
Natural Agents Used in Chemoprevention of Aerodigestive and 
GI Cancers

Jay Morris, Yuan Fang, Keya De Mukhopdhyay, and Michael J. Wargovich
Department of Molecular Medicine, The University of Texas Health Science Center at San 
Antonio, San Antonio, TX 78229

Abstract

Aerodigestive cancers are on an increasing level in both occurrence and mortality. A major cause 

in many of these cancers is disruption of the inflammatory pathway, leading to increased cell 

proliferation, and epigenetic silencing of normal regulatory genes. Here we review the research on 

several natural products: silibinin, silymarin, quercetin, neem & nimbolide, gingerol, 

epigallatecatechin-3- gallate, curcumin, genistein and resveratrol conducted on aerodigestive 

cancers. These types of cancers are primarily those from oral cavity, esophagus/windpipe, 

stomach, small and large intestine, colon/rectum and bile/pancreas tissues. We report on the 

utilization in vivo and in vitro systems to research these dose effects on the inflammatory and 

epigenetic pathway components within the aerodigestive cancer. To follow up on the basic 

research we will discuss remaining research questions and future directions involving these natural 

products as putative stand alone or in combination with clinical agents.
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Introduction

Cancers of the upper aerodigestive tract constitute approximately 4% of all malignancies [1]. 

The combined organs and tissues of the respiratory tract and the upper part of the digestive 

tract (including the lips, mouth, tongue, nose, throat, vocal cords, and part of the esophagus 

and windpipe) are referred as aerodigestive tract. There are a number of factors that can 

increase a person's risk for developing cancers of the upper aerodigestive tract which 

includes smoking, moderate to heavy alcohol consumption, exposure to asbestos and other 

toxic substances, genetic/family history, previous occurrence of upper aerodigestive cancer, 

pulmonary diseases, including chronic obstructive pulmonary disease (COPD), emphysema, 
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chronic bronchitis, and idiopathic pulmonary fibrosis etc. (www.cancer.gov). Within the 

lower aerodigestive tract the, stomach, small intestine, colon, and rectum are the major tissue 

sites of deleterious effects [2–5], encompassing approximately 11% of all cancers.

One of the major corrupted components within aerodigestive cancers is the disruption of 

normal inflammatory signaling pathways. Pathways involved in JAK/STAT, MAPK, 

prostaglandin synthesis, and NF-κB signaling have all been implicated as therapeutic 

intervention strategies [6–17]. Diet and lifestyle are major contributing factors to increased 

cancer risk in these tissues [18,19]. Numerous studies show that dietary intake antioxidants 

and/or polyphenols have an inverse risk effect on several aerodigestive cancers by mitigating 

the increase in inflammation [20–24]. Curcumin, a compound from turmeric, along with 

several other natural agents, silibinin, silymarin, quercetin, neem & nimbolide, gingerol, 

epigallatecatechin-3- gallate (EGCG), genistein and resveratrol, all have been heavily 

research in aerodigestive cancers as preventive agents, front line therapy and/or in 

combination with more traditional therapeutics agents in the clinic [6,25–28,9,29–33]. In 

this review we will focus on these compounds, their effects on inflammatory signaling 

pathways, effects on epigenetic regulators and discuss how these natural products (NPs) can 

enhance clinical treatments.

Inflammatory Effectors

JAK/STAT signaling

The JAK/STAT is the principal signaling pathway including transcriptional factors 

responding to extracellular ligands, cytokines, and growth factors; it affects various cellular 

functions, such as metastasis, proliferation, growth, and immune response [34]. Upon 

activation, STAT family proteins translocate into the nucleus where it dimerizes and binds 

specific regulatory sequences, activating downstream target genes, e.g., cyclins D1/D2, Myc, 

Bcl-xL, and Mcl-1 [35]. Therefore activation of JAK/STAT pathway plays important role in 

activating cell cycle and inhibiting apoptosis [36]. In recent publications, gastric [37], 

pancreatic [17], colon [16], rectal [38] cancer cells were shown to express high levels of 

STAT proteins, which is interesting given the implications for blockage of JAK/STAT 

pathway to inhibit tumor progression.

A clinical study found that in the nucleus of 40 cancer cells in human gastric cancer 

specimens, 11 (27.5%) showed activated form of STAT3, Tyr-705 phospho-stat3. Signal 

transduction and activator of transcription 3(STAT3) signaling is constitutively activated in 

various tumors, and is involved in cell survival and proliferation during oncogenesis [15]. A 

number of studies have shown that the quercetin, the major constituent of the flavonol 

subclass of flavonoids, inhibits the expression of STAT3 with drug treatment at the dosage of 

40 µmol/L for 48h, thereby resulting in the suppression of gastric cancer cell's growth [37]. 

In addition, dietary supplementation of quercetin attenuated the growth of orthotopically 

transplanted pancreatic xenografts [39]. Moreover, a study of Velazquez group showed that 

when ApcMin/+ mice were treated with 25 mg/kg of quercetin daily for 3 wk, tumor burden 

of these mice was attenuated compared with control groups [40]. Silibinin, the major 

biologically active compound of the milk thistle (Silybum marianum), has been reported to 

inhibit the migratory and invasive potential of human tongue squamous cell carcinoma cells 
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in vitro [41], and human colorectal carcinoma (CRC) HT29 xenograft growth [42]. Clear 

mechanism of its chemoprevention effects on oral and CRC cancer was not shown, but 

Alpna Tyagi’s study on lung cancer found that silibinin decreased phosphorylation STAT3 

(ser727) (16%, p<0.01) in lung cancer cells [42], suggesting that silibinin may blocks the 

constitutive and inducible activation of STAT3, resulting in reduction in expression of 

STAT3 target genes, such as JAK2, v-src, and cyclin D1. Many clinical studies have 

explored the effect of curcumin on colorectal and pancreatic cancer prevention or treatment 

and have reported no toxicity with moderate dose (440 and 2200 mg/day) of curcumin over a 

few months [43–45], phase II trial conducted by Dhillon et al. showed decreased 

phosphorylated signal transducer and activator of transcription 3 in peripheral blood 

mononuclear cells from patients [44].

MAPK pathway

Mitogen-Activated Protein Kinases (MAPK) are serine/threonine (proXser/ThrPro) kinases 

and they can convert various extracellular signals into intracellular responses through serial 

phosphorylation cascades [46]. When extracellular mitogen binds to extracellular signal-

regulated kinase (ERK), it will activates GTPase (Ras) by converting its GDP to GTP, then 

phosphorylates downstream MAP3K (e.g., Raf), which in turn activates ERK, JNK, and p38 

[47]. When all these MAPKs are activated, a lot of downstream transcription factors, such as 

c-myc, c-jun, activating transcription factor-2 (ATF2), GADD153, myocyte enhancer 

factor-2C (MEF2C) and Sin1-associated protein (SAP-1), will get phosphorylated, leading 

to a variety of cellular responses including inflammation, cell proliferation, differentiation 

and migration [48,49]. Several natural Dietary phytochemicals have been found to inhibit 

MAPK pathway, suggesting their abilities to be chemoprevention therapy for cancer 

progression.

6-Gingerol, a major component of Ginger (Zingiber officinale), incubated with Human 

hepatoma Hep3B cells human pancreatic duct cell-derived cancer PANC-1 cells with 

concentration of ≥ 10 µM downregulation of the extracellular signal-regulated kinase (ERK) 

thus significantly reduced MAPK signaling [29,50] Gingerol was also found to suppress 

PMA-induced IκBα degradation and translocation of p65 to nucleus in mouse skin by 

blocking of upstream kinase p38 MAPK [51]. Moreover, a recent study by Weng CJ et al. 

found that HepG2 and Hep3B cells with ginerol treatment (≥ 10 µM for 24h) showed 

MMP-9 suppression, TIMP-1 induction and reduced invasion or metastasis [52].

Nimbolide, a component of Neem (Azadirachta indica) inhibited phosphorylation of 

ERK1/2 of colon cancer cell lines (WiDr and HCT116) in a time-dependent manner with 

dosage of 1.25 µM. As a result, downstream MAPK proteins, including p38 and c-Jun 

amino-terminal kinases (JNK), are activated correlated to the activation of ERKs [53]. This 

result might able to explain the beneficial effect of Nimbolide on animal model of oral 

oncogenesis conducted by G. Harish Kumar research group [54]. Another phytochemical 

silibinin was found to inhibit SNU216 and SNU668 gastric cancer cell growth and migration 

by inhibiting phosphorylation of MER/ERK pathway [12], silibinin also inhibits the growth 

of SW480 xenograft tumors carrying the mutant APC gene [55]. Resveratrol has also been 
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shown to inhibit growth in human oral cancer cell line (SCC-9) in a dose dependent manner 

by inhibiting phosphorylation of MAPK response element targets [56].

AKT/PI3K pathway

The Akt/PI3K (phosphatidylinositol 3-kinase) pathway plays a very important role in the 

regulation of cell proliferation and survival. It can enhance cell survival by activating cell 

proliferation and inhibition of cell metastasis [13]. And the dysregulation of a lot of 

components of the Akt/PI3K pathway has been found in many human cancers’ cases [14]. 

PI3K can be activated by receptor tyrosine kinases when they are bound by a ligand and the 

PI3K activation can activate AKT which activates mTOR and has a lot of downstream 

effects, like cell growth, cell-renewal, resistance to chemotherapy [30]. Therefore, it is 

important to explore the therapeutic target in this pathway and it can become a promising 

target for therapy.

Recently, it has shown that quercetin can reduce tumor cell proliferation and the growth of 

orthotopically transplanted pancreatic xenografts was decreased when quercetin was used as 

dietary supplementation [10,, 39]. Park JH group reported that quercetin down-regulated 

ErbB2/ErbB3 signaling and the Akt pathway, thus inducing apoptosis in SW480 and HT-29 

colon cancer cell and inhibited cell growth in a dose dependent-manner when cells were 

treated with 25, 50, or 100 µmol/L quercetin for 72 h [31].

6-Gingerol treatment to in vitro neonatal rat cardiomyocytes and H9c2 cell line suppresses 

doxorubicin-triggered oxidative stress and apoptosis through activating PI3K/Akt pathway. 

[6]-GR upregulated expression of PI3K and p-Akt in DOX-induced NRCs in a dose-

dependent manner and the optimal dose is 100uM. Moreover, the cytoprotection of 

higenamine plus [6]-gingerol could be abrogated by a PI3K inhibitor LY294002 [57]. All of 

the studies show that dietary agents target the PI3K/Akt signaling pathway to inhibit cell 

proliferation, highlighting a potential target for therapy of cancer.

NF-κB pathway

The NF-κB family of transcription factors has an essential role in inflammation and innate 

immunity and this has been increasingly recognized as a crucial player in many steps of 

cancer initiation and progression [58]. This NF-κB is a nuclear factor that binds to the 

enhancer element of the immunoglobulin kappa light-chain of activated B cells [59]. The 

proteins harbouring this specific DNA binding activity are expressed in almost all cell types 

and regulate many target genes with a variety of functions [11]. There are five members of 

this transcription factor family, p65 (RelA), RelB, c-Rel, NF-κB1 and NF-κB2, of which 

NF-κB1 and NF-κB2 are synthesized as pro-forms (p105 and p100) and are proteolytically 

processed to p50 and p52 respectively [60]. In contrast to the other members of the NF-κB 

family p50 and p52 do not contain a transactivation domain [61]. So dimers of p50 and p52, 

which bind to NF-κB elements of gene promoters, act as transcriptional repressors [62]. But 

when p50 or p52 are bound to a member containing a transactivation domain, such as p65 or 

RelB, they constitute a transcriptional activator [63]. The fact that different NF-κB dimers 

have differential preferences for variations of the DNA-binding sequence enhances the 

complexity of this transcriptional regulation system [64]. Thus different target genes are 
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differentially induced by distinct NF-κB dimers. Besides, the sites for phosphorylations and 

other post-translational modifications in the NF-κB subunits are important for activation and 

crosstalk with other signaling pathways [65]. NF-κB in the blood stream is usually bound to 

the inhibitory protein IκB which renders it inactive. However, during an inflammatory 

response, the IκB kinase phosphorylates the IκB protein thus releasing NF-κB. NF-κB 

activation then leads other inflammatory cytokines such as TNF-α and interleukin 1 (IL-1) 

to bind to their receptors and become activated [10].

Silymarin is a polyphenolic flavonoid derived from the fruits and seeds of the milk thistle, 

also called artichoke Silybum marianum, has anti-inflammatory, cytoprotective, and 

anticarcinogenic effects. Silymarin may involve suppression of NF-κB, a nuclear 

transcription factor, which regulates the expression of various genes involved in 

inflammation, cytoprotection, and carcinogenesis, to produce these effects [9]. Another 

flavonoid, Silibinin has shown strong preventive and therapeutic efficacy in different pre-

clinical models through various mechanisms in colorectal cancer [66]. Studies have shown 

that silibinin strongly inhibits TNFα-induced NF-κB activation in human CRC cells [67]. 

Silibinin treatment (50–200 µM) of human CRC SW480, LoVo, and HT29 cells strongly 

inhibits tumor necrosis factor α-induced NF-κB activation together with decreased nuclear 

levels of both p65 and p50 sub-units. Silibinin also significantly increased IκBα level with a 

concomitant decrease in phospho-IκBα, without any effect on TNFR1, TRADD, and RIP2, 

indicating its inhibitory effect on IκBα kinase α activity [67]. In the same study, effect of 

oral silibinin feeding on NF-κB pathway in SW480 (Cycloxygenase (COX) COX-2 

negative) and LoVo (COX-2 positive) tumor xenografts in nude mice were determined. 

Together with its inhibitory efficacy on tumor growth and progression, silibinin inhibited 

NF-κB activation in both xenografts [67].

Quercetin, a flavonol, is the most common flavonoid in nature and is often linked to sugars 

such as rutin (quercetin-3-rutinoside) and quercitrin (quercetin-3-rhamnoside) [68]. 

Quercetin is reported to have antioxidant properties [28] associated with antithrombic, 

antihypertensive, anticarcinogenic and anti-inflammatory effects [69]. Quercetin down-

regulates Bcl-2 through inhibition of NF-κB [70]. Clinical trials of quercetin effect on CRC 

are lacking and evidence of efficacy of quercetin comes from preclinical studies. Thus, 

further research in this field is needed.

Resveratrol is a polyphenol derived from grapes, berries and other plant sources. It is a 

natural compound that aids in suppressing the risk of obesity induced cancer. Resveratrol 

has a role in suppressing inflammatory responses through decreasing nitric oxide levels and 

inhibiting the phosphorylation of the IKB complex thus interfering with the activation of 

NF-κB dependent mechanisms [71]. Resveratrol suppresses the activity of NFkB by 

interfering its DNA binding ability. Resveratrol at doses of 0.5 g or 1.0 g reduced CRC 

tumor cell proliferation by 5% (p = 0.005) and are enough to induce anticarcinogenic effects 

in colon tumors [72].

Azadirachta indica (neem) containing various bioactive components is a promising 

candidate for chemoprevention. Studies have shown that neem leaf extract acts on different 

levels of the NF-κB pathway and it induced apoptosis in colorectal cancer cells [27]. Several 
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groups reported anticancer, anti-inflammatory, and antioxidant activities of neem tree 

extracts without providing in-depth analysis of the molecular mechanisms leading to NLE-

induced inhibition of NF-κB activation. Phytochemicals such as nimbolide, derived from 

Neem, can target multiple steps along the NF-κB signaling circuit are promising candidates 

for future phytochemical-based mechanistic pathway targeted anticancer regimens [73]. One 

study has shown that Nimbolide inhibits the NF-κB activation pathway induced in 

carcinogenesis through direct interaction with Cys179 of IKK-β, leading to suppression of 

IκBα phosphorylation and degradation, inhibition of p65 nuclear translocation, down-

regulation of NF-κB-regulated gene products, inhibition of cell proliferation, and 

potentiation of apoptosis induced by TNF-α and chemotherapeutics in oral squamous tumor 

cells [74].

Gingerol is the chief the phenolic compound from ginger, a spice of south-east Asia, with 

antioxidant, anti-inflammatory, and anti-tumor properties. Gingerol suppresses inflammation 

by blocking the movement of NF-kB into the nucleus, with the resulting down-regulation of 

such inflammatory cytokines as TNF-alpha, as well as inducible nitric oxide synthase 

(iNOS). Pretreatment with [6]-gingerol resulted in a decrease in both TPA-induced DNA 

binding and transcriptional activities of NF-κB through suppression of IκBα degradation 

and p65 nuclear translocation. Phosphorylation of both IκBα and p65 was substantially 

blocked by [6]-gingerol. In addition, [6]-gingerol inhibited TPA-stimulated interaction of 

phospho-p65-(Ser-536) with cAMP response element binding protein-binding protein, a 

transcriptional coactivator of NF-κB [8].

Cycloxygenase (COX) pathway

COX, also known as prostaglandin synthase, is the rate-limiting enzyme responsible for the 

conversion of arachidonic acid (AA) into the various prostaglandins (PGs), a family of lipid 

mediators that have widespread and diverse biological functions [75]. There are two 

isoforms of COX, with distinct tissue distributions and physiological functions. COX-1 is 

constitutively expressed in many tissues and cell types, whereas the inducible isoenzyme 

COX-2 is pro-inflammatory in nature, and expressed only in response to certain stimuli such 

as mitogens, cytokines and growth factors. COX-2 is upregulated in a number of epithelial 

cancers, including in upper aerodigestive tract (UADT) premalignant and malignant lesions 

[7].

Curcumin is a phytochemical derived from the spice turmeric and has a potential in 

decreasing inflammation and inhibiting the growth of neoplastic cells through cell cycle 

arrest and promoting apoptosis by activating the mitochondria-mediated pathway. Curcumin 

has a role in anti-inflammation where it targets and inhibits COX-2 gene expression, nitric 

oxide synthase, NF-κB and PGE2 [76,26]. In a phase IIa clinical trial, curcumin at a dose of 

2 g or 4 g was administered over a 30-day period to 44 eligible smokers with 8 or more ACF. 

Results showed that curcumin at a dose of 4 g significantly reduced the ACF number by 

40% (p < 0.005) whereas the ACF number was not reduced by the 2 g dose [77]. It has been 

shown that curcumin enhances the effect of chemotherapy against colorectal cancer cells by 

inhibition of NF-κB and Src protein kinase signaling pathways [25]. Curcumin has a role in 

anti-inflammation where it targets and inhibits COX-2 gene expression. In a study the 
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combined effects of hexahydrocurcumin (HHC) with 5-FU exhibit a synergistic inhibition 

by decreasing ACF formation mediated by down-regulation of COX-2 expression [78].

Clinical trials of COX-2 inhibitors have shown that inhibition of this enzyme can prevent the 

formation of colonic adenomas and potentially carcinomas, however concerns regarding the 

potential toxicity of these drugs have limited their use as a chemopreventive strategy. 

Curcumin, resveratrol and quercetin are three chemopreventive agents that are able to 

suppress multiple signaling pathways involved in carcinogenesis including COX, and hence 

are attractive candidates for possible clinical intervention research.

Resveratrol (RSVL; 3,5,4'-trihydroxy-trans-stilbene) demonstrates nonselective COX-2 

inhibition. We report herein that RSVL directly binds with COX-2 and this binding is 

absolutely required for RSVL's inhibition of the ability of human colon adenocarcinoma 

HT-29 cells to form colonies in soft agar. It has been shown that RSVL inhibited COX-2-

mediated PGE(2) production in vitro and ex vivo. HT-29 human colon adenocarcinoma cells 

expressing high levels of COX-2 and RSVL showed suppressed anchorage independent 

growth of these cells in soft agar. RSVL suppressed growth of COX-2(+/+) cells by 60% to 

80%, respectively. Notably, cells deficient in COX-2 were unresponsive to RSVL or RSVL-2 

[6].

It has been shown that [6]-gingerol inhibits TPA-induced COX-2 expression in vivo by 

blocking the p38 MAP kinase-NF-kB signaling pathway [8]. In another study, 6-gingerol 

effectively suppressed tumor growth in vivo in nude mice [79]. Specifically in CRC, [6]-

gingerol has been shown to reduce the incidence of CRCs in a rat azoxymethane (AOM) 

model [80], and to inhibit CRC cell proliferation, and endothelial cell tube formation [81]. 

While we have focused on a few pathways within aerodigestive cancers (Table 1), these 

compounds have shown to have effects in other cancer types and tumorigenic pathways.

Epigenetic Effectors

Genetic mutations have long been a central theme in the causality of cancer. Recently, 

Hanahan and Weinberg [82] expanded their previous tenets on the origins of human cancer 

to now include epigenetic events in the pathway of carcinogenesis. Across the paradigm of 

cancer, recent data suggest that epigenetic events are of central importance in regulation of 

tumor formation and progression, possibly creating a new avenue for prevention and 

treatment [83,82,84]. There are many intrinsic and extrinsic factors that encompass 

epigenetic changes and these can involve diet, heritability and the environment. Regulation 

of the epigenome is under the control of DNA methyltransferases (DNMTs), histone 

deacetylases (HDACs), histone acetyltransferases (HATs) and associated modifier proteins 

[83,85,86]. Compounds regulating these proteins or altering their function is an emerging 

field for drug development. Some pharmacologic inhibitors such as 5-Aza-2’-deoxycytidine 

(5aza-dc) and suberoylanilide hydroxamic acid (SAHA) have entered clinical testing, but 

off-target toxicity has limited its progress [87].

Targeting epigenetic regulators is a new paradigm for cancer prevention [87–90]. Within this 

field NPs such as resveratrol (from grapes), genistein (from soy), sulforaphane (broccoli) are 
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reported to modulate cancer risk while modifying epigenetic pathways [88,91–93]. One 

extensively studied NP is epigallocatechin gallate (EGCG), the major polyphenolic 

compound from green tea [94,95,89,96–100]. In methylation sensitive human colon cancer 

cells, EGCG at 100µ has been shown to decrease DNMT3a protein levels and increased 

DNMT3a protein degradation [101]. Sulforaphane on the other hand had little effect on 

DNMT transcripts levels in human colon cancer cells [102]. In terms of aerodigestive 

cancers, little research outside of in vitro cell studies have been conducted using these NPs. 

This dearth of information suggest an open avenue for future basic research to possible 

advance these compounds towards clinical testing.

HDACs decrease the open conformation of DNA shutting down gene transcription and their 

increased activity has been implicated in numerous cancers [103]. EGCG at 100 µM, 

decreased HDAC3 protein levels in HCT116 colon cancer cells and in combination (EGCG 

10 µM) with sodium butyrate decreased HDAC1 activity in both HT29 and HCT116 colon 

cancer cells [104,101]. In pancreatic cancer cell line AsPC-1, ECGC treatment can disrupt 

invasive metastatic by perturbing epigenetic modification of Snail 1 expression thus shutting 

off the downstream target activation [105]. In HT29 colon cancer cells line both EGCG and 

genistein decreased HDAC1 protein levels [106]. EGCG (20 µM) with sulforaphane (25 µM) 

treatment of HT29 human colon cancer cells decreased cell viability suggesting a synergistic 

effects of multiple NP treatment in cancer cells [107]. With the expansion of epigenetic 

research tools further basic research in aerodigestive cancers using NP as individual or in 

combination therapies will allow better understanding of their future role as clinical agents.

Questions to Answer & Future Directions

These natural constituents tend have less aggressive side effects then standard clinical 

therapies and present another or additional avenue of cancer prevention/treatment [108–

113]. But several questions remain, 1) is dietary consumption of the foods containing these 

or a supplement with the isolated single compound the better strategy; 2) limited in vitro 
research suggest that bioavailability of these compounds might limit their effectiveness 

before they even research preliminary human trials and 3) will research be better focused 

using these compounds in combination with conventional therapies instead of development 

as standalone therapeutic agents?

Epidemiological data suggests that green tea consumption can reduce CRC despite 

conflicting evidence that circulating serum levels of the tea constituents is much lower than 

those reported in the in vitro studies and concentrations of active agents may be magnitudes 

less in serum compared with cell line studies [114–124]. Several options are currently under 

exploration. Co-administration with other polyphenols to enhance cellular absorption [125–

127]. Piperine has been shown to enhance the anticancer effects of curcumin, cocoa 

flavanols enhance quercetin uptake by Caco-2 cells, and nanoparticle encapsulation has been 

shown to increase absorbed Np levels [125–127]. This enhancement is not without concern. 

When EGCG and genistein are given to mice, EGCG concentration were increased 50%, 

however, when the EGCG was placed in the drinking water during the co-administration 

with genistein (contained in the diet), an increase in tumerogeneis occurred [128]. This type 
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of research using combinations, delivery methods, and in vitro models highlights just how 

many unanswered questions remain.

Conclusion

All these issues aside, the use of NP as preventive or therapeutic agents still has a promising 

future in cancer chemotherapy. Lifestyle changes are one of the most readily adaptable 

factors one can implement to improve health. Dietary changes to increase bioactive dietary 

compounds can be a defense against chronic diseases, such as cancer. These compounds 

have the ability to alter numerous pro-cancer pathways to either slow down or halt tumor 

progression. Given the high cost and high toxic side effects of conventional therapies, the 

addition of NP into the treatment regime could have multiple benefits from cost reduction to 

enhanced efficacy of drugs and/or lower treatment dose. The ability to deliver these 

compounds in countless ways, their relatively safe side effects, and co-treatment flexibility 

with current standard therapies gives reason to continue exploration with these relevant NPs 

as therapeutics in future management strategies.
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Table 1

Natural Product and Aerodigestive Cancer Targets

Natural Product Colo/Rectal Gastric Pancreas Oral

Silymarin ↓ NFkB

Quercetin ↓ APC/min+ tumors, STAT3 ↓ Xenograft tumors, ↓ 
ErbB2/B3

Silibinin ↓ cell migration ↓ ERK phosphorylation ↓ cell migration

Curcumin ↓ NFkB, ↓ COX2

Gingerol ↓ NFkB, ↓ MAPK ↓ ERK phosphorylation

Nimbolide/Neem ↓ ERK1/2 phosphorylation ↓ NFkB

Resveratrol ↓ NFkB ↓ MAPK phosphorylation

EGCG ↓ DNMT3a, HDAC1, HDAC3 ↓ Snail 1

Genistein ↓ HDAC1
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