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Abstract

We review and formulate results concerning log-concavity and strong-log-concavity in both 

discrete and continuous settings. We show how preservation of log-concavity and strongly log-

concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron 

(1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb 

inequality due to Otto and Menz (2013). Along the way we review connections between log-

concavity and other areas of mathematics and statistics, including concentration of measure, log-

Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine 

learning.
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1. Introduction: log-concavity

Log-concave distributions and various properties related to log-concavity play an 

increasingly important role in probability, statistics, optimization theory, econometrics and 

other areas of applied mathematics. In view of these developments, the basic properties and 

facts concerning log-concavity deserve to be more widely known in both the probability and 

statistics communities. Our goal in this survey is to review and summarize the basic 

preservation properties which make the classes of log-concave densities, measures, and 

functions so important and useful. In particular we review preservation of log-concavity and 

“strong log-concavity” (to be defined carefully in section 2) under marginalization, 

convolution, formation of products, and limits in distribution. The corresponding notions for 

discrete distributions (log-concavity and ultra log-concavity) are also reviewed in section 4.
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A second goal is to acquaint our readers with a useful monotonicity theorem for log-concave 

distributions on ℝ due to Efron [1965], and to briefly discuss connections with recent 

progress concerning “asymmetric” Brascamp-Lieb inequalities. Efron's theorem is reviewed 

in Section 6.1, and further applications are given in the rest of Section 6.

There have been several reviews of developments connected to log-concavity in the 

mathematics literature, most notably Das Gupta [1980] and Gardner [2002]. We are not 

aware of any comprehensive review of log-concavity in the statistics literature, although 

there have been some review type papers in econometrics, in particular An [1998] and 

Bagnoli and Bergstrom [2005]. Given the pace of recent advances, it seems that a review 

from a statistical perspective is warranted.

Several books deal with various aspects of log-concavity: the classic books by Marshall and 

Olkin [1979] (see also Marshall, Olkin and Arnold [2011]) and Dharmadhikari and Joag-

Dev [1988] both cover aspects of log-concavity theory, but from the perspective of 

majorization in the first case, and a perspective dominated by unimodality in the second 

case. Neither treats the important notion of strong log-concavity. The recent book by Simon 

[2011] perhaps comes closest to our current perspective with interesting previously 

unpublished material from the papers of Brascamp and Lieb in the 1970's and a proof of the 

Brascamp and Lieb result to the effect that strong log-concavity is preserved by 

marginalization. Unfortunately Simon does not connect with recent terminology and other 

developments in this regard and focuses on convexity theory more broadly. Villani [2003] 

(chapter 6) gives a nice treatment of the Brunn-Minkowski inequality and related results for 

log-concave distributions and densities with interesting connections to optimal transportation 

theory. His chapter 9 also gives a nice treatment of the connections between log-Sobolev 

inequalities and strong log-concavity, albeit with somewhat different terminology. Ledoux 

[2001] is, of course, a prime source for material on log-Sobolev inequalities and strong log 

concavity. The nice book on stochastic programming by Prékopa [1995] has its chapter 4 

devoted to log-concavity and s—concavity, but has no treatment of strong log-concavity or 

inequalities related to log-concavity and strong log-concavity. In this review we will give 

proofs some key results in the body of the review, while proofs of supporting results are 

postponed to Section 11 (Appendix B).

2. Log-concavity and strong log-concavity: definitions and basic results

We begin with some basic definitions of log-concave densities and measures on ℝd.

Definition 2.1. (0-d): A density function p with respect to Lebesgue measure λ on (ℝd, ℬd) 

is log-concave if p = e−φ where φ is a convex function from ℝd to (−∞, ∞]. Equivalently, p 
is log-concave if p = exp(φ̃) where φ̃ = −φ is a concave function from ℝd to [−∞, ∞).

We will usually adopt the convention that p is lower semi-continuous and φ = −log p is 

upper semi-continuous. Thus {x ∈ ℝd : p(x) > t} is open, while {x ∈ ℝd : φ(x) ≤ t} is closed. 

We will also say that a non-negative and integrable function f from ℝd to [0, ∞) is log-

concave if f = e−φ where φ is convex even though f may not be a density; that is ∫ℝd fdλ ∈ 

(0, ∞).
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Many common densities are log-concave; in particular all Gaussian densities

with μ ∈ ℝd and Σ positive definite are log-concave, and

is log-concave for any non-empty, open and bounded convex subset C ⊂ ℝd. With C open, p 
is lower semi-continuous in agreement with our convention noted above; of course taking C 
closed leads to upper semi-continuity of p.

In the case d = 1, log-concave functions and densities are related to several other important 

classes. The following definition goes back to the work of Pólya and Schoenberg.

Definition 2.2. Let p be a function on ℝ (or some subset of ℝ), and let x1 < · · · < xk, y1 < · · 

· < yk. Then p is said to be a Pólya frequency function of order k (or p ∈ PFk) if det(p(xi − 

yj)) ≥ 0 for all such choices of the x's and y's. If p is PFk for every k, then p ∈ PF∞, the class 

of Pólya frequency functions of order ∞.

A connecting link to Pólya frequency functions and to the notion of monotone likelihood 

ratios, which is of some importance in statistics, is given by the following proposition:

Proposition 2.3.

a. The class of log-concave functions on ℝ coincides with the class of Pólya 

frequency functions of order 2.

b. A density function p on ℝ is log-concave if and only if the translation family {p(· − 

θ) : θ ∈ ℝ} has monotone likelihood ratio: i.e. for every θ1 < θ2 the ratio p(x − 

θ2)/p(x − θ1) is a monotone nondecreasing function of x.

Proof. See Section 11.

Definition 2.4. (0-m): A probability measure P on (ℝd, ℬd) is log-concave if for all non-

empty sets A, B ∈ ℬd and for all 0 < θ < 1 we have

It is well-known that log-concave measures have sub-exponential tails, see Borell [1983] and 

Section 5.1 below. To accommodate densities having tails heavier than exponential, the 

classes of s—concave densities and measures are of interest.

Definition 2.5. (s-d): A density function p with respect to Lebesgue measure λ on an convex 

set C ⊂ ℝd is s—concave if
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where the generalized mean Ms(u, v; θ) is defined for u, v ≥ 0 by

Definition 2.6. (s-m): A probability measure P on (ℝd, ℬd) is s —concave if for all non-

empty sets A, B in ℬd and for all θ ∈ (0, 1),

where Ms(u, v; θ) is as defined above.

These classes of measures and densities were studied by Prékopa [1973] in the case s = 0 

and for all s ∈ ℝ by Brascamp and Lieb [1976], Borell [1975], Borell [1974], and Rinott 

[1976]. The main results concerning these classes are nicely summarized by Dharmadhikari 

and Joag-Dev [1988]; see especially sections 2.3-2.8 (pages 46-66) and section 3.3 (pages 

84-99). In particular we will review some of the key results for these classes in the next 

section. For bounds on densities of s—concave distributions on ℝ see Doss and Wellner 

[2013]; for probability tail bounds for s—concave measures on ℝd, see Bobkov and Ledoux 

[2009]. For moment bounds and concentration inequalities for s—concave distributions with 

s < 0 see Adamczak et al. [2012] and Guédon [2012], section 3.

A key theorem connecting probability measures to densities is as follows:

Theorem 2.7. Suppose that P is a probability measure on (ℝd, ℬd) such that the affine hull 

of supp(P) has dimension d. Then P is a log-concave measure if and only if it has a log-

concave density function p on ℝd; that is p = eφ with φ concave satisfies

For the correspondence between s—concave measures and t—concave densities, see Borell 

[1975], Brascamp and Lieb [1976] section 3, Rinott [1976], and Dharmadhikari and Joag-

Dev [1988].

One of our main goals here is to review and summarize what is known concerning the 

(smaller) classes of (what we call) strongly log-concave densities. This terminology is not 

completely standard. Other terms used for the same or essentially the same notion include:
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• Log-concave perturbation of Gaussian; Villani [2003], Caffarelli [2000]. pages 

290-291.

• Gaussian weighted log-concave; Brascamp and Lieb [1976] pages 379, 381.

• Uniformly convex potential: Bobkov and Ledoux [2000], abstract and page 1034, 

Gozlan and Léonard [2010], Section 7.

• Strongly convex potential: Caffarelli [2000].

In the case of real-valued discrete variables the comparable notion is called ultra log-
concavity; see e.g. Liggett [1997], Johnson, Kontoyiannis and Madiman [2013], and 

Johnson [2007]. We will re-visit the notion of ultra log-concavity in Section 4.

Our choice of terminology is motivated in part by the following definition from convexity 

theory: following Rockafellar and Wets [1998], page 565, we say that a proper convex 

function h : ℝd → ℝ̄ is strongly convex if there exists a positive number c such that

for all x, y∈ ℝd and θ ∈ (0, 1). It is easily seen that this is equivalent to convexity of h(x) 

− (1/2)c‖x‖2 (see Rockafellar and Wets [1998], Exercise12.59, page 565).

Thus our first definition of strong log-concavity of a density function p on ℝd is as follows:

Definition 2.8. For any σ2 > 0 define the class of strongly log-concave densities with 

variance parameter σ2, or SLC1(σ2, d) to be the collection of density functions p of the form

for some log-concave function g where, for a positive definite matrix Σ and μ ∈ ℝd, ϕΣ(· − 

μ) denotes the Nd(μ, Σ) density given by

(2.1)

If a random vector X has a density p of this form, then we also say that X is strongly log-

concave.

Note that this agrees with the definition of strong convexity given above since,

so that
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is convex; i.e. − log p(x) is strongly convex with c = 1/σ2. Notice however that if p ∈ 

SLC1(σ2, d) then larger values of σ2 corresp to smaller values of c = 1/σ2, and hence p 
becomes less strongly log-concave as σ2 increases. Thus in our definition of strong log-

concavity the coefficient σ2 measures the “flatness” of the convex potential

It will be useful to relax this definition in two directions: by allowing the Gaussian 

distribution to have a non-singular covariance matrix Σ other than the identity matrix and 

perhaps a non-zero mean vector μ. Thus our second definition is as follows.

Definition 2.9. Let Σ be a d × d positive definite matrix and let μ ∈ ℝd . We say that a 

random vector X and its density function p are strongly log-concave and write p ∈ SLC2(μ, 

Σ, d) if

for some log-concave function g where ϕΣ(· − μ) denotes the Nd(μ, Σ) density given by (2.1).

Note that SLC2(0, σ2I, d) = SLC1(σ2, d) as in Definition 2.8. Furthermore, if p ∈ SLC2(μ, Σ, 

d) with Σ non-singular, then we can write

where Σ−1 − I/σ2 is positive definite if 1/σ2 is smaller than the smallest eigenvalue of Σ−1. In 

this case, h is log-concave, so p ∈ SLC1(σ2, d).

Example 2.10. (Gaussian densities) If X ∼ p where p is the Nd(0, Σ) density with Σ positive 

definite, then X (and p) is strongly log-concave SLC2(0, Σ, d) and hence also log-concave. 
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In particular for d = 1, if X ∼ p where p is the N1(0, σ2) density, then X (and p) is SLC1(σ2, 

1) = SLC2(0, σ2, 1) and hence is also log-concave. Note that  is 

constant in this latter case.

Example 2.11. (Logistic density) If X ∼ p where p(x) = e−x/(1 + e−x)2 = (1/4)/(cosh(x/2))2, 

then X (and p) is log-concave and even strictly log-concave since 

 for all x ∈ ℝ, but X is not strongly log-concave.

Example 2.12. (Bridge densities) If X ∼ pθ where, for θ ∈ (0, 1),

then X (and pθ) is log-concave for θ ∈ (0, 1/2], but fails to be log-concave for θ ∈ (1/2, 1). 

For θ ∈ (1/2, 1),  is bounded below, by some negative value depending 

on θ, and hence these densities are semi-log-concave in the terminology of Cattiaux and 

Guillin [2013] who introduce this further generalization of log-concave densities by 

allowing the constant in the definition of a class of strongly log-concave densities to be 

negative as well as positive. This particular family of densities on ℝ was introduced in the 

context of binary mixed effects models by Wang and Louis [2003].

Example 2.13. (Subbotin density) If X ∼ pr where pr(x) = Cr exp(−|x|r/r) for x ∈ ℝ and r > 0 

where Cr = 1/[2Γ(1/r)r1/r−1], then X (and pr) is log-concave for all r ≥ 1. Note that this 

family includes the Laplace (or double exponential) density for r = 1 and the Gaussian (or 

standard normal) density for r = 2. The only member of this family that is strongly log-

concave is p2, the standard Gaussian density, since (−log p)″(x) = (r − 1)|x|r−2 for x ≠ 0.

Example 2.14. (Supremum of Brownian bridge) If is a standard Brownian bridge process 

on [0, 1], Then P(sup0≤t≤1 t) > x) = exp(−2x2) for x > 0, so the density is f(x) = 4x 
exp(−2x2)1(0, ∞)(x), which is strongly log concave since (−log f)″((x) = 4 + x−2 ≥ 4. This is 

a special case of the Weibull densities fβ(x) = βxβ−1 exp(−xβ) which are log-concave if β ≥ 1 

and strongly log-concave for β ≥ 2. For more about suprema of Gaussian processes, see 

Section 9.3 below.

For further interesting examples, see Dharmadhikari and Joag-Dev [1988] and Prékopa 

[1995].

There exist a priori many ways to strengthen the property of log-concavity An very 

interesting notion is for instance the log-concavity of order p. This is a one-dimensional 

notion, and even if it can be easily stated for one-dimensional measures on ℝd, see Bobkov 

and Madiman [2011] Section 4, we state it in its classical way on ℝ.

Definition 2.15. A random variable ξ > 0 is said to have a log-concave distribution of order 

p ≥ 1, if it has a density of the form f(x) = xp−1g(x), x > 0, where the function g is log-

concave on (0, ∞).
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Notice that the notion of log-concavity of order 1 coincides with the notion of log-concavity 

for positive random variables. Furthermore, it is easily seen that log-concave variables of 

order p > 1 are more concentrated than log-concave variables. Indeed, with the notations of 

Definition 2.15 and setting moreover f = exp (−φf) and g = exp (−φg), assuming that f is 2 

we get,

As a matter of fact, the exponent p strengthens the Hessian of the potential of g, which is 

already a log-concave density. Here are some example of log-concave variables of order p.

Example 2.16. The Gamma distribution with α ≥ 1 degrees of freedom, which has the 

density f(x) = Γ (α)−1 xα−1 e−x 1(0, ∞)(x) is log-concave of order α.

Example 2.17. The Beta distribution Bα, β with parameters α ≥ 1 and β ≥ 1 is log-concave of 

order α. We recall that its density g is given by g(x) = B (α, β)−1 xα−1 (1 − x)β−1 1(0, 1)(x).

Example 2.18. The Weibull density of parameter β ≥ 1, given by hβ(x) = βxβ−1 exp (−xβ) 

1(0, ∞)(x) is log-concave of order β.

It is worth noticing that when X is a log-concave vector in ℝd with spherically invariant 

distribution, then the Euclidian norm of X, denoted ‖X‖, follows a log-concave distribution 

of order d−1 (this is easily seen by transforming to polar coordinates; see Bobkov [2003] for 

instance). The notion of log-concavity of order p is also of interest when dealing with 

problems in greater dimension. Indeed, a general way to reduce a problem defined by d -

dimensional integrals to a problem involving one-dimensional integrals is given by the 

“localization lemma” of Lovász and Simonovits [1993]; see also Kannan, Lovász and 

Simonovits [1997]. We will not further review this notion and we refer to Bobkov [2003], 

Bobkov [2010] and Bobkov and Madiman [2011] for nice results related in particular to 

concentration of log-concave variables of order p.

The following sets of equivalences for log-concavity and strong log-concavity will be useful 

and important. To state these equivalences we need the following definitions from Simon 

[2011], page 199. First, a subset A of ℝd is balanced (Simon [2011]) or centrally symmetric 
(Dharmadhikari and Joag-Dev [1988]) if x ∈ A implies −x ∈ A.

Definition 2.19. A nonnegative function f on ℝd is convexly layered if {x : f(x) > α} is a 

balanced convex set for all α > 0. It is called even, radial monotone if (i) f(−x) = f(x) and (ii) 

f(rx) ≥ f(x) for all 0 ≤ r ≤ 1 and all x ∈ ℝd.

Proposition 2.20. (Equivalences for log-concavity). Let p = e−φ be a density function with 

respect to Lebesgue measure λ on ℝd; that is, p ≥ 0 and ∫ℝd pdλ = 1. Suppose that φ ∈ C2. 

Then the following are equivalent:

a. φ = − log p is convex; i.e. p is log-concave.

Saumard and Wellner Page 8

Stat Surv. Author manuscript; available in PMC 2016 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b. ∇φ = −∇p/p : ℝd → ℝd is monotone:

c. ∇2φ = ∇2(φ) ≥ 0.

d. Ja(x; p) = p(a + x)p(a − x) is convexly layered for each a ∈ ℝd.

e. Ja(x;p) is even and radially monotone.

f. p is mid-point log-concave: for all x1, x2 ∈ ℝd,

The equivalence of (a), (d), (e), and (f) is proved by Simon [2011], page 199, without 

assuming that p ∈ C2. The equivalence of (a), (b), and (c) under the assumption φ ∈ C2 is 

classical and well-known. This set of equivalences generalizes naturally to handle φ ∉ C2, 

but φ proper and upper semicontinuous so that p is lower semicontinuous; see Section 5.2 

below for the adequate tools of convex regularization.

In dimension 1, Bobkov [1996] proved the following further characterizations of log-

concavity on ℝ.

Proposition 2.21 (Bobkov [1996]). Let μ be a nonatomic probability measure with 

distribution function F = μ ((−∞, x]), x ∈ ℝ. Set a = inf {x ∈ ℝ : F (x) > 0} and b = sup {x 
∈ ℝ : F (x) < 1}. Assume that F strictly increases on (a, b), and let F−1 : (0, 1) → (a, b) 

denote the inverse of F restricted to (a, b). Then the following properties are equivalent:

a. μ is log-concave;

b. for all h > 0, the function Rh (p) = F (F−1 (p) + h) is concave on (a, b);

c. μ has a continuous, positive density f on (a, b) and, moreover, the function I (p) = f 
(F−1 (p)) is concave on (0, 1).

Properties (b) and (c) of Proposition 2.21 were first used in Bobkov [1996] along the proofs 

of his description of the extremal properties of half-planes for the isoperimetric problem for 

log-concave product measures on ℝd. In Bobkov and Madiman [2011] the concavity of the 

function I (p) = f (F−1 (p)) defined in point (c) of Proposition 2.21, plays a role in the proof 

of concentration and moment inequalities for the following information quantity: − log f(X) 

where X is a random vector with log-concave density f. Recently, Bobkov and Ledoux 

[2014] used the concavity of I to prove upper and lower bounds on the variance of the order 

statistics associated to an i.i.d. sample drawn from a log-concave measure on ℝ. The latter 

results allow then the authors to prove refined bounds on some Kantorovich transport 

distances between the empirical measure associated to the i.i.d. sample and the log-concave 

measure on ℝ. For more facts about the function I for general measures on ℝ and in 

particular, its relationship to isoperimetric profiles, see Appendix A. 4-6 of Bobkov and 

Ledoux [2014].
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Example 2.22. If μ is the standard Gaussian measure on the real line, then I is symmetric 

around 1/2 and there exist constants 0 < c0 ≤ c1 < ∞ such that

for t ∈ (0, 1/2] (see Bobkov and Ledoux [2014] p.73).

We turn now to similar characterizations of strong log-concavity.

Proposition 2.23. (Equivalences for strong log-concavity, SLC1). Let p = e−φ be a density 

function with respect to Lebesgue measure λ on ℝd; that is, p ≥ 0 and ∫ℝd pdλ = 1. Suppose 

that φ ∈ C2. Then the following are equivalent:

a. p is strongly log-concave; p ∈ SLC1(σ2, d).

b. ρ(x) = ∇φ(x) − x/σ2 : ℝd → ℝd is monotone:

c. ∇ρ(x) = ∇2φ — I/σ2 ≥ 0.

d. For each a ∈ ℝd the function

is convexly layered.

e. The function  in (d) is even and radially monotone for all a ∈ ℝd.

f. For all x, y ∈ ℝd,

Proof. See Section 11.

We investigate the extension of Proposition 2.21 concerning log-concavity on R, to the case 

of strong log-concavity. (The following result is apparently new.) Recall that a function h is 

strongly concave on (a, b) with parameter c > 0 (or c-strongly concave), if for any x, y ∈ (a, 

b), any θ ∈ (0, 1),
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Proposition 2.24. Let μ be a nonatomic probability measure with distribution function F = μ 
((−∞, x]), x ∈ ℝ. Set a = inf {x ∈ ℝ : F (x) > 0} and b = sup{x ∈ ℝ : F (x) < 1}, possibly 

infinite. Assume that F strictly increases on (a, b), and let F−1 : (0,1) → (a, b) denote the 

inverse of F restricted to (a, b). Suppose that X is a random variable with distribution μ. 

Then the following properties hold:

i. If X ∈ SLC1 (c, 1), c > 0, then I (p) = f (F−1 (p)) is (c‖f‖∞)−1 -strongly concave and 

-strongly concave on (0, 1).

ii. The converse of point (i) is false: there exists a log-concave variable X which is not 

strongly concave (for any parameter c > 0) such that the associated I function is 

strongly log-concave on (0, 1).

iii. There exist a strongly log-concave random variable X ∈ SLC (c, 1) and h0 > 0 such 

that the function Rh0 (p) = F (F−1 (p) + h0) is concave but not strongly concave on 

(a, b).

iv. There exists a log-concave random variable X which is not strongly log-concave 

(for any positive parameter), such that for all h > 0, the function Rh0 (p) = F (F−1 

(p) + h) is strongly concave on (a, b).

From (i) and (ii) in Proposition 2.24, we see that the strong concavity of the function I is a 

necessary but not sufficient condition for the strong log-concavity of X. Points (iii) and (iv) 

state that no relations exist in general between the strong log-concavity of X and strong 

concavity of its associated function Rh.

Proof. See Section 11.

The following proposition gives a similar set of equivalences for our second definition of 

strong log-concavity, Definition 2.9.

Proposition 2.25. (Equivalences for strong log-concavity, SLC2). Let p = e−φ be a density 

function with respect to Lebesgue measure λ on ℝd; that is, p ≥ 0 and ∫ℝd pdλ = 1. Suppose 

that φ ∈ C2. Then the following are equivalent:

a. p is strongly log-concave; p ∈ SLC2(μ, Σ, d) with Σ > 0, μ ∈ ℝd.

b. ρ(x) = ∇φ(x) − Σ−1(x − μ) : ℝd → ℝd is monotone:

c. ∇ρ(x) = ∇2φ − Σ−1 ≥ 0.

d. For each a ∈ ℝd, the function
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is convexly layered. (e) For each a ∈ ℝd the function  in (d) is even and 

radially monotone.

e. For all x, y ∈ ℝd,

Proof. To prove Proposition 2.25 it suffices to note the log-concavity of g(x) = p(x)/ϕΣ/2 (x) 

and to apply Proposition 2.20 (which holds as well for log-concave functions). The claims 

then follow by straightforward calculations; see Section 11 for more details.

3. Log-concavity and strong log-concavity: preservation theorems

Both log-concavity and strong log-concavity are preserved by a number of operations. Our 

purpose in this section is to review these preservation results and the methods used to prove 

such results, with primary emphasis on: (a) affine transformations, (b) marginalization, (c) 

convolution. The main tools used in the proofs will be: (i) the Brunn-Minkowski inequality; 

(ii) the Brascamp-Lieb Poincaré type inequality; (iii) Prékopa's theorem; (iv) Efron's 

monotonicity theorem.

3.1. Preservation of log-concavity

3.1.1. Preservation by affine transformations—Suppose that X has a log-concave 

distribution P on (ℝd, ℬd), and let A be a non-zero real matrix of order m × d. Then consider 

the distribution Q of Y = AX on ℝm.

Proposition 3.1. (log-concavity is preserved by affine transformations). The probability 

measure Q on ℝm defined by Q(B) = P(AX ∈ B) for B ∈ ℬm is a log-concave probability 

measure. If P is non-degenerate log-concave on ℝd with density p and m = d with A of rank 

d, then Q is non-degenerate with log-concave density q.

Proof. See Dharmadhikari and Joag-Dev [1988], Lemma 2.1, page 47.

3.1.2. Preservation by products—Now let P1 and P2 be log-concave probability 

measures on (ℝd1, ℬd1) and (ℝd2, ℬd2) respectively. Then we have the following 

preservation result for the product measure P1 × P2 on (ℝd1 × ℝd2, ℬd1 × ℬd2):

Proposition 3.2. (log-concavity is preserved by products) If P1 and P2 are log-concave 

probability measures then the product measure P1 × P2 is a log-concave probability measure.

Proof. See Dharmadhikari and Joag-Dev [1988], Theorem 2.7, page 50. A key fact used in 

this proof is that if a probability measure P on (ℝd, ℬd) assigns zero mass to every 

hyperplane in ℝd, then log-concavity of P holds if and only if P(θA + (1 − θ)B) ≥ P(A)θ 

P(B)1−θ for all rectangles A, B with sides parallel to the coordinate axes; see Dharmadhikari 

and Joag-Dev [1988], Theorem 2.6, page 49.
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3.1.3. Preservation by marginalization—Now suppose that p is a log-concave density 

on ℝm+n and consider the marginal density q(y) = ∫ℝm p(x, y)dx. The following result due to 

Prékopa [1973] concerning preservation of log-concavity was given a simple proof by 

Brascamp and Lieb [1976] (Corollary 3.5, page 374). In fact they also proved the whole 

family of such results for s—concave densities.

Theorem 3.3. (log-concavity is preserved by marginalization; Prékopa's theorem). Suppose 

that p is log-concave on ℝm+n and let q(y) = ∫ℝm p(x, y)dx. Then q is log-concave.

This theorem is a center piece of the entire theory. It was proved independently by a number 

of mathematicians at about the same time: these include Prékopa [1973], building on 

Dinghas [1957], Prékopa [1971], Brascamp and Lieb [1974], Brascamp and Lieb [1975], 

Brascamp and Lieb [1976], Borell [1975], Borell [1974], and Rinott [1976]. Simon [2011], 

page 310, gives a brief discussion of the history, including an unpublished proof of Theorem 

3.3 given in Brascamp and Lieb [1974]. Many of the proofs (including the proofs in 

Brascamp and Lieb [1975], Borell [1975], and Rinott [1976]) are based fundamentally on 

the Brunn-Minkowski inequality; see Das Gupta [1980], Gardner [2002], and Maurey [2005] 

for useful surveys.

We give two proofs here. The first proof is a transportation argument from Ball, Barthe and 

Naor [2003]; the second is a proof from Brascamp and Lieb [1974] which has recently 

appeared in Simon [2011].

Proof. (Via transportation). We can reduce to the case n = 1 since it suffices to show that the 

restriction of q to a line is log-concave. Next note that an inductive argument shows that the 

claimed log-concavity holds for m + 1 if it holds for m, and hence it suffices to prove the 

claim for m = n = 1.

Since log-concavity is equivalent to mid-point log concavity (by the equivalence of (a) and 

(e) in Proposition 2.20), we only need to show that

(3.2)

for all u, v ∈ ℝ. Now define

Then (3.2) can be rewritten as

From log-concavity of p we know that
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(3.3)

By homogeneity we can arrange f, g, and h so that ∫f(x)dx = ∫g(x)dx = 1; if not, replace f 
and g with f̃ and g̃ defined by f̃(x) = f(x)/∫f(x′)dx′ = f(x)/q(u) and g̃(x) = g(x)/∫g(x′)dx' = 

g(x)/q(v).

Now for the transportation part of the argument: let Z be a real-valued random variable with 

distribution function K having smooth density k. Then define maps S and T by K(z) = 

F(S(z)) and K(z) = G(T(z)) where F and G are the distribution functions corresponding to f 
and g. Then

where S′, T′ ≥ 0 since the same is true for k, f, and g, and it follows that

by the inequality (3.3) in the first inequality and by the arithmetic - geometric mean 

inequality in the second inequality.

Proof. (Via symmetrization). By the same induction argument as in the first proof we can 

suppose that m = 1. By an approximation argument we may assume, without loss of 

generality that p has compact support and is bounded.

Now let a ∈ ℝn and note that

where, for (u, a) fixed, the integrand is convexly layered by Proposition 2.20 (d). Thus by the 

following Lemma 3.4, the integral over v is an even lower semi-continuous function of y for 

each fixed u, a. Since this class of functions is closed under integration over an indexing 

parameter (such as u), the integration over u also yields an even radially monotone function, 

and by Fatou's lemma Ja(y; g) is also lower semicontinuous. It then follows from Proposition 

2.20 again that g is log-concave.

Lemma 3.4. Let f be a lower semicontinuous convexly layered function on ℝn+1 written as 

f(x, t), x ∈ ℝn, t ∈ ℝ. Suppose that f is bounded and has compact support. Let
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Then g is an even, radially monotone, lower semicontinuous function.

Proof. First note that sums and integrals of even radially monotone functions are again even 

and radially monotone. By the wedding cake representation

it suffices to prove the result when f is the indicator function of an open balanced convex set 

K. Thus we define

Thus K(x) = (c(x), d(x)), an open interval in ℝ and we see that

But convexity of K implies that c(x) is convex and d(x) is concave,and hence g(x) is 

concave. Since K is balanced, it follows that c(−x) = −d(x), or d(−x) = −c(x), so g is even. 

Since an even concave function is even radially monotone, and lower semicontinuity of g 
holds by Fatou's lemma, the conclusion follows.

3.1.4. Preservation under convolution—Suppose that X, Y are independent with log-

concave distributions P and Q on (ℝd, ℬd), and let R denote the distribution of X+Y. The 

following result asserts that R is log-concave as a measure on ℝd.

Proposition 3.5. (log-concavity is preserved by convolution). Let P and Q be two log-

concave distributions on (ℝd, ℬd) and let R be the convolution defined by R(B) = ∫ℝd P(B − 

y)dQ(y) for B ∈ ℬd. Then R is log-concave.

Proof. It suffices to prove the proposition when P and Q are absolutely continuous with 

densities p and q on ℝd. Now h(x, y) = p(x − y)q(y) is log-concave on ℝ2d, and hence by 

Proposition 3.3 it follows that

is log-concave.

Proposition 3.5 was proved when d = 1 by Schoenberg [1951] who used the PF2 terminology 

of Pólya frequency functions. In fact all the Pólya frequency classes PFk, k ≥ 2, are closed 
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under convolution as shown by Karlin [1968]; see Marshall, Olkin and Arnold [2011], 

Lemma A.4 (page 758) and Proposition B.1, page 763. The first proof of Proposition 3.5 

when d ≥ 2 is apparently due to Davidovič, Korenbljum and Hacet [1969]. While the proof 

given above using Prékopa's theorem is simple and quite basic, there are at least two other 

proofs according as to whether we use:

a. the equivalence between log-concavity and monotonicity of the scores of f, or

b. the equivalence between log-concavity and non-negativity of the matrix of second 

derivatives (or Hessian) of − log f, assuming that the second derivatives exist.

The proof in (a) relies on Efron's inequality when d = 1, and was noted by Wellner [2013] in 

parallel to the corresponding proof of ultra log-concavity in the discrete case given by 

Johnson [2007]; see Theorem 4.1. We will return to this in Section 6. For d > 1 this approach 

breaks down because Efron's theorem does not extend to the multivariate setting without 

further hypotheses. Possible generalizations of Efron's theorem will be discussed in Section 

7. The proof in (b) relies on a Poincaré type inequality of Brascamp and Lieb [1976]. These 

three different methods are of some interest since they all have analogues in the case of 

proving that strong log-concavity is preserved under convolution.

It is also worth noting the following difference between the situation in one dimension and 

the result for preservation of convolution in higher dimensions: as we note following 

Theorems 29 and 33, Ibragimov [1956a] and Keilson and Gerber [1971] showed that in the 

one-dimensional continuous and discrete settings respectively that if p⋆q is unimodal for 

every unimodal q, then p is log-concave. The analogue of this for d > 1 is more complicated 

in part because of the great variety of possible definitions of “unimodal” in this case; see 

Dharmadhikari and Joag-Dev [1988] chapters 2 and 3 for a thorough discussion. In 

particular Sherman [1955] provided the following counterexample when the notion of 

unimodality is taken to be centrally symmetric convex unimodality; that is, the sets Sc(p) = 

{x ∈ ℝd : p(x) ≥ c} are symmetric and convex for each c ≥ 0. Let p be the uniform density 

on [−1, 1]2 (so that p(x) = (1/4)1[−1, 1]2(x)); then p is log-concave. Let q be the density given 

by 1/12 on [−1, 1]2 and 1/24 on ([−1, 1] × (1, 5]) ⋃ ([−1, 1] × [−5, −1)). Thus q is centrally 

symmetric convex (and hence also quasi-concave, q ∈ −∞ as in Definition 2.5. But h = p ⋆ 

q is not centrally symmetric convex (and also is not quasi-concave), since the sets Sc(h) are 

not convex: see Figure 1.

3.1.5. Preservation by (weak) limits—Now we consider preservation of log-concavity 

under convergence in distribution.

Proposition 3.6. (log-concavity is preserved under convergence in distribution). Suppose 

that {Pn} is a sequence of log-concave probability measures on ℝd, and suppose that Pn → 

P0. Then P0 is a log-concave probability measure.

Proof. See Dharmadhikari and Joag-Dev [1988], Theorem 2.10, page 53.

Note that the limit measure in Proposition 3.6 might be concentrated on a proper subspace of 

ℝd. If we have a sequence of log-concave densities pn which converge pointwise to a density 

function p0, then by Scheffe's theorem we have pn → p0 in L1(λ) and hence dTV(Pn, P0) → 
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0. Since convergence in total variation implies convergence in distribution we conclude that 

P0 is a log-concave measure where the affine hull of supp(P0) has dimension d and hence P0 

is the measure corresponding to p0 which is necessarily log-concave by Theorem 2.7.

Recall that the class of normal distributions on ℝd is closed under all the operations 

discussed above: affine transformation, formation of products, marginalization, convolution, 

and weak limits. Since the larger class of log-concave distributions on ℝd is also preserved 

under these operations, the preservation results of this section suggest that the class of log-

concave distributions is a very natural nonparametric class which can be viewed naturally as 

an enlargement of the class of all normal distributions. This has stimulated much recent 

work on nonparametric estimation for the class of log-concave distributions on ℝ and ℝd: 

for example, see Dümbgen and Rufibach [2009], Cule and Samworth [2010], Cule, 

Samworth and Stewart [2010], Walther [2009], Balabdaoui, Rufibach and Wellner [2009], 

and Henningsson and Astrom [2006], and see Section 9.13 for further details.

3.2. Preservation of strong log-concavity

Here is a theorem summarizing several preservation results for strong log-concavity Parts 

(a), (b), and (d) were obtained by Henningsson and Astrom [2006].

Theorem 3.7. (Preservation of strong log-concavity)

a. (Linear transformations) Suppose that X has density p ∈ SLC2(0, Σ, d) and let A be 

a d × d nonsingular matrix. Then Y = AX has density q ∈ SLC2 (0, AΣAT, d) given 

by q(y) = p(A−1 y) det(A−1).

b. (Convolution) If Z = X +Y where X ∼ p ∈ SLC2(0, Σ, d) and Y ∼ q ∈ SLC2 (0, Γ, 

d) are independent, then Z = X+Y∼p⋆q ∈ SLC2 (0, Σ + Γ, d).

c. (c) (Product distribution) If X ∼p ∈ SLC2 (0, Σ, m) and Y ∼ q ∈ SLC2 (0, Γ, n), 

then

d. (Product function) If p ∈ SLC2(0, Σ, d) and q ∈ SLC2(0, Γ, d), then h given by h(x) 

= p(x)q(x) (which is typically not a probability density function) satisfies h ∈ 

SLC2(0, (Σ−1 + Γ−1)−1).

Part (b) of Theorem 3.7 is closely related to the following result which builds upon and 

strengthens Prékopa's Theorem 3.3. It is due to Brascamp and Lieb [1976] (Theorem 4.3, 

page 380); see also Simon [2011], Theorem 13.13, page 204.

Theorem 3.8. (Preservation of strong log-concavity under marginalization). Suppose that p 
∈ SLC2(0, Σ, m + n). Then the marginal density q on ℝn given by
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is strongly log-concave: q ∈ SLC2(0, Σ11, m) where

(3.4)

Proof. Since p ∈ SLC2(0, Σ, m + n) we can write

where g is log-concave. Now the Gaussian term in the last display can be written as

where , and hence
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where

is log-concave: g is log-concave, and hence  is log-concave; 

the product  is (jointly) log-concave; and hence h is log-

concave by Prékopa's Theorem 3.3.

Proof. (Theorem 3.7):

a. The density q is given by q(y) = p(A−1y) det(A−1) by a standard computation. Then 

since p ∈ SLC2(0, Σ, d) we can write

where g(A−1y) is log-concave by Proposition 3.1.

b. If p ∈ SLC2(0, Σ, d) and q ∈ SLC2(0, Γ, d), then the function
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is strongly log-concave jointly in x and z: since

where C ≡ (Σ−1 + Γ−1)−1Γ−1, it follows that

is jointly log-concave. Hence it follows that

where g0(z) is log-concave by Prékopa's theorem, Theorem 3.3.

c. This is easy since

where Σ̃ is the given 2d × 2d block diagonal matrix and g is jointly log-concave (by 

Proposition 3.2).

d. Note that

where g0 is log-concave.

4. Log-concavity and ultra-log-concavity for discrete distributions

We now consider log-concavity and ultra-log-concavity in the setting of discrete random 

variables. Some of this material is from Johnson, Kontoyiannis and Madiman [2013] and 

Johnson [2007].

An integer-valued random variable X with probability mass function {px : x ∈ ℤ} is log-
concave if

(4.5)
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If we define the score function φ by φ(x) = px+1/px, then log-concavity of {px} is equivalent 

to φ being decreasing (nonincreasing).

A stronger notion, analogous to strong log-concavity in the case of continuous random 

variables, is that of ultra-log-concavity: for any λ > 0 define ULC(λ) to be the class of 

integer-valued random variables X with mean EX = λ such that the probability mass 

function px satisfies

(4.6)

Then the class of ultra log-concave random variables is ULC = ⋃λ>0ULC(λ). Note that 

(4.6) is equivalent to log-concavity of x → px/πλ, x where πλ, x = e−λλx/x! is the Poisson 

distribution on ℕ, and hence ultra-log-concavity corresponds to p being log-concave relative 
to πλ (or p ≤1c πλ) in the sense defined by Whitt [1985]. Equivalently, px = hxπλ, x where h is 

log-concave. When we want to emphasize that the mass function {px} corresponds to X, we 

also write pX(x) instead of px.

If we define the relative score function ρ by

then X ∼ p ∈ ULC(λ) if and only if ρ is decreasing (nonincreasing). Note that

Our main interest here is the preservation of log-concavity and ultra-log-concavity under 

convolution.

Theorem 4.1. (a) (Keilson and Gerber [1971]) The class of log-concave distributions on ℤ is 

closed under convolution. If U ∼ p and V ∼ q are independent and p and q are log-concave, 

then U + V ∼ p ⋆ q is log-concave. (b) (Walkup [1976], Liggett [1997]) The class of ultra-

log-concave distributions on ℤ is closed under convolution. More precisely, these classes are 

closed under convolution in the following sense: if U ∈ ULC(λ) and V ∈ ULC(μ) are 

independent, then U + V ∈ ULC(λ + μ).

Actually, Keilson and Gerber [1971] proved more: analogously to Ibragimov [1956a] they 

showed that p is strongly unimodal (i.e. X + Y ∼ p ⋆ q with X, Y independent is unimodal 

for every unimodal q on ℤ) if and only if X ∼ p is log-concave. Liggett's proof of (b) 

proceeds by direct calculation; see also Walkup [1976]. For recent alternative proofs of this 

property of ultra-log-concave distributions, see Gurvits [2009] and Kahn and Neiman 

[2011]. A relatively simple proof is given by Johnson [2007] using results from 

Kontoyiannis, Harremoës and Johnson [2005] and Efron [1965], and that is the proof we 
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will summarize here. See Nayar and Oleszkiewicz [2012] for an application of ultra log-

concavity and Theorem 4.1 to finding optimal constants in Khinchine inequalities.

Before proving Theorem 4.1 we need the following lemma giving the score and the relative 

score of a sum of independent integer-valued random variables.

Lemma 4.2. If X, Y are independent non-negative integer-valued random variables with 

mass functions p = pX and q = pY then:

a. φx+y(z) = E{φX(X)|X + Y = z}.

b. If moreover, X and Y have means μ and ν respectively, then with α = μ/(μ + ν),

Proof. For (a), note that with Fz ≡ pX+Y(z) we have

To prove (b) we follow Kontoyiannis, Harremoës and Johnson [2005], page 471: using the 

same notation as in (a),

Proof. Theorem 4.1: (b) This follows from (b) of Lemma 4.2 and Theorem 1 of Efron 

[1965], upon noting Efron's remark 1, page 278, concerning the discrete case of his theorem: 
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for independent log-concave random variables X and Y and a measurable function Φ 

monotone (decreasing here) in each argument, E{Φ(X, Y)|X + Y = z} is a monotone 

decreasing function of z: note that log-concavity of X and Y implies that

is a monotone decreasing function of x and y (separately) by since the relative scores ρX and 

ρY are decreasing. Thus ρX+Y is a decreasing function of z, and hence X +Y ∈ ULC(μ + ν).

(a) Much as in part (b), this follows from (a) of Lemma 4.2 and Theorem 1 of Efron [1965], 

upon replacing the relative scores ρX and ρY by scores φX and φY and by taking Φ(x, y) = 

φX(x).

For interesting results concerning the entropy of discrete random variables, Bernoulli sums, 

log-concavity, and ultra-log-concavity, see Johnson, Kontoyiannis and Madiman [2013], 

Ehm [1991], and Johnson [2007]. For recent results concerning nonparametric estimation of 

a discrete log-concave distribution, see Balabdaoui et al. [2013] and Balabdaoui [2014]. It 

follows from Ehm [1991] that the hypergeometric distribution (sampling without 

replacement count of “successes”) is equal in distribution to a Bernoulli sum; hence the 

hypergeometric distribution is ultra-log-concave.

5. Regularity and approximations of log-concave functions

5.1. Regularity

The regularity of a log-concave function f = exp (−φ) depends on the regularity of its convex 

potential φ. Consequently, log-concave functions inherit the special regularity properties of 

convex functions.

Any log-concave function is nonnegative. When the function f is a log-concave density (with 

respect to the Lebesgue measure), which means that f integrates to 1, then it is automatically 

bounded. More precisely, it has exponentially decreasing tails and hence, it has finite Ψ1 

Orlicz norms; for example, see Borell [1983] and Ledoux [2001]. The following lemma 

gives a pointwise estimate of the density.

Theorem 5.1 (Cule and Samworth [2010], Lemma 1). Let f be a log-concave density on ℝd. 

Then there exist af = a > 0 and bf = b ∈ ℝ such that f (x) ≤ e−a‖x‖+b for all x ∈ ℝd.

Similarly, strong log-concavity implies a finite Ψ2 Orlicz norm (see Ledoux [2001] Theorem 

2.15, page 36, Villani [2003], Theorem 9.9, page 280), Bobkov [1999], and Bobkov and 

Götze [1999].

For other pointwise bounds on log-concave densities themselves, see Devroye [1984], 

Dümbgen and Rufibach [2009] and Lovász and Vempala [2007].
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As noticed in Cule and Samworth [2010], Theorem 5.1 implies that if a random vector X has 

density f, then the moment generating function of X is finite in an open neighborhood of the 

origin. Bounds can also be obtained for the supremum of a log-concave density as well as 

for its values on some special points in the case where d = 1.

Proposition 5.2. Let X be a log-concave random variable, with density f on ℝ and median 

m. Then

(5.7)

(5.8)

(5.9)

Proposition 5.2 can be found in Bobkov and Ledoux [2014], Proposition B.2. See references 

therein for historical remarks concerning these inequalities. Proposition 5.2 can also be seen 

as providing bounds for the variance of a log-concave variable. See Kim and Samworth 

[2014], section 3.2, for some further results of this type.

Notice that combining (5.7) and (5.8) we obtain the inequality supx∈ℝ f (x) ≤ 2√3 f (m). In 

fact, the concavity of the function I defined in Proposition 2.21 allows to prove the stronger 

inequality supx∈ℝ f (x) < 2f (m). Indeed, with the notations of Proposition 2.21, we have 

I(1/2) = f(m) and for any x ∈ (a, b), there exists t ∈ (0, 1) such that x = F−1 (t). Hence,

A classical result on continuity of convex functions is that any real-valued convex function φ 

defined on an open set U ⊂ ℝd is locally Lipschitz and in particular, φ is continuous on U. 

For more on continuity of convex functions see Section 3.5 of Niculescu and Persson [2006]. 

Of course, any continuity of φ (local or global) corresponds to the same continuity of f.

For an exposé on differentiability of convex functions, see Niculescu and Persson [2006] (in 

particular sections 3.8 and 3.11; see also Alberti and Ambrosio [1999] section 7). A deep 

result of Alexandroff [1939] is the following (we reproduce here Theorem 3.11.2 of 

Niculescu and Persson [2006]).

Theorem 5.3 (Alexandroff [1939]). Every convex function φ on ℝd is twice differentiable 

almost everywhere in the following sense: f is twice differentiable at a, with Alexandrov 

Hessian ∇2f (a) in Sym+ (d, ℝ) (the space of real symmetric d × d matrices), if ∇f (a) exists, 

and if for every ε > 0 there exists δ > 0 such that
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Here ∂f (x) is the subgradient of f at x (see Definition 8.3 in Rockafellar and Wets [1998]). 

Moreover, if a is such a point, then

We immediately see by Theorem 5.3, that since φ is convex and f = exp (−φ), it follows that 

f is almost everywhere twice differentiable. For further results in the direction of 

Alexandrov's theorem see Dudley [1977, 1980].

5.2. Approximations

Again, if one wants to approximate a non-smooth log-concave function f = exp (−φ) by a 

sequence of smooth log-concave functions, then convexity of the potential φ can be used to 

advantage. For an account about approximation of convex functions see Niculescu and 

Persson [2006], section 3.8.

On the one hand, if  the space of locally integrable functions, then the standard 

use of a regularization kernel (i.e. a one-parameter family of functions associated with a 

mollifier) to approximate φ preserves the convexity as soon as the mollifier is nonnegative. 

A classical result is that this gives in particular approximations of φ in Lp spaces, p ≥ 1, as 

soon as φ ∈ Lp (ℝd).

On the other hand, infimal convolution (also called epi-addition, see Rockafellar and Wets 

[1998]) is a nonlinear analogue of mollification that gives a way to approximate a lower 

semicontinuous proper convex function from below (section 3.8, Niculescu and Persson 

[2006]). More precisely, take two proper convex functions f and g from ℝd to ℝ ⋃ {∞}, 

which means that the functions are convex and finite for at least one point. The infimal 

convolution between f and g, possibly taking the value −∞, is

Then, f ⊙ g is a proper convex function as soon as f ⊙ g (x) > −∞ for all x ∈ ℝd. Now, if f is 

a lower semicontinuous proper convex function on ℝd, the Moreau-Yosida approximation fε 

of f is given by
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for any x ∈ ℝd and ε > 0. The following theorem can be found in Alberti and Ambrosio 

[1999] (Proposition 7.13), see also Barbu and Precupanu [1986], Brézis [1973] or Niculescu 

and Persson [2006].

Theorem 5.4. The Moreau-Yosida approximates fε are 1, 1 (i.e. differentiable with 

Lipschitz derivative) convex functions on ℝd and fε → f as ε → 0. Moreover, ∂fε = (εI + 

(∂f)−1)−1 as set-valued maps.

An interesting consequence of Theorem 5.4 is that if two convex and proper lower 

semicontinuous functions agree on their subgradients, then they are equal up to a constant 

(corollary 2.10 in Brézis [1973]).

Approximation by a regularization kernel and Moreau-Yosida approximation have different 

benefits. While a regularization kernel gives the most differentiability the Moreau-Yosida 

approximation provides an approximation of a convex function from below (and so, a log-

concave function from above). It is thus possible to combine these two kinds of 

approximations and obtain the advantages of both. For an example of such a combination in 

the context of a (multivalued) stochastic differential equation and the study of the so-called 

Kolmogorov operator, see Barbu and Da Prato [2008].

When considering a log-concave random vector, the following simple convolution by 

Gaussian vectors gives an approximation by log-concave vectors that have ∞ densities and 

finite Fisher information matrices. In the context of Fisher information, regularization by 

Gaussians was used for instance in Port and Stone [1974] to study the Pitman estimator of a 

location parameter.

Proposition 5.5 (convolution by Gaussians). Let X be a random vector in ℝd with density p 
w.r.t. the Lebesgue measure and Gad -dimensional standard Gaussian variable, independent 

of X. Set Z = X + σG, σ > 0 and pZ = exp(−φZ) the density of Z. Then:

i. If X is log-concave, then Z is also log-concave.

ii. If X is strongly log-concave, Z ∈ SLC1 [τ2, d) then Z is also strongly log-concave; 

Z ∈ SLC1 (τ2 + σ2, d).

iii. Z has a positive density pZ on ℝd. Furthermore, φZ is C∞ on ℝd and

(5.10)

where ρaG (x) = σ−2x is the score of σG.

iv. The Fisher information matrix for location J(Z) = [∇φZ ⊗ ∇φZ (Z)], is finite and 

we have J (Z) ≤ J (σG) = σ−4Id as symmetric matrices.

Proof. See Section 11.

We now give a second approximation tool, that allows to approximate any log-concave 

density by strongly log-concave densities.
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Proposition 5.6. Let f be a log-concave density on ℝd. Then for any c > 0, the density

is SLC1 (c−1, d) and hc → f as c → 0 in Lp, p ∈ [1, ∞]. More precisely, there exists a 

constant Af > 0 depending only on f, such that for any ε > 0,

Proof. See Section 11.

Finally, by combining Proposition 5.6 and 5.5, we obtain the following approximation 

lemma.

Proposition 5.7. For any log-concave density on ℝd, there exists a sequence of strongly log-

concave densities that are ∞, have finite Fisher information matrices and that converge to f 
in Lp (Leb), p ∈ [1, ∞].

Proof. Approximate f by a strongly log-concave density h as in Proposition 5.6. Then 

approximate h by convolving with a Gaussian density. In the two steps the approximations 

can be as tight as desired in Lp, for any p ∈ [1, ∞]. The fact that the convolution with 

Gaussians for a (strongly) log-concave density (that thus belongs to any Lp (Leb), p ∈ [1, 

∞]) gives approximations in Lp, p ∈ [1, ∞] is a simple application of general classical 

theorems about convolution in Lp (see for instance Rudin [1987], p. 148).

6. Efron's theorem and more on preservation of log-concavity and strong 

log-concavity under convolution in 1-dimension

Another way of proving that strong log-concavity is preserved by convolution in the one-

dimensional case is by use of a result of Efron [1965]. This has already been used by 

Johnson, Kontoyiannis and Madiman [2013] and Johnson [2007] to prove preservation of 

ultra log-concavity under convolution (for discrete random variables), and by Wellner [2013] 

to give a proof that strong log-concavity is preserved by convolution in the one-dimensional 

continuous setting. These proofs operate at the level of scores or relative scores and hence 

rely on the equivalences between (a) and (b) in Propositions 2.20 and 2.23. Our goal in this 

section is to re-examine Efron's theorem, briefly revisit the results of Johnson, Kontoyiannis 

and Madiman [2013] and Wellner [2013], give alternative proofs using second derivative 

methods via symmetrization arguments, and to provide a new proof of Efron's theorem using 

some recent results concerning asymmetric Brascamp-Lieb inequalities due to Menz and 

Otto [2013] and Carlen, Cordero-Erausquin and Lieb [2013].
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6.1. Efron's monotonicity theorem

The following monotonicity result is due to Efron [1965].

Theorem 6.1 (Efron). Suppose that Φ : ℝm → ℝ where Φ is coordinatewise non-decreasing 

and let

where X1, …, Xm are independent and log-concave. Then g is non-decreasing.

Remark 6.2. As noted by Efron [1965], Theorem 6.1 continues to hold for integer valued 

random variables which are log-concave in the sense that px = P(X = x) for x ∈ ℤ satisfies 

 for all x ∈ ℤ.

In what follows, we will focus on Efron's theorem for m = 2. As it is shown in Efron [1965], 

the case of a pair of variables (m = 2) indeed implies the general case with m ≥ 2. Let us 

recall the argument behind this fact, which involves preservation of log-concavity under 

convolution. In fact, stability under convolution for log-concave variables is not needed to 

prove Efron's theorem for m = 2 as will be seen from the new proof of Efron's theorem given 

here in Section 6.4, so it is consistent to prove the preservation of log-concavity under 

convolution via Efron's theorem for m = 2.

Proposition 6.3. If Theorem 6.1 is satisfied for m = 2, then it is satisfied for m ≥ 2.

Proof. We proceed as in Efron [1965] by induction on m ≥ 2. Let (X1, …, Xm) be a m–tuple 

of log-concave variables, let  be their sum and set

Then

where . Hence, by the induction hypothesis or functions of two variables, it 

suffices to prove that Λ is coordinatewise non-decreasing. As T is a log-concave variable (by 

preservation of log-concavity by convolution), Λ (t, u) is non-decreasing in t by the 

induction hypothesis for functions of m − 1 variables. Also Λ (t, u) is non-decreasing in u 
since Φ is non-decreasing in its last argument.
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Efron [1965] also gives the following corollaries of Theorem 6.1 above.

Corollary 6.4. Let {Φt(x1, …, xm) : t ∈ T} be a family of measurable functions increasing in 

every argument for each fixed value oft, and increasing in t for each fixed value of x1, x2, …, 

xm. Let X1, …, Xm be independent and log-concave and write . Then

is increasing in both a and b.

Corollary 6.5. Suppose that the hypotheses of Theorem 6.1 hold and that A = {x = (x1, …, 

xm) ∈ ℝm : aj ≤ xj ≤ bj} with −∞ ≤ aj ≤ bj ≤ ∞ is a rectangle in ℝm. Then

is a non-decreasing function of z.

The following section will give applications of Efron's theorem to preservation of log-

concavity and strong log-concavity in the case of real-valued variables.

6.2. First use of Efron's theorem: strong log-concavity is preserved by convolution via 
scores

Theorem 6.6. (log-concavity and strong log-concavity preserved by convolution via scores)

(a) (Ibragimov [1956b]) If X and Y are independent and log-concave with densities p and q 
respectively, then X + Y ∼ p ⋆ q is also log-concave.

(b) If X ∈ SLC1(σ2, 1) and Y ∈ SLC1(τ2, 1) are independent, then X + Y ∈ SLC1(σ2 + τ2, 1)

Actually Ibragimov [1956b] proved more: he showed that p is strongly unimodal (i.e. X + Y 
∼ p ⋆ q with X, Y independent is unimodal for every unimodal q on ℝ) if and only if X is 

log-concave.

Proof. (a) From Proposition 2.20 log-concavity of p and q is equivalent to monotonicity of 

their score functions . and . respectively. 

From the approximation scheme described in Proposition 5.5 above, we can assume that 

both p and q are absolutely continuous. Indeed, Efron's theorem applied to formula (5.10) of 

Proposition 5.5 with m = 2 and Φ(x, y) = ρσG(x), gives that the convolution with a Gaussian 

variable preserves log-concavity Then, from Lemma 3.1 of Johnson and Barron [2004],
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Thus by Efron's theorem with m = 2 and

we see that  is a monotone function of z, and hence by 

Proposition 2.20, (a) if and only if (b), log-concavity of the convolution p ⋆ q = pX+Y holds.

(b) The proof of preservation of strong log-concavity under convolution for p and q strong 

log-concave on ℝ is similar to the proof of (a), but with scores replaced by relative scores, 

but it is interesting to note that a symmetry argument is needed. From Proposition 2.23 

strong log-concavity of p and q is equivalent to monotonicity of their relative score functions 

 and  respectively. Now we take m = 2, λ = 

σ2/(σ2 + τ2), and define

Thus Φ is coordinate-wise monotone and by using Lemma 7.2 with d = 1 we find that

Hence it follows from Efron's theorem that the relative score ρp⋆q of the convolution p ⋆ q, 

is a monotone function of z. By Proposition 2.23(b) it follows that p ⋆ q ∈ SLC1(σ2 + τ2, 1).

6.3. A special case of Efron's theorem via symmetrization

We now consider a particular case of Efron's theorem. Our motivation is as follows: in order 

to prove that strong log-concavity is preserved under convolution, recall that we need to 

show monotonicity in z of

Thus we only need to consider functions Φ of the form

where Ψ and Γ are non-decreasing, and show the monotonicity of
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for functions Φ of this special form. By symmetry between X and Y, this reduces to the 

study of the monotonicity of

We now give a simple proof of this monotonicity in dimension 1.

Proposition 6.7. Let Ψ :ℝ → ℝ be non-decreasing and suppose that X ∼ fX, Y ∼ fY are 

independent and that fX, fY are log-concave. If the function η : ℝ → ℝ given by

is well-defined (Ψ integrable with respect to the conditional law of X + Y), then it is non-

decreasing.

Proof. First notice that by truncating the values of Ψ and using the monotone convergence 

theorem, we assume that Ψ is bounded. Moreover, by Proposition 5.5, we may assume that 

fY is 1 with finite Fisher information, thus justifying the following computations. We write

where

Moreover, with fX = exp(−φX) and fY = exp(−φY),
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where . As fX is bounded (see Section 5.1) and Y has finite Fisher 

information, we deduce that  is finite. Then,

If we show that the latter covariance is negative, the result will follow. Let (X̃, Ỹ) be an 

independent copy of (X, Y). Then

Furthermore, since X ≥ X̃ implies Y ≤ Ỹ under the given condition [X + Y = z, X̃ + Ỹ = z],

This proves Proposition 6.7.

6.4. Alternative proof of Efron's theorem via asymmetric Brascamp-Lieb inequalities

Now our goal is to give a new proof of Efron's Theorem 6.1 in the case m = 2 using results 

related to recent asymmetric Brascamp-Lieb inequalities and covariance formulas due to 

Menz and Otto [2013].

Theorem 6.8 (Efron). Suppose that Φ : ℝ2 → ℝ, such that Φ is coordinatewise non-

decreasing and let
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where X and Y are independent and log-concave. Then g is non-decreasing.

Proof. Notice that by truncating the values of Φ and using the monotone convergence 

theorem, we may assume that Φ is bounded. Moreover, by convolving Φ with a positive 

kernel, we preserve coordinatewise monotonicity of Φ and we may assume that Φ is 1. As 

Φ is taken to be bounded, choosing for instance a Gaussian kernel, it is easily seen that we 

can ensure that ∇Φ is uniformly bounded on ℝ2. Indeed, if

then

which is uniformly bounded in (a, b) whenever Φ is bounded. Notice also that by Lemma 

5.7, it suffices to prove the result for strictly (or strongly) log-concave variables that have 
∞ densities and finite Fisher information. We write

and

with fX = exp(−φX) and fY = exp(−φY) the respective strictly log-concave densities of X and 

Y. We note μX and μY respectively the distributions of X and Y. Since  is L2 (μX) (which 

means that μX has finite Fisher information) and fY is bounded (see Theorem 5.1), we get 

that  is integrable and so N is differentiable 

with gradient given by

By differentiating with respect to z inside the integral defining g we get
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(6.11)

We thus see that the quantity in (6.11) is integrable (with respect to Lebesgue measure) and 

we get

(6.12)

Now, by symmetrization we have

where . We denote η the distribution of X given X + Y = z. The 

measure η has density hz (x) = N−1 (z) fX (x) fY (z – x), y ∈ ℝ. Notice that hz is strictly log-

concave on ℝ and that for all x ∈ ℝ,

Now we are able to use the asymmetric Brascamp and Lieb inequality of Menz and Otto 

[2013] (Lemma 2.11, page 2190, with their δψ ≡ 0 so their ψ = ψc with ψ″ > 0) or Carlen, 

Cordero-Erausquin and Lieb [2013] ((1.2), page 2); see Proposition 10.3 below. This yields
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Using the latter bound in (6.12) then gives the result.

7. Preservation of log-concavity and strong log-concavity under 

convolution in ℝd via Brascamp-Lieb inequalities and towards a proof via 

scores

In Sections 6 and 4, we used Efron's monotonicity theorem 6.1 to give alternative proofs of 

the preservation of log-concavity and strong log-concavity under convolution in the cases of 

continuous or discrete random variables on ℝ or ℤ respectively. In the former case, we also 

used asymmetric Brascamp-Lieb inequalities to give a new proof of Efron's monotonicity 

theorem. In this section we look at preservation of log-concavity and strong log-concavity 

under convolution in ℝd via:

a. the variance inequality due to Brascamp and Lieb [1976];

b. scores and potential (partial) generalizations of Efron's monotonicity theorem to 

ℝd.

While point (a) gives a complete answer (Section 7.1), the aim of point (b) is to give an 

interesting link between preservation of (strong) log-concavity in ℝd and a (guessed) 

monotonicity property in ℝd (Section 7.2). This latter property would be a partial 

generalization of Efron's monotonicity theorem to the multidimensional case and further 

investigations remain to be accomplished in order to prove such a result.

We refer to Section 10 (Appendix A) for further comments about the Brascamp-Lieb 

inequalities and related issues, as well as a recall of various functional inequalities.

7.1. Strong log-concavity is preserved by convolution (again): proof via second derivatives 
and a Brascamp-Lieb inequality

We begin with a different proof of the version of Theorem 3.7(b) corresponding to our first 

definition of strong log-concavity, Definition 2.8, which proceeds via the Brascamp-Lieb 

variance inequality as given in part (a) of Proposition 10.1:

Proposition 7.1. If X ∼ p ∈ SLC1(σ2, d) and Y ∼ q ∈ SLC1(τ2, d) are independent, then Z 
= X+Y ∼ p★q ∈ SLC1(σ2 + τ2, d).

Proof. Now pZ = pX+Y = p ★ q is given by
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(7.13)

Now p = exp(−φp) and q = exp(−φp) where we may assume (by (b) of Proposition 5.5) that 

φp, φq ∈ C2 and that p and q have finite Fisher information. Then, by Proposition 2.23,

As we can interchange differentiation and integration in (7.13) (see for instance the detailed 

arguments for a similar situation in the proof of Proposition 6.7), we find that

Then

Now we apply Brascamp and Lieb [1976] Theorem 4.1 (see Proposition 10.1(a)) with

(7.14)

(7.15)

to obtain

Saumard and Wellner Page 36

Stat Surv. Author manuscript; available in PMC 2016 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7.13)

This in turn yields

(7.16)

By symmetry between X and Y we also have

(7.17)

In proving the inequalities in the last two displays we have in fact reproved Theorem 4.2 of 

Brascamp and Lieb [1976] in our special case given by (7.15). Indeed, Inequality (4.7) of 

Theorem 4.2 in Brascamp and Lieb [1976] applied to our special case is the first of the two 

inequalities displayed above.

Now we combine (7.16) and (7.17). We set

We get from (7.16) and (7.17):

Now

By symmetry
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and we therefore conclude that

Note that the resulting inequality

also gives the right lower bound for convolution of strongly log-concave densities in the 

definition of SLC2(μ, Σ, d), namely

7.2. Strong log-concavity is preserved by convolution (again): towards a proof via scores 
and a multivariate Efron inequality

We saw in the previous sections that Efron's monotonicity theorem allows to prove stability 

under convolution for (strongly) log-concave measures on ℝ. However, the stability holds 

also in ℝd, d > 1. This gives rise to the two following natural questions: does a 

generalization of Efron's theorem in higher dimensions exist? Does it allow recovery 

stability under convolution for log-concave measures in ℝd?

Let us begin with a projection formula for scores in dimension d.

Lemma 7.2. (Projection) Suppose that X and Y are d–dimensional independent random 

vectors with log-concave densities pX and qY respectively on ℝd. Then ∇φX+Y and ρX+Y : 

ℝd → ℝd are given by

for each λ ∈ [0, 1], and, if pX ∈ SLC1(σ2, d) and pY ∈ SLC1(τ2, d), then
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Proof. This can be proved just as in the one-dimensional case, much as in Brown [1982], but 

proceeding coordinate by coordinate.

Since we know from Propositions 2.20 and 2.23 that the scores ∇φX and ∇φY and the 

relative scores ρX and ρY are multivariate monotone, the projection Lemma 7.2 suggests that 

proofs of preservation of multivariate log-concavity and strong log-concavity might be 

possible via a multivariate generalization of Efron's monotonicity Theorem 6.1 to d ≥ 2 

along the following lines: Suppose that Φ : (ℝd)n → ℝd is coordinatewise multivariate 

monotone: for each fixed j ∈ {1,…, n} the function Φj : ℝd → ℝd defined by

is multivariate monotone: that is

If X1,…, Xm are independent with Xj ∼ fj log-concave on ℝd, then it might seem natural to 

conjecture that the function g defined by

is a monotone function of z ∈ ℝd:

Unfortunately, this seemingly natural generalization of Efron's theorem does not hold 

without further assumptions. In fact, it fails for m = 2 and X1, X2 Gaussian with covariances 

Σ1 and Σ2 sufficiently different. For an explicit example see Saumard and Wellner [2014].

Again, the result holds for m random vectors if it holds for 2,…, m – 1 random vectors. It 

suffices to prove the theorem for m = 2 random vectors. Since everything reduces to the case 

where Φ is a function of two variables (either for Efron's theorem or for a multivariate 

generalization), we will restrict ourselves to this situation.

Thus if we define

then we want to show that
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Finally, our approach to Efron's monotonicity theorem in dimension d ≥ 2 is based on the 

following remark.

Remark 7.3. For suitable regularity of Φ : (ℝd)2 → ℝd and ρX : ℝd → ℝ, we have

Recall that ∇1Φ ≡ ∇Φ1 : (ℝd)2 → ℝd×d. Furthermore, the matrix (∇g) (z) is positive semi-

definite if for all a ∈ ℝd, aT∇g(z)aT ≥ 0, which leads to leads to asking if the following 

covariance inequality holds:

(7.18)

Covariance inequality (7.18) would imply a multivariate generalization of Efron's theorem 

(under sufficient regularity).

8. Peakedness and log-concavity

Here is a summary of the results of Proschan [1965], Olkin and Tong [1988], Hargé [2004], 

and Kelly [1989].

First Hargé [2004]. Let f be log-concave, and let g be convex. Then if X ∼ Nd(μ, Σ) ≡ γ,

(8.19)

where μ = E(X), ν = E(Xf(X))/E(f(X)). Assuming that f ≥ 0, and writing f̃dγ ≡ fdγ/ ∫ fdγ, 

g̃(x – μ) ≡ g(x), and X̃ ∼ f̃dγ so that X̃ is strongly log-concave, this can be rewritten as

(8.20)

In particular, for g̃(x) = |x|r with r ≥ 1,

and for g̃(x) = |aTx|r with a ∈ ℝd, r ≥ 1,
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which is Theorem 5.1 of Brascamp and Lieb [1976]. Writing (8.19) as (8.20) makes it seem 

more related to the “peakedness” results of Olkin and Tong [1988] to which we now turn.

An n-dimensional random vector Y is said to be more peaked than a vector X if they have 

densities and if

holds for all A ∈ n, the class of compact, convex, symmetric (about the origin) Borel sets 

in ℝn. When this holds we will write . A vector a majorizes the vector b (and we 

write a > b) if  for k = 1,…, n – 1 and  where a[1] 

≥ a[2] ≥ ⋯ ≥ a[n] and similarly for b. (In particular b = (1,…,1)/n < (1,0,…,0) = a.)

Proposition 8.1. (Sherman, 1955; see Olkin and Tong [1988]) Suppose that f1, f2, g1, g2 are 

log-concave densities on ℝn which are symmetric about 0. Suppose that Xj ∼ fj and Yj ∼ gj 

for j = 1, 2 are independent. Suppose that  and . Then .

Proposition 8.2. If X1,…Xn are independent random variables with log-concave densities 

symmetric about 0, and Y1,…, Yn are independent with log-concave densities symmetric 

about 0, and  for j = 1,…, n, then

for all real numbers {cj}.

Proposition 8.3. If {Xm} and {Ym} are two sequences of n–dimensional random vectors 

with  for each m and Xm →d X, Ym →d Y, then .

Proposition 8.4.  if and only if  for all k × n matrices C with k ≤ n.

Proposition 8.5. (Proschan [1965]) Suppose that Z1,…, Zn are i.i.d. random variables with 

log-concave density symmetric about zero. Then if  with a > b (a majorizes b), 

then

Proposition 8.6. (Olkin and Tong [1988]) Suppose that Z1,…, Zn are i.i.d. d–dimensional 

random vectors with log-concave density symmetric about zero. Then if aj, bj ∈ ℝ1 with a > 

b (a majorizes b), then
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Now let n ≡ {x ∈ ℝn : x1 ≤ x2 ≤ … ≤ xn}. For any y ∈ ℝn, let ŷ = (ŷ1,…, ŷn) denote the 

projection of y onto n. Thus |y – ŷ|2 = minx∈ |y – x|2.

Proposition 8.7. (Kelly [1989]). Suppose that Y̲ = (Y1,…, Yn) where Yj ∼ N(μj, σ2) are 

independent and μ1 ≤ μ2 ≤ … ≤ μn. Thus μ̲ ∈ n and μ̲̂ ≡ Ŷ̲ ∈ n. Then 

for each k ∈ {1,…, n}; i.e.

9. Some open problems and further connections with log-concavity

9.1. Two questions

Question 1: Does Kelly's Proposition 8.7 continue to hold if the normal distributions of the 

Yi's is replaced some other centrally-symmetric log-concave distribution, for example 

Chernoff's distribution (see Balabdaoui and Wellner [2014])?

Question 2: Balabdaoui and Wellner [2014] show that Chernoff's distribution is log-

concave. Is it strongly log-concave? A proof would probably give a way of proving strong 

log-concavity for a large class of functions of the form f(x) = g(x)g(−x) where g ∈ PF∞ is 

the density of the sum  where Yj's are independent exponential random 

variables with means μj satisfying  and .

9.2. Cross-connections with the families of hyperbolically monotone densities

A theory of hyperbolically monotone and completely monotone densities has been 

developed by Bondesson [1992], Bondesson [1997].

Definition 9.1. A density f on ℝ+ is hyperbolically completely monotone if H(w) = 

f(uv)f(u/v) is a completely monotone function of w = (v + 1/v)/2. A density f on ℝ+ is 

hyperbolically monotone of order k, or f ∈ HMk if the function H satisfies (−1)j H(j)(w) ≥ 0 

for j = 0,…, k – 1 and (−1)k–1H(k–1)(w) is right-continuous and decreasing.

For example, the exponential density f(x) = e−x1(0,∞)(x) is hyperbolically completely 

monotone, while the half-normal density  is HM1 but not 

HM2.

Bondesson [1997] page 305 shows that if X ∼ f ∈ HM1, then logX ∼ exf(ex) is log-concave. 

Thus HM1 is closed under the formation of products: if X1,…, Xn ∈ HM1, then Y ≡ X1 ⋯ 

Xn ∈ HM1.
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9.3. Suprema of Gaussian processes

Gaenssler, Molnár and Rost [2007] use log-concavity of Gaussian measures to show that the 

supremum of an arbitrary non degenerate Gaussian process has a continuous and strictly 

increasing distribution function. This is useful for bootstrap theory in statistics. The methods 

used by Gaenssler, Molnár and Rost [2007] originate in Borell [1974] and Ehrhard [1983]; 

see Bogachev [1998] chapters 1 and 4 for an exposition.

Furthermore, in relation to Example 2.14 above, one can wonder what is the form of the 

density of the maximum of a Gaussian process in general? Bobkov [2008] actually gives a 

complete characterization of the distribution of suprema of Gaussian processes. Indeed, the 

author proves that F is the distribution of the supremum of a general Gaussian process if and 

only if Φ−1 (F) is concave, where Φ−1 is the inverse of the standard normal distribution 

function on the real line. Interestingly, the “only if” part is a direct consequence the Brunn-

Minkowski type inequality for the standard Gaussian measure γd on ℝd due to Ehrhard 

[1983]: for any A and B ∈ ℝd of positive measure and for all λ ∈ (0, 1),

9.4. Gaussian correlation conjecture

The Gaussian correlation conjecture, first stated by Das Gupta et al. [1972], is as follows. 

Let A and B be two symmetric convex sets. If μ is a centered, Gaussian measure on ℝn, then

(9.21)

In other words, the correlation between the sets A and B under the Gaussian measure μ is 

conjectured to be nonnegative. As the indicator of a convex set is log-concave, the Gaussian 

correlation conjecture intimately related to log-concavity.

In Hargé [1999], the author gives an elegant partial answer to Problem (9.21), using 

semigroup techniques. The Gaussian correlation conjecture has indeed been proved to hold 

when d = 2 by Pitt [1977] and by Hargé [1999] when one of the sets is a symmetric ellipsoid 

and the other is convex symmetric. Cordero-Erausquin [2002] gave another proof of Hargé's 

result, as a consequence of Caffarelli's Contraction Theorem (for more on the latter theorem, 

see Section 9.7 below). Extending Caffarelli's Contraction Theorem, Kim and Milman 

[2012] also extended the result of Hargé and Cordero-Erausquin, but without proving the 

full Gaussian correlation conjecture.

Hargé [1999] gives some hints towards a complete solution of Problem (9.21). Interestingly, 

a sufficient property would be the preservation of log-concavity along a particular family of 

semigroups. More precisely, let A(x) be a positive definite matrix for each x ∈ ℝd and define
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The operator L is the infinitesimal generator of an associated semigroup. The question is: 

does L preserve log-concavity? See Hargé [1999] and Kolesnikov [2001]. For further 

connections involving the semi-group approach to correlation inequalities, see Bakry [1994], 

Ledoux [1995], Hargé [2008], and Cattiaux and Guillin [2013].

Further connections in this direction involve the theory of parabolic and heat-type partial 

differential equations; see e.g. Keady [1990], Kolesnikov [2001], Andreu, Caselles and 

Mazón [2008], Korevaar [1983a], Korevaar [1983b].

9.5. Further connections with Poincaré, Sobolev, and log-Sobolev inequalities

For a very nice paper with interesting historical and expository passages, see Bobkov and 

Ledoux [2000]. Among other things, these authors establish an entropic or log-Sobolev 

version of the Brascamp-Lieb type inequality under a concavity assumption on hTφ″(x)h for 

every h. The methods in the latter paper build on Maurey [1991]. See Bakry, Gentil and 

Ledoux [2014] for a general introduction to these analytic inequalities from a Markov 

diffusion operator viewpoint.

9.6. Further connections with entropic central limit theorems

This subject has its beginnings in the work of Linnik [1959], Brown [1982], and Barron 

[1986], but has interesting cross-connections with log-concavity in the more recent papers of 

Johnson and Barron [2004], Carlen and Soffer [1991], Ball, Barthe and Naor [2003], 

Artstein et al. [2004a], and Artstein et al. [2004b]. More recently still, further results have 

been obtained by: Carlen, Lieb and Loss [2004], Carlen and Cordero-Erausquin [2009], and 

Cordero-Erausquin and Ledoux [2010].

9.7. Connections with optimal transport and Caffarelli's contraction theorem

Gozlan and Léonard [2010] give a nice survey about advances in transport inequalities, with 

Section 7 devoted to strongly log-concave measures (called measures with “uniform convex 

potentials” there). The theory of optimal transport is developed in Villani [2003] and Villani 

[2009]. See also Caffarelli [1991], Caffarelli [1992], Caffarelli [2000], and Kim and Milman 

[2012] for results on (strongly) log-concave measures. The latter authors extend the results 

of Caffarelli [2000] under a third derivative hypothesis on the “potential” φ.

In the following, we state the celebrated Caffarelli's Contraction Theorem (Caffarelli 

[2000]). Let us recall some related notions. A Borel map T is said to push-forward μ onto ν, 

for two Borel probability measures μ and ν, denoted T* (μ) = ν, if for all Borel sets A, ν (A) 

= μ (T−1 (A)). Then the Monge-Kantorovich problem (with respect to the quadratic cost) is 

to find a map Topt such that

The map Topt (when it exists) is called the Brenier map and it is μ-a.e. unique. Moreover, 

Brenier [1991] showed that Brenier maps are characterized to be gradients of convex 
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functions (see also McCann [1995]). See Ball [2004] for a very nice elementary introduction 

to monotone transportation. We are now able to state Caffarelli's Contraction Theorem.

Theorem 9.2 (Caffarelli [2000]). Let b ∈ ℝd, c ∈ ℝ and V a convex function on ℝd. Let A 

be a positive definite matrix in ℝd×d and Q be the following quadratic function,

Let μ and ν denote two probability measures on ℝd with respective densities exp (−Q) and 

exp (−(Q + V)) with respect to Lebesgue measure. Then the Brenier map Topt pushing μ 
forward onto ν is a contraction:

Notice that Caffarelli's Contraction Theorem is in particular valid when μ is a Gaussian 

measure and that case, ν is a strongly log-concave measure.

9.8. Concentration and convex geometry

Guédon [2012] gives a nice survey, explaining the connections between the Hyperplane 

conjecture, the KLS conjecture, the Thin Shell conjecture, the Variance conjecture and the 

Weak and Strong moments conjecture. Related papers include Guédon and Milman [2011] 

and Fradelizi, Guédon and Pajor [2013].

It is well-known that concentration properties are linked the behavior of moments. Bobkov 

and Madiman [2011] prove that if η > 0 is log-concave then the function

is also log-concave, where Γ is the classical Gamma function. This is equivalent to having a 

so-called “reverse Lyapunov's inequality”,

Also, Bobkov [2003] proves that log-concavity of λ̃
p = [(η/p)p] holds (this is a consequence 

of the Prékopa-Leindler inequality). These results allow for instance Bobkov and Madiman 

[2011] to prove sharp concentration results for the information of a log-concave vector.
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9.9. Sampling from log concave distributions; convergence of Markov chain Monte Carlo 
algorithms

Sampling from log-concave distributions has been studied by Devroye [1984], Devroye 

[2012] for log-concave densities on ℝ, and by Frieze, Kannan and Polson [1994a,b], Frieze 

and Kannan [1999], and Lovász and Vempala [2007] for log-concave densities on ℝd; see 

also Lovász and Vempala [2003], Lovasz and Vempala [2006], Kannan, Lovász and 

Simonovits [1995], and Kannan, Lovász and Simonovits [1997].

Several different types of algorithms have been proposed: the rejection sampling algorithm 

of Devroye [1984] requires knowledge of the mode; see Devroye [2012] for some 

improvements. The algorithms proposed by Gilks and Wild [1992] are based on adaptive 

rejection sampling. The algorithms of Neal [2003] and Roberts and Rosenthal [2002] 

involve “slice sampling”; and the algorithms of Lovász and Vempala [2003], Lovasz and 

Vempala [2006], Lovász and Vempala [2007] are based on random walk methods.

Log-concavity and bounds for log-concave densities play an important role in the 

convergence properties of MCMC algorithms. For entry points to this literature, see Gilks 

and Wild [1992], Polson [1996], Brooks [1998], Roberts and Rosenthal [2002], Fort et al. 

[2003], Jylänki, Vanhatalo and Vehtari [2011], and Rudolf [2012].

9.10. Laplace approximations

Let X1, …, Xn be i.i.d. real-valued random variables with density q and Laplace transform

Let x* be the upper limit of the support of q and let τ > 0 be the upper limit of finiteness of 

ϕ. Let us assume that q is almost log-concave (see Jensen [1995] p155) on (x0, x*) for some 

x0 < x*. This means that there exist two constants c1 > c2 > 0 and two functions c and h on 

ℝ such that

where c2 < c(x) < c1 whenever x > x0 and h is convex. In particular, log-concave functions 

are almost log-concave for x0 = −∞. Now, fix y ∈ ℝ. The saddlepoint s associated to y is 

defined by

and the variance σ2 (s) is defined to be
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Let us write fn the density of the empirical mean . By Theorem 1 of Jensen 

[1991], if q ∈ Lζ (λ) for 1 < ζ < 2, then the following saddlepoint approximations hold 

uniformly for s0 < s < τ for any s0 > 0:

and

where B0(z) = z exp (z2/2) (1 − Φ (z)) with Φ the standard normal distribution function. 

According to Jensen [1991], this result extends to the multidimensional setting where almost 

log-concavity is required on the entire space (and not just on some directional tails). As 

detailed in Jensen [1995], saddlepoint approximations have many applications in statistics, 

such as in testing or Markov chain related estimation problems.

As Bayesian methods are usually expensive in practice, approximations of quantities linked 

to the prior/posterior densities are usually needed. In connection with Laplace's method, log-

quadratic approximation of densities are especially suited when considering log-concave 

functions, see Jensen [1995], Barber and Williams [1997], Minka [2001], and references 

therein.

9.11. Machine learning algorithms and Gaussian process methods

Boughorbel, Tarel and Boujemaa [2005] used the radius margin bound of Vapnik [2000] on 

the performance of a Support Vector Machine (SVM) in order to tune hyper-parameters of 

the kernel. More precisely they proved that for a weighted L1 -distance kernel the radius is 

log-convex while the margin is log-concave. Then they used this fact to efficiently tune the 

multi-parameter of the kernel through a direct application of the Convex ConCave Procedure 

(or CCCP) due to Yuille and Rangarajan [2003]. In contrast to the gradient descent 

technique (Chapelle et al. [2002]), Boughorbel, Tarel and Boujemaa [2005] show that a 

variant of the CCCP which they call Log Convex ConCave Procedure (or LCCP) ensures 

that the radius margin bound decreases monotonically and converges to a local minimum 

without a search for the size step.

Bayesian methods based on Gaussian process priors have become popular in statistics and 

machine learning: see, for example Seeger [2004], Zhang, Dai and Jordan [2011], van der 
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Vaart and van Zanten [2008], and van der Vaart and van Zanten [2011]. These methods 

require efficient computational techniques in order to be scalable, or even tractable in 

practice. Thus, log-concavity of the quantities of interest becomes important in this area, 

since it allows efficient optimization schemes.

In this context, Paninski [2004] shows that the predictive densities corresponding to either 

classification, regression, density estimation or point process intensity estimation models, 

are log-concave given any observed data. Furthermore, in the density and point process 

intensity estimation, the likelihood is log-concave in the hyperparameters controlling the 

mean function of the Gaussian prior. In the classification and regression settings, the mean, 

covariance and observation noise parameters are log-concave. As noted in Paninski [2004], 

the results still hold for much more general prior distributions than Gaussian: it suffices that 

the prior and the noise (in models where a noise appears) are jointly log-concave. The proofs 

are based on preservation properties for log-concave functions such as pointwise limit or 

preservation by marginalization.

9.12. Compressed sensing and random matrices

Compressed sensing, aiming at reconstructing sparse signals from incomplete measurement, 

is extensively studied since the seminal works of Donoho [2006], Candès, Romberg and Tao 

[2006] and Candès and Tao [2006]. As detailed in Chafaï et al. [2012], compressed sensing 

is intimately linked to the theory of random matrices. The matrices ensembles that are most 

frequently used and studied are those linked to Gaussian matrices, Bernoulli matrices and 

Fourier (sub-)matrices.

By analogy with the Wishart Ensemble, the Log-concave Ensemble is defined in Adamczak 

et al. [2010] to be the set of squared n × n matrices equipped with the distribution of AA*, 

where A is a n × N matrix with i.i.d. columns that have an isotropic log-concave distribution. 

Adamczak et al. [2010] show that the Log-concave Ensemble satisfies a sharp Restricted 

Isometry Property (RIP), see also Chafaï et al. [2012] Chapter 2.

9.13. Log-concave and s-concave as nonparametric function classes in statistics

Nonparametric estimation of log-concave densities was initiated by Walther [2002] in the 

context of testing for unimodality. For log-concave densities on ℝ it has been explored in 

more detail by Dümbgen and Rufibach [2009], Balabdaoui, Rufibach and Wellner [2009], 

and recent results for estimation of log-concave densities on ℝd have been obtained by Cule 

and Samworth [2010], Cule, Samworth and Stewart [2010], Dümbgen, Samworth and 

Schuhmacher [2011]. Cule, Samworth and Stewart [2010] formulate the problem of 

computing the maximum likelihood estimator of a multidimensional log-concave density as 

a non-differentiable convex optimization problem and propose an algorithm that combines 

techniques of computational geometry with Shor's r-algorithm to produce a sequence that 

converges to the estimator. An R version of the algorithm is available in the package 

LogConcDEAD: Log-Concave Density Estimation in Arbitrary Dimensions, with further 

description of the algorithm given in Cule, Gramacy and Samworth [2009]. Nonparametric 

estimation of s–concave densities has been studied by Seregin and Wellner [2010]. They 

show that the MLE exists and is Hellinger consistent. Doss and Wellner [2013] have 
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obtained Hellinger rates of convergence for the maximum likelihood estimators of log-

concave and s–concave densities on ℝ, while Kim and Samworth [2014] study Hellinger 

rates of convergence for the MLEs of log-concave densities on ℝd. Henningsson and Astrom 

[2006] consider replacement of Gaussian errors by log-concave error distributions in the 

context of the Kalman filter.

Walther [2009] gives a review of some of the recent progress.
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10. Appendix A: Brascamp-Lieb inequalities and more

Let X have distribution P with density p = exp(−φ) on ℝd where φ is strictly convex and φ ∈ 

C2(ℝd); thus ∇2(φ) (x) = φ″(x) > 0, x ∈ ℝd as symmetric matrices. Let G, H be real-valued 

functions on ℝd with G, H ∈ C1(ℝd) ⋂ L2(P). We let H1 (P) denote the set of functions f in 

L2 (P) such that ∇f (in the distribution sense) is in L2 (P).

Let Y have distribution Q with density q = ψ−β on an open, convex set Ω ⊂ ℝd where β > d 
and ψ is a positive, strictly convex and twice continuously differentiable function on Ω. In 

particular, Q is s = −1/(β − d)-concave (see Definition 2.5 and Borell [1974], Borell [1975]). 

Let T be a real-valued function on ℝd with T ∈ C1(Ω)⋂L2(Q). The following Proposition 

summarizes a number of analytic inequalities related to a Poincaré-type inequality from 

Brascamp and Lieb [1976]. Such inequalities are deeply connected to concentration of 

measure and isoperimetry, as exposed in Bakry, Gentil and Ledoux [2014]. Concerning log-

concave measures, these inequalities are also intimately linked to the geometry of convex 

bodies. Indeed, as noted by Carlen, Cordero-Erausquin and Lieb [2013] page 9,

“The Brascamp-Lieb inequality (1.3), as well as inequality (1.8), have connections 

with the geometry of convex bodies. It was observed in [2] (Bobkov and Ledoux 

[2000]) that (1.3) (see Proposition 10.1, (a)) can be deduced from the Prékopa-

Leindler inequality (which is a functional form of the Brunn-Minkowski 

inequality). But the converse is also true: the Prékopa theorem follows, by a local 

computation, from the Brascamp-Lieb inequality (see [5] (Cordero-Erausquin 

[2005]) where the procedure is explained in the more general complex setting). To 

sum up, the Brascamp-Lieb inequality (1.3) can be seen as the local form of the 

Brunn-Minkowski inequality for convex bodies.”

Proposition 10.1.

a. Brascamp and Lieb [1976]: If p is strictly log-concave, then

b. If p = exp(−φ) where φ″ > cI with c > 0, then
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c. Hargé [2008]: If φ ∈ L2 (P), then for all f ∈ H1(P),

Where

and

Notice that 0 ≤ a ≤ b ≤ + ∞ and b > 0.

d. Bobkov and Ledoux [2009]: If U = ψT, then

Taking ψ = exp (φ/β) and setting Rφ,β ≡ φ″ + β−1∇φ ⊗ ∇φ, this implies that for 

any β ≥ d,

where . Notice that 1 ≤ Cβ ≤ 6.

e. Bakry [1994]: If p = exp(−φ) where φ″ ≥ cI with c > 0, then

where

f. Ledoux [1996], Ledoux [2001]: If the conclusion of (e) holds for all smooth G, 

then EP exp(α|X|2) < ∞ for every α < 1/(2c).
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g. Bobkov [1999]: If EP exp(α|X|2) < ∞ for a log-concave measure P and some α > 0, 

then the conclusion of (e) holds for some c = cd.

h. Bobkov and Ledoux [2000]: If φ is strongly convex with respect to a norm ‖ · ‖ (so 

p is strongly log-concave with respect to ‖ · ‖), then

for the dual norm ‖ · ‖*.

Inequality (a) originated in Brascamp and Lieb [1976] and the original proof of the authors 

is based on a dimensional induction. For more details about the induction argument used by 

Brascamp and Lieb [1976], see Carlen, Cordero-Erausquin and Lieb [2013]. Building on 

Maurey [1991], Bobkov and Ledoux [2000] give a non-inductive proof of (a) based on the 

Prékopa-Leindler theorem Prékopa [1971], Prékopa [1973], Leindler [1972] which is the 

functional form of the celebrated Brunn-Minkowski inequality. The converse is also true in 

the sense that the Brascamp-Lieb inequality (a) implies the Prékopa-Leindler inequality, see 

Cordero-Erausquin [2005]. Inequality (b) is an easy consequence of (a) and is referred to as 

a Poincaré inequality for strongly log-concave measures.

Inequality (c) is a reinforcement of the Brascamp-Lieb inequality (a) due to Hargé [2008]. 

The proof is based on (Marvovian) semi-group techniques, see Bakry, Gentil and Ledoux 

[2014] for a comprehensive introduction to these tools. In particular, Hargé [2008], Lemma 

7, gives a variance representation for strictly log-concave measures that directly implies the 

Brascamp-Lieb inequality (a).

The first inequality in (d) is referred in Bobkov and Ledoux [2009] as a “weighted Poincaré-

type inequality” for convex (or s–concave with negative parameter s) measures. It implies 

the second inequality of (d) which is a quantitative refinement of the Brascamp-Lieb 

inequality (a). Indeed, Inequality (a) may be viewed as the limiting case in the second 

inequality of (d) for β → +∞ (as in this case Cβ → 1 and Rφ,β → φ″). As noted in Bobkov 

and Ledoux [2009], for finite β the second inequality of (d) may improve the Brascamp-Lieb 

inequality in terms of the decay of the weight. For example, when Y is a random variable 

with exponential distribution with parameter λ > 0 (q (y) = λe−λy on Ω = (0, ∞)), the second 

inequality in (d) gives the usual Poincaré-type inequality,

which cannot be proved as an direct application of the Brascamp-Lieb inequality (a). 

Klaassen [1985] shows that the inequality in the last display holds (in the exponential case) 

with 6 replaced by 4, and establishes similar results for other distributions. The exponential 

and two-sided exponential (or Laplace) distributions are also treated by Bobkov and Ledoux 

[1997].
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Points (e) to (h) deal, in the case of (strongly) log-concave measures, with the so-called 

logarithmic-Sobolev inequality, which is known to strengthen the Poincaré inequality (also 

called spectral gap inequality) (see for instance Chapter 5 of Bakry, Gentil and Ledoux 

[2014]). Particularly, Bobkov and Ledoux [2000] proved their result in point (d), via the use 

of the Prékopa-Leindler inequality. In their survey on optimal transport, Gozlan and Léonard 

[2010] show how to obtain the result of Bobkov and Ledoux from some transport 

inequalities.

We give now a simple application of the Brascamp-Lieb inequality (a), that exhibits its 

relation with the Fisher information for location.

Example 10.2. Let G(x) = aTx for a ∈ ℝd. Then the inequality in (a) becomes

(10.22)

or equivalently

with equality if X ∼ Nd(μ, Σ) with Σ positive definite. When d = 1 (10.22) becomes

(10.23)

while on the other hand

(10.24)

where Iloc(X) = E(φ″) denotes the Fisher information for location (in X or p); in fact for d ≥ 

1

where Iloc(X) ≡ E(φ″) is the Fisher information matrix (for location). If X ∼ Nd(μ, Σ) then 

equality holds (again). On the other hand, when d = 1 and p is the logistic density given in 

Example 2.11, then φ″ = 2p so the right side in (10.23) becomes E{(2p(X))−1} = ∫ℝ(1/2)dx 
= ∞ while V ar(X) = π2/3 and Iloc(X) = 1/3 so the inequality (10.23) holds trivially, while 

the inequality (10.24) holds with strict inequality:
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(Thus while X is slightly inefficient as an estimator of location for p, it is not drastically 

inefficient.)

Now we briefly summarize the asymmetric Brascamp - Lieb inequalities of Menz and Otto 

[2013] and Carlen, Cordero-Erausquin and Lieb [2013].

Proposition 10.3.

a. Menz and Otto [2013]: Suppose that d = 1 and G, H ∈ C1(ℝ) ∩ L2(P). If p is 

strictly log-concave and 1/r + 1/s = 1 with r ≥ 2, then

b. Carlen, Cordero-Erausquin and Lieb [2013]: If p is strictly log-concave on ℝd and 

λmin(x) denotes the smallest eigenvalue of φ″, then

Remark 10.4.

i. When r = 2, the inequality in (b) yields

which can also be obtained from the Cauchy-Schwarz inequality and the Brascamp-

Lieb inequality (a) of Proposition 10.1.

ii. (ii) The inequality (b) also implies that

taking r = ∞ and s = 1 yields

which reduces to the inequality in (a) when d = 1.

11. Appendix B: some further proofs

Proof. Proposition 2.3: (b): pθ(x) = f(x – θ) has MLR if and only if
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This holds if and only if

(11.25)

Let t = (x′ – x)/(x′ – x + θ ′ – θ) and note that

Hence log-concavity of f implies that

Adding these yields (11.25); i.e. f log-concave implies pθ(x) has MLR in x.

Now suppose that pθ(x) has MLR so that (11.25) holds. In particular that holds if x, x′, θ, θ′ 

satisfy x – θ′ = a < b = x′ – θ and t = (x′ – x)/(x′–x+θ′ – θ) = 1/2, so that x – θ = (a + b)/2 = x′ 

– θ′. Then (11.25) becomes

This together with measurability of f implies that f is log-concave.

(a): Suppose f is PF2. Then for x < x′, y < y′,

if and only if

or, if and only if

Saumard and Wellner Page 54

Stat Surv. Author manuscript; available in PMC 2016 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



That is, py(x) has MLR in x. By (b) this is equivalent to f log-concave.

Proof. Proposition 2.23: To prove Proposition 2.23 it suffices to note the log-concavity of 

 and to apply Proposition 2.20 (which holds as well for log-

concave functions). The claims then follow by basic calculations.

Here are the details. Under the assumption that φ ∈ C2 (and even more generally) the 

equivalence between (a) and (b) follows from Rockafellar and Wets [1998], Exercise 12.59, 

page 565. The equivalence between (a) and (c) follows from the corresponding proof 

concerning the equivalence of (a) and (c) in Proposition 2.20; see e.g. Boyd and 

Vandenberghe [2004], page 71.

(a) implies (d): this follows from the corresponding implication in Proposition 2.20. Also 

note that for x1, x2 ∈ ℝd we have

if c = σ2/2.

(d) implies (e): this also follows from the corresponding implication in Proposition 2.20. 

Also note that when φ ∈ C2 so that ∇2φ exists,

To complete the proof when φ ∈ C2 we show that (e) implies (c). Choosing a = x0 and x = 0 

yields

and hence (c) holds.

To complete the proof more generally, we proceed as in Simon [2011], page 199: to see that 

(e) implies (f), let a = (x1 + x2)/2, x = (x1 – x2)/2. Since Ja(·; g) is even and radially 

monotone, Ja(0; g)1/2 ≥ Ja(x; g)1/2; that is,
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or

Finally (f) implies (a): as in Simon [2011], page 199 (with “convex” changed to “concave” 

three times in the last three lines there): midpoint log-concavity of g together with lower 

semicontinuity implies that g is log-concave, and hence p is strongly log-concave, so (a) 

holds.

Proof. Proposition 2.24: First notice that by Proposition 5.5, we may assume that f is ∞ (so 

φ is also ∞).

i. As I is ∞, we differentiate I twice. We have I′ (p) = f′ (F−1 (p)) /I (p) = −φ′ (F−1 

(p)) and

(11.26)

This gives the first part of (i). The second part comes from the fact that 

 by Proposition 5.2 below.

ii. It suffices to exhibit an example. We take X ≥ 0, with density

Then f = e−φ is log-concave (in fact, f log-concave of order 2, see Definition 2.15) 

and not strongly log-concave as, on the support of f, φ″ (x) = x−2 → 0 as x → ∞0. 

By the equality in (11.26) we have

Hence, to conclude it suffices to show that infx>0 {φ″/f} > 0. By simple 

calculations, we have

so (ii) is proved.
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iii. We take f (x) = exp(−φ) = α−1 exp (−exp(x)) 1{x>0} where . 

Then the function Rh is ∞ on (0, 1) and we have by basic calculations, for any p ∈ 

(0, 1),

and

Now, for any x > 0, taking p = F(x) in the previous identity gives

(11.27)

We deduce that if h > log 2 then  whenever x → +∞. Taking h0 = 1 

gives point (iii).

iv. For X of density f(x) = xe−x1(0,+∞) (x), we have inf . Our proof of 

the previous fact is based on identity (11.27) and left to the reader.

Proof. Proposition 2.25: Here are the details. Under the assumption that φ ∈ C2 (and even 

more generally) the equivalence of (a) and (b) follows from Rockafellar and Wets [1998], 

Exercise 12.59, page 565. The equivalence of (a) and (c) follows from the corresponding 

proof concerning the equivalence of (a) and (c) in Proposition 2.20; see e.g. Boyd and 

Vandenberghe [2004], page 71.

That (a) implies (d): this follows from the corresponding implication in Proposition 2.20. 

Also note that for x1, x2 ∈ ℝd we have

if c = σ2/2.

(d) implies (e): this also follows from the corresponding implication in Proposition 2.20. 

Also note that when φ ∈ C2 so that ∇2φ exists,
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To complete the proof when φ ∈ C2 we show that (e) implies (c). Choosing a = x0 and x = 0 

yields

and hence (c) holds.

To complete the proof more generally, we proceed as in Simon [2011], page 199: to see that 

(e) implies (f), let a = (x1 + x2)/2, x = (x1 – x2)/2. Since Ja(·; g) is even and radially 

monotone, Ja(0; g)1/2 ≥ Ja(x; g)1/2; that is,

or

Finally (f) implies (a): as in Simon [2011], page 199 (with “convex” changed to“concave” 

three times in the last three lines there): midpoint log-concavity of g together with lower 

semicontinuity implies that g is log-concave, and hence p is strongly log-concave, so (a) 

holds.

Proof. Proposition 5.5:

i. This is given by the stability of log-concavity through convolution.

ii. This is point (b) of Theorem 3.7.

iii. We have

and

since y ↦‖z – y‖ q(z – y) is bounded. This implies that pZ > 0 on ℝd and
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In the same manner, successive differentiation inside the integral shows that φZ is 
∞, which gives (iii).

iv. Notice that

as y ↦ ‖z – y‖2 q (z – y) is bounded. Hence the Fisher information J(Z) of Z is 

finite and we have

which is (iv).

Proof. Proposition 5.6: The fact that hc ∈ SLC1 (c−1, d) is obvious due to Definition 2.8. By 

Theorem 5.1 above, there exist a > 0 and b ∈ ℝ such that

We deduce that if X is a random vector with density f on ℝd, then [e(a/2)‖X‖] < ∞ and so, 

for any β > 0,

where A = e(a/2)‖X‖] > 0 Take ε ∈ (0, 1). We have
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We set Bα = (1 − e−2α1−ε
) + Ae−aα−ε/2

 and we then have

Now, for x ∈ ℝd, we have, for all c > 0 such that Bc < 1,

Hence, for all c > 0 such that Bc < 1,

Furthermore, for p ∈ [1, ∞),
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The proof is now complete.
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Fig 1. Sherman's example, h = p * q
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