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Abstract

The carcinogenic role of arsenic has been extensively studied for more than half century. How 

arsenic causes human cancer, however, remains to be fully elucidated. In this brief review, we 

focus our attentions on the most recent discoveries by us and others on the capabilities of arsenic 

in inducing generation of reactive oxygen species (ROS), expression of microRNAs (miRNAs) 

and the generation of the cancer stem cells. We believe that these new understandings on the 

mechanisms of arsenic-induced carcinogenesis will shed light on the prevention and treatment of 

human cancers resulted from environmental or occupational arsenic exposure. Furthermore, these 

latest findings on arsenic-induced cellular responses will also have an important impact on the 

investigation of the carcinogenic effects of other environmental or occupational carcinogens or 

hazards.

I. Arsenic in environmental and occupational settings

Arsenic is one of the most abundant components of the Earth’s crust and can be commonly 

found as compounds in rocks, soil, ground waters, air, food, and in plants and animals. 

Naturally, arsenic is rarely found as a pure metalloid, but is often as a key element in 

inorganic and organic compounds. Inorganic arsenic, mostly in combination with oxygen, 

chlorine, sulfur, and other metal elements, such as As2O3, AsCl3, As2S3, FeAsS 

(arsenopyrite), As4S4 (realgar) etc., is widely distributed in the environment1. It is released 

into the air by volcanoes, the weathering of arsenic-containing minerals and ores, and by 

commercial or industrial activities. Organic arsenic contains carbon and hydrogen, such as 

arsenobataine, arsenocholing, tetramethylarsonium salts, arsenosugars, and arsenic-

containing lipids that can be found in some marine organisms and terrestrial species2. 

Several organic arsenic compounds were developed as chemical warfare agents during 

World War I, including lewisite and adamsite. In general, the inorganic arsenic poses the 

most health concerns in human being, whereas majority of the organic arsenic compounds 

are less toxic.

Drinking water contamination of arsenic is the main source of environmental arsenic 

exposure to human being. This arsenic contamination in drinking water is largely resulted 
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from natural deposition of arsenic-bearing minerals in the underground rocks or sediments. 

The arsenic minerals can be released to the water through either oxidation or the reduction 

of Fe/As oxyhydroxides 3. It is believed that some agriculture activities causing excessive 

withdrawal and lowering of the water table facilitate oxidation of arsenic-containing pyrite 

in the sediment1. Recharge of the water table by rainfall causes leaches out of arsenic from 

the sediment into the aquifer. Under some geological and microenvironmental 

circumstances, such as in wet and flat regions and aerobic alkaline conditions in closed 

basins in arid and semiarid region, arsenic forms co-precipitates with ferric oxyhydroxides, 

which enforces the reducing conditions of the groundwater. This reducing status is further 

enhanced by microbial-based oxidation of organic carbon followed by depletion of the 

dissolved oxygen in the groundwater 4.

A number of anthropogenic activities are at risk of increasing occupational and 

environmental arsenic exposures. These activities include mining, smelting of non-ferrous 

metals, energy production from fossil fuel, manufacture of semiconductors, agriculture 

application of arsenic-based insecticides and herbicides, and processing of wood 

preservatives, alloying agents, glass, pigments, textiles, papers, metal adhesives, 

ammunition, etc. Mining dumps, or tailings that usually contain high amount of arsenic and 

other toxic metals, can contaminate not only the surrounding topsoil but the groundwater 

also 5. In US alone, it is estimated that there are several billion tons of tailings stored in 

some historic and active mining sites. These tailings impose considerable threat to the 

environment and public health. The most recent accidental release of more than 11 million 

liters of tailings in the major waterways due to human error is perhaps the best example of 

such a threat6.

II. Arsenic and human cancers

Several large scale epidemiological or case-control studies had provided unequivocal 

evidence suggesting that arsenic is a human carcinogen. In 1987, The International Agency 

for Research on Cancer (IARC) had classified inorganic arsenic and its derivatives, 

including those compounded with sulfur, chloride and among others, as group I carcinogens. 

Excessive exposure to arsenic is reported to be involved in the development processes of 

various types of cancer (e.g., lung, skin, bladder)7. Currently, there is an estimation that 

about 160 million people exposed to elevated level of arsenic in drinking water worldwide8. 

Thus, it’s urgently needed to understand mechanisms of arsenic-induced tumorigenesis, 

which may be helpful for prevention of the arsenic-related malignancy.

Although arsenic has been considered as a poorer mutagen, increasing evidence suggests 

that arsenic is highly capable of promoting epigenetic alterations, including DNA 

methylation9, 10, histone methylation11, 12, histone phosphorylation/acetylation13, 14, and 

microRNA regulation14, 15, through some signaling mediators, e.g., ROS16, 17, Akt15, 18, 19, 

FilaminA20 that are required for arsenic induced cell transformation. However, the 

mechanisms of how arsenic elicits those effects remain elusive.
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III. Arsenic induces excessive generation of reactive oxygen species

There are two types of inorganic arsenic presented naturally, the pentavalent arsenate (As5+), 

and its reduced form, the trivalent arsenite (As3+) 21. In general, the trivalent arsenic (As3+) 

is able to function as the main inducer of ROS generation within cells22. There are several 

types of ROS generated during arsenic metabolism, such as peroxyl radicals (ROO•), 

superoxide anion radical (O2•−), hydroxyl radical (•OH), hydrogen peroxide (H2O2), and 

other organic arsenic intermediates23. As reported, cells uptake arsenic through different 

membrane transporters, for example, the aquaglyceroporins are the transporters in human 

and rat cells24, and hexose permeases in Saccharomyces cerevisiae25. The penetration of 

arsenate into the cells could be achieved through some phosphate transporters26. When 

inside the cells, arsenate will be metabolized to its reduced form, arsenite, through 

glutathione, and finally turns to its organic form, monomethylarsonic acid (MMA) or 

dimethylarsinic acid (DMA)27.

Many living cells are able to convert arsenite to arsenate through oxidation, which generates 

two electrons important for the formation of hydrogen peroxide (H2O2) 28. By Fenton 

reaction, the H2O2 produces hydroxyl radical, a very active oxygen radical contributing to a 

wide range of macromolecule oxidation29. In addition to the ROS generation from arsenic 

metabolism, arsenic can also heighten ROS generation by activating the membrane-bound 

NADPH oxidase complex, which is responsible for the release of superoxide anion radical 

(O2•−)30. At last, it had been reported that arsenic perturbs mitochondrial membrane 

integrity and potential, leading to the release of ROS from mitochondria to cytoplasm27, 31.

Mammalian cells equipped with several different antioxidant systems to scavenge or 

neutralize lower to moderate levels of ROS to prevent oxidative stress and tissue injury. 

However, excessive generation of ROS will overwhelm the cellular antioxidant capability, 

leading to oxidative damages on DNA, lipid, protein, as well as the activation of some cell 

proliferative or stress signaling pathways, such as TNFα/NF-κB 32, 33, JNK/AP-134, 35, c-

myc36, 37, MAPK 16, 38, Wnt/beta-catenin39, 40 etc. In terms of DNA damage caused by 

ROS, there are reports demonstrating that the ROS-mediated genomic mutation is very likely 

an earlier initiation step in the cancer development41. Furthermore, excess ROS can also 

cause damage to lipids, further leading to DNA damage, and consequently impair the 

activity of DNA repair enzymes42, 43. Several lines of evidence indicate that the protein 

damage caused by excessive ROS can influence the DNA error-prone repair system, and 

therefore leading to cancer development 44. The DNA repair systems comprise a number of 

enzymes, while the unnecessary modifications, such as oxidations, can hamper their 

activities and eventually impair the DNA damage repair pathways. In our most recent 

studies, we uncovered an entirely unexplored new mechanism linking arsenic exposure to a 

compromised DNA repair function. In human bronchial epithelial cells or lung cancer cell 

line A549 cells, arsenic is potent in inducing mdig expression45. By exploring potential 

interaction partners of the mdig protein, we conducted proteomic analysis of the 

immunocomplexes from mdig immunoprecipitation and revealed direct interaction of mdig 

with XRCC5, XRCC6 and DNAPK, the non-homologous end joining (NHEJ) repair 

complex. Functional analysis further showed that this interaction weakens DNA double 

strand repair function of the NHEJ complex 46.
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IV. Epigenetics in arsenic-induced carcinogenesis

Epigenetics refer to the modifications on genomes without changes in DNA sequences, such 

as DNA methylation, histone tail modification, as well as non-coding RNA. Generally 

speaking, DNA methylation occurred at the CpG island of the promoter region that is 

inhibitory for gene expression 47. For decades, perturbation in DNA methylation pattern on 

the genome has been linked to a myriad of human diseases, such as neurodegenerative 

diseases, psychological disorders and cancers48. It had been well-known that DNA 

methylation inhibits expression of certain tumor suppressors, thus promotes malignant 

transformation of the cells. The histone proteins, esp. in the histone tail region of the 

nucleosomes, undergo multiple post-transcriptional modifications, including methylation, 

acetylation, phosphorylation, sumoylation, unbiquitylation49, and biotinylation50. Some 

modifications facilitate formation of the permissive chromatin structures for transcription 

factor binding and gene expression, whereas other modifications might result to silencing of 

the genome due to the non-permissive heterochromatin configuration. The polycomb 

repressive complex 2 (PRC2) is known to catalyze tri-methylation of the lysine 27 on 

histone H3 (H3K27me3), leading to gene silencing. This methylation is achieved by the key 

catalytic subunit, Enhancer of Zeste homolog 2 (EZH2), a methytransferase. Interestingly, 

overexpression of EZH2 had been observed in a variety of human cancers51, 52, suggesting 

its pivotal role in cancer development. The enzymatic activity of EZH2 is subjected to the 

multi-layer regulation, one of which is its phosphorylation on serine 21 (S21)53. In human 

bronchial epithelial cells, we found that arsenic is able to induce S21 phosphorylation 

through the JNK-STAT3-Akt signaling cascade18. Applying the cells with chemical 

inhibitors or siRNAs targeting JNK, STAT3 or Akt prevented S21 phosphorylation of EZH2 

in response to arsenic. Additional tests unraveled that this arsenic-induced EZH2 

phosphorylation is partially dependent on the generation of ROS, as the fact that antioxidant 

N-acetyl-L-cysteine (NAC) could prevent, whereas H2O2 promotes EZH2 phosphorylation 

in the cells treated with arsenic16. The fate of the S21-phosphorylated EZH2 is still a 

mystery. By examining intracellular distribution of the S21-phosphorylated and non-

phosphorylated EZH2 proteins through immunofluorescent staining, we had noted 

cytoplasmic localization of the S21-phosphorylated EZH2 protein16, 18. Accordingly, we 

speculated that this phosphorylated EZH2 induced by arsenic may act on some non-histone 

proteins.

The non-coding RNAs had long been viewed as “junk”. Nonetheless, emerging evidence 

suggested the important regulatory functions of the non-coding RNAs. There are several 

members of the non-coding RNA family, such as t-RNA (transfer-RNA), rRNA (ribosomal-

RNA), snoRNA (small nucleolar RNA), siRNA (small-interfering RNA), snRNA (small 

nuclear RNA), exRNA (extracellular RNA), piRNA (piwi-interacting RNA), lincRNA (large 

intergenic non-coding RNA), T-UCR (transcribed ultraconserved regions), and miRNA 

(microRNA).

MicroRNAs (miRNAs) belong to the class of short non-coding RNAs with the length of 19–

25 nucleotides. They mainly function as the silencers of certain mRNAs. In mammals, the 

“seed region”, a sequence of 2 to 8 nucleotide-long in the miRNA 5′-end region, binds to the 

3′-UTR region of mRNAs 54. Depending on the degree of their binding, miRNAs can either 
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mediate translational suppression or target mRNAs for degradation. The miRNA genes are 

first transcribed into primary miRNA (pri-miRNA) with the help of RNA polymerase II. The 

pri-miRNA is spliced by Drosha-DGCR8 to precursor miRNA (pre-miRNA) that transported 

from nucleus to cytoplasm by exportin 5. In cytoplasm, pre-miRNA undergoes further splice 

by Dicer-TRBP/PACT to generate mature miRNA. After release of the passage strand, the 

single strand mature miRNA is incorporated into RNA-Induced Silencing Complex (RISC) 

that guide miRNA to its complementary mRNA. Depending on complementarity between 

miRNA and mRNA, the miRNA can either suppress translation of mRNA or induce 

degradation of mRNA.

During the process of carcinogenesis or tumorigenesis, some miRNAs serve as the tumor 

suppressors by targeting oncogenes, for example, mir-101 decreases the expression of 

EZH2 55, while others may function as oncomirs that promote cancer development by 

targeting tumor suppressors, such as mir-21 that down-regulates PTEN and PDCD456. 

Emerging evidence also indicates that arsenic-induced carcinogenesis is profoundly 

associated with miRNA regulations57, 58. In our previous studies, we found that arsenic is 

able to induce expression of miR-190, a miRNA that can silence PHLPP, a negative 

regulator of Akt15. Additional studies also suggested that arsenic can heighten expression of 

miR-21, a well-established oncomir18. Biochemical analysis demonstrated that the induction 

of miR-21 by arsenic is very likely through the JNK-dependent STAT3 activation. Increased 

expression of miR-21 can suppress PTEN, another negative regulator of Akt. In our most 

recent experiments in testing the hypothesis that long-term arsenic exposure fosters 

formation of the cancer stem cells, we found that consecutive treatment of the cells with 

lower concentration of arsenic enhances expression of miR214, which may target some 

chromatin remodeling proteins (Li et al, unpublished).

V. Cancer cell stemness in arsenic-induced carcinogenesis

Cancer stem cells (CSCs) are a small population of tumor cells that have the ability of self-

renewal and differentiation 59. A well-established CSC model of tumorigenesis indicates that 

CSCs are the key for tumor initiation, progression, therapeutic resistance, and 

metastasis60, 61. Despite extensively explored, there are still challenges in identifying unique 

surface markers, genetic characteristics, epigenetic features, and the cellular ancestors of the 

CSCs.

Mounting evidence implies that prolonged arsenic exposure not only promotes malignant 

transformation of the noncancerous cells but also confers the cancer cell stem-like 

properties62–64. In our recent study, we elucidated that sub-lethal arsenic exposure triggers 

transformation of the bronchial epithelial cells, and some of these transformed cells 

exhibited features of the CSCs, e.g., increased expression of the stemness genes, including 

Sox2, KLF4, Oct4, Nanog, and myc 63. Although we failed to detect those reported CSC 

surface markers, such as CD133, CD24, CD44, CD166, CD326, CD184, etc., we did find 

that the CSCs induced by arsenic is CD61− 63. From our previous studies, we unexpectedly 

observed that the transformed cells induced by arsenic had a reduced capability of ROS 

generation65. In agreement with this notion, the CSCs induced by arsenic also showed a 

diminished generation of ROS in response to an additional arsenic treatment. In the non-
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transformed cells, we had consistently detected ROS generation and the activation of several 

cell proliferative cellular pathways following arsenic treatment. Furthermore, as proposed 

originally, arsenic-induced cancer cell stem-like properties is highly associated with Ras and 

Akt expression58. It is unclear why the cells lost their ability of ROS generation when 

converted to CSCs. Gene profiling revealed that the genes important for mitochondrial 

oxidative phosphorylation (OXPHOS) were repressed substantially in the CSCs, whereas 

genes involved in the glycolysis were up-regulated66. Since majority of cellular ROS are 

generated from OXPHOS, it is very likely that compromising OXPHOS will result in the 

lower capability of the cells to produce ROS. From the evolutional perspectives of the CSCs, 

diminished ROS generation favors the stemness of the CSCs. It has been generally accepted 

that ROS can not only induce apoptosis and differentiation of the CSCs, but inactivate the 

activities of the CSC transcription factors essential for the self-renewal of the CSCs. Thus, 

reduced ROS production might be an important measure for the maintenance of the CSCs. 

This hypothesis was supported by experiments in other cancer models, for example, ROS 

inhibit self-renewal of ovarian cancer CSCs 67 and kill the drug-resistance CSCs68.

VI. Perspectives

The role of arsenic in cancer development hasn’t been fully understood, and because of the 

complex signaling pathways mediated by arsenic, some debates remain. From the cellular 

and animal cancer models, results from our laboratory and others clearly demonstrated that 

the carcinogenic effects of arsenic may be achieved through influences on epigenetics, 

genetics, immune surveillance, DNA repair, and intracellular kinases and/or transcription 

factor signaling pathways 69 (Fig 1). These multiple effects of arsenic may finally shift the 

cellular metabolic programs that converged on the malignant transformation and generation 

of the CSCs. Since the emerging evidence suggests the central role of CSCs in cancer 

initiation, progression, chemoresistance, metastasis, and tumor recurrence70–72, targeting 

CSCs should be a new strategy for cancer therapy. It has been known that current chemo-

drugs have limited capability to kill the CSCs in any given tumors. Thus, understanding the 

molecular mechanisms of arsenic-induced cancer, such as altered dynamics of ROS 

generation73 and miRNA expression74, will certainly shed new light for future cancer 

therapy.
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Fig. 1. Underlying mechanisms of arsenic induced malignant transformation
Arsenic exerts its carcinogenic property most likely through impacts on epigenetics, 

genetics, immune surveillance, and DNA damage repair.
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