using a real discount 
rate of 3 percent (i.e., a 5 percent discount rate with 2 percent wage growth), so this is equivalent to $35,320 per low birthweight birth.
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within 0.5 miles, or a loss of about $4.25 million per operating plant. Housing prices are 

largely unaffected by a plant closing, implying that toxic plants continue to negatively affect 

housing prices after they cease operations. Third, the incidence of low birthweight increases 

by roughly 3 percent within one mile of an operating toxic plant, with comparable 

magnitudes between 0 and 0.5 miles and 0.5 and 1 miles.

These results underscore opportunities for further research in several areas. We interpret the 

estimated effects of low birthweight to be a rejection of the null hypothesis that there are no 

health effects from toxic air emissions. This finding opens the door to seeking creative 

approaches to testing for longer run health effects on children and adults. It is also possible 

that toxic air emissions cause households to engage in costly behaviors to protect themselves 

and documenting these costs would be a contribution (see e.g., Deschenes, Greenstone, and 

Shapiro 2012).

This paper also raises broader questions around the determinants of housing prices. As 

computing power increases and more detailed data are accessible, it will be possible to 

assess the degree to which housing markets fully capture the present discounted value of all 

present and expected future amenities associated with a particular location. A related and 

important question is the degree to which health effects are capitalized into housing prices. 

Finally, we believe that a better understanding of belief formation around local amenities 

and how these beliefs interact with willingness to pay in the context of local housing markets 

is a critical area for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Effect of Toxic Plants on Ambient Hazardous Air Pollution
Notes: This figure plots marginal effects and ninety-fifth percentile confidence intervals 

from 8 separate regressions of a single form of ambient hazardous pollution on a quartic in 

distance to the nearest operating toxic plant. The unit of observation is the monitor-plant pair 

and all regressions include monitor-plant fixed effects so the distance gradient is identified 

using plant openings and closings. In the regression sample, each pollutant has been 

standardized to be mean 0 and standard deviation 1. The distance gradient can therefore be 

interpreted as standard deviations from the mean value. Standard errors for the regression 
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are two-way clustered on plant and monitor, and the pointwise standard errors in the figure 

are calculated using the delta method. Below each pollutant specific graph is a histogram, 

representing the number of monitors at various distance bins from the plants in the sample.
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Figure 2. The Effect of Toxic Plants on Ambient Hazardous Air Pollution, All Pollutants
Notes: This figure plots marginal effects and ninety-fifth percentile confidence intervals 

from a regression of ambient hazardous pollution on a quartic in distance to the nearest 

operating toxic plant. The unit of observation is the monitor-plant pair and the regression 

includes monitor- plant fixed effects so the distance gradient is identified using plant 

openings and closings. In the regression sample, pollutants are pooled, standardizing each 

pollutant to be mean 0 and standard deviation 1. The distance gradient can therefore be 

interpreted as standard deviations from the mean value. Standard errors for the regression 

are two-way clustered on plant and monitor, and the pointwise standard errors in the figure 

are calculated using the delta method.
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Figure 3. Event Study: The Effect of Toxic Plant Openings and Closings on Local Housing 
Values
Notes: These are event study plots created by regressing log housing sale price for a plant-

by-distance-by-year cell on a full set of event time indicators interacted with an indicator for 

“near,” plant-by-distance fixed effects, plantby- year fixed effects, and census controls 

(interacted with quadratic trends), weighting by the group-level cell size. Reported are the 

coefficients for event-time, which plot the time path of housing values “near” relative to 

“far” before and after a plant opening or closing. “Near” is defined as less than 1 mile 

between a plant and a house, and “far” is defined as 1–2 miles between a house and plant. 

The dashed lines represent 95 percent confidence intervals, where standard errors are 

computed using two-way cluster-robust standard errors, clustering on plant and year. Time is 

normalized relative to the year that the plant’s operating status changes (τ = 0), and the 

coefficients are normalized to zero in the year prior to a change in operating status (τ = −1). 

The coefficients corresponding to four or more years before a plant opening are not 

identified due to the lack of openings in the second half of our sample period and the lack of 

housing data prior to 1998.
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Figure 4. Event Study: The Effect of Toxic Plant Openings and Closings on the Incidence of Low 
Birthweight
Notes: These are event study plots created by regressing the incidence of low birthweight for 

a plant-by-distance by year cell on a full set of event time indicators interacted with an 

indicator for “near,” plant-by-distance fixed effects, plant-by-year fixed effects, and census 

controls (interacted with quadratic trends), weighting by the group-level cell size. The 

dependent variable in the regression is the residualized mean incidence of low birthweight 

for a plant-by-distance-by-year, adjusted for micro-level covariates in a first stage. Reported 

are the coefficients for event-time, which plot the time path of low birthweight “near” 

relative to “far” before and after a plant opening or closing. “Near” is defined as less than 1 

mile between a plant and a house, and “far” is defined as 1–2 miles between a house and 

plant. The dashed lines represent 95 percent confidence intervals, where standard errors are 

computed using two-way cluster-robust standard errors, clustering on plant and year. Time is 

normalized relative to the year that the plant’s operating status changes (τ = 0), and the 

coefficients are normalized to zero in the year prior to a change in operating status (τ = −1).
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Figure 5. Effect of Plant Operation on the Distribution of Birthweight 0–1 Miles from a Plant
Notes: This figure reports regression coefficients from nine separate regressions. The 

dependent variable in each regression is an indicator variable for whether a birth falls in a 

particular birthweight range as indicated on the x-axis, and the data have been aggregated to 

plant-by-distance by year cells. The estimates reflect the effect of plant operation on “near” 

relative to “far” birth outcomes. All regression estimates control for census tract 

characteristics (interacted with quadratic trends) and regressions are weighted by the group-

level cell size. Multiple births are dropped from regressions. Standard errors are two-way 

clustered by plant and year, and reported confidence intervals reflect 2 standard errors above 

and below the estimate.
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Table 1

Characteristics of Toxic Plants and the Surrounding Community

Open
continuously
1990–2002

(1)

Opened
between

1990–2002
(2)

Closed
between

1990–2002
(3)

Panel A. Plant characteristics by opening and closing status

Number of plants 1,846 689 1,062

Average plant employment (total workers) 224 90 114

Average plant age (years) 18.6 2.0 16.2

Mean value of plant equipment (in millions) $15.8 $15.4 $14.9

Mean value of plant structures (in millions) $6.2 $5.8 $5.1

Mean annual salary and wages (in millions) $11.7 $5.5 $6.2

Mean annual toxic emissions (in pounds) 22,016 23,303 17,919

0 < d ≤ 0.5
(1)

0.5 < d ≤ 1
(2)

0 < d ≤ 1
(3)

1 < d ≤ 2
(4)

Panel B. Community characteristics by distance, d, from plants that opened or closed 1990–2002

Housing characteristics

   Mean housing value $124,424 $126,492 $125,927 $132,227

   Aggregate housing value (in millions) $38.56 $60.00 $98.57 $174.80

Birth and maternal characteristics

   Mother’s education 11.93 12.08 12.05 12.22

   Mother’s age 26.33 26.50 26.46 26.70

   Proportion teenage mother   0.15   0.15   0.15   0.15

   Proportion smoker   0.14   0.13   0.13   0.13

   Proportion African American   0.23   0.25   0.25   0.26

   Proportion Hispanic   0.32   0.30   0.31   0.29

   Proportion white/Caucasian   0.72   0.71   0.71   0.70

Notes: Panel A describes the 3,438 plants in Florida, Michigan, New Jersey, Pennsylvania, and Texas that reported to the Toxic Release Inventory 
at least one year between 1990 and 2002. In calculating plant characteristics in columns 2 and 3, the sample is restricted to observations in the 2 
years after a plant opening or 2 years before a plant closing, and a single plant can appear in both columns. Plant age is right censored, as the year a 
plant opened is not available for plants opened before 1975 in the Longitudinal Business Database. The value of plant equipment, structures, and 
salary and wages come from the NBER Productivity Database microdata and is only available for a subset of our data that matches the NBER 
Productivity Database in a given year. The value of plant equipment and structures is constructed using the perpetual inventory method from 
investment data (Mohr and Gilbert 1996). All dollar amounts are in 2000 dollars. Panel B statistics describe community characteristics surrounding 
toxic plants that either opened or closed between 1990 and 2002. Housing sales and births may appear in multiple columns if they are within 2 
miles of more than one plant opening or closing, but within each column a house or birth appears only once.
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