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Abstract

Complex organisms are faced with the challenge of generating and maintaining diverse cell types, 

ranging from simple epithelia, to neurons and motile immune cells1–3. To meet this challenge, a 

complex set of regulatory pathways controls nearly every aspect of cell growth and function, 

including genetic and epigenetic programming, cytoskeleton dynamics, and protein trafficking. 

The far reach of cell fate specification pathways makes it particularly catastrophic when they 

malfunction, both during development and for tissue homeostasis in adult organisms. Furthermore, 

the promise of stem cells as a therapeutic derives from their ability to deftly navigate the multitude 

of pathways that control cell fate4. How the molecular components that make up these pathways 

function to specify cell fate is beginning to become clear. Work from diverse systems suggests that 

the atypical Protein Kinase C (aPKC) is a key regulator of cell fate decisions in metazoans5–7. 

Here we examine some of the diverse physiological outcomes of aPKC’s function in 

differentiation, along with the molecular pathways that control aPKC, and those that are 

responsive to changes in its catalytic activity.

Graphical Abstract

*Correspondence to: prehoda@uoregon.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Mol Biol. Author manuscript; available in PMC 2017 April 10.

Published in final edited form as:
J Mol Biol. 2016 April 10; 428(7): 1455–1464. doi:10.1016/j.jmb.2016.03.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PKC family kinases are ubiquitous components of cellular signaling pathways8,9. In 

animals, PKCs are commonly divided into three subfamilies (yeast contain a single PKC), 

including the conventional, novel, and atypical (Figure 1)8. This last group contains the iota 

(lambda in mice) and zeta isoforms in mammals, and a single isoform in flies and worms. 

All family members contain a catalytic domain at the COOH-terminus connected to NH2-

terminal regulatory domains (Figure 1A). The downstream pathways that are regulated by 

each isoform is primarily determined by their kinase domain’s specificity, which determines 

the repertoire of substrates that they can phosphorylate. Upstream regulation of PKCs is 

determined by phosphorylation of the kinase domain and allosteric mechanisms that depend 

on interactions with specific elements contained within the NH2-terminal regulatory 

domain8.

aPKC regulates differentiation in diverse physiological contexts

The physiological contexts in which aPKC participates in cellular differentiation are 

remarkably varied, suggesting that it is a central component of a fate specification 

machinery. In this section, we discuss several examples of systems where aPKC plays a 

known role in regulating cell fate with the goal of emphasizing the diverse physiology in 

which it can function.

In the mammalian pre-implantation embryo, aPKC activity is essential for development of 

extra-embryonic tissues such as the Primitive Endoderm (PrE)10,11. These tissues provide 

the connection with the mother and serve as signaling centers for subsequent embryonic 

patterning12. The PrE forms a highly organized epithelium at the exterior of the epiblast, 
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which ultimately forms the fetus. However, PrE cells are originally specified in an 

apparently stochastic manner, intermingled with epiblast cells. Intriguingly, aPKC is 

essential for not only specification of the PrE fate, but segregation of the mixed PrE and 

epiblast cells. Following segregation, aPKC causes PrE cells to become highly polarized and 

to promote pro-survival signals in correctly sorted cells11.

In the fly central nervous system, aPKC regulates the balance between self-renewal of 

neuronal progenitors and their differentiation into neurons5,6. The Drosophila neuroblast 

(NB) is a cell that participates in the development of both the embryonic and larval nervous 

systems. NBs undergo repeated asymmetric cell divisions that produce as daughter cells a 

self-renewed NB and a Ganglion Mother Cell (GMC). The GMC subsequently divides once 

more which typically generates two cells that become neurons. NBs with incorrect levels of 

aPKC activity fail to asymmetrically divide and can exhibit characteristics of tumor cells, or 

alternatively can prematurely differentiate and concomitant loss of the progenitor pool. 

Excess aPKC activity leads to indefinite replication capacity13, whereas NB quiescence or 

premature differentiation are associated with inadequate aPKC activity14,15. aPKC is also 

polarized in mammalian neurons and is required for axonal-dendritic differentiation during 

development16,17. Perturbing aPKC or regulator of aPKC localization and activity leads to 

improper number of axons and dendrites. In addition to its role in development, aPKC-

mediated asymmetric cell division is also essential for homeostasis in the adult gut18.

The central role of aPKC in cell fate determination is also supported by the severe 

consequences if it is improperly regulated. Overexpression of aPKC is observed in multiple 

cancers19, including hepatocellular carcinoma, pancreatic adenocarcinoma, and breast 

cancer. It has recently been shown that excess aPKC activity can overcome contact inhibited 

growth in epithelial cells and is sufficient for transformation20. It is interesting to note that 

the aPKC iota/lambda and zeta isoforms may have distinct functions in regulating 

proliferation based on their requirement in different cell types. For example, the iota/lambda 

isoform promotes the growth and metastasis of triple-negative breast cancers, a subtype 

defined by the absence of estrogen receptor, progesterone receptor and epidermal growth 

factor receptor 221. However, the zeta isoform is required for the mitogen induced growth of 

squamous cell carcinomas of the head and neck22. Whether these isoforms are indeed 

differentially regulated and/or act on distinct downstream pathways is an important 

outstanding question.

Cellular mechanisms of fate determination by aPKC

In this section, we examine the cellular mechanisms by which aPKC controls cell fate. As a 

regulator of cell polarity, aPKC is a member of the Par (partitioning defective) complex, 

which includes Par-3 (Bazooka in flies), and Par-623,24. Polarity is essential for many 

aspects of cell function, including aPKC’s role in cell fate specification in the Drosophila 
NB. Early in mitosis, asymmetrically dividing NBs begins to polarize such that by 

metaphase, aPKC and the rest of the Par complex localize to one half of the cell cortex, 

while neuronal fate specification factors localize to the other half5,6. Because the mitotic 

spindle is aligned with cortical polarity, the cytokinetic furrow bisects the two cortical 

domains: one daughter cell is formed from the cortex containing the Par complex, and the 
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other forms from the cortex with differentiation factors bound. aPKC is a key output of Par 

complex activity, as it phosphorylates downstream targets to displace them into the 

cytoplasm25. These substrates can localize to cortical regions that lack the Par complex but 

are removed from the cortex once they enter the Par domain (Figure 1B). For at least several 

aPKC substrates, this mechanism appears to involve phosphorylation of short motifs 

enriched for basic and hydrophobic residues that directly interact with phospholipids26,27. 

Phosphorylation of the motif alters its electrostatic character thereby reducing the affinity for 

the membrane and causing displacement of the substrate into the cytoplasm.

Activating aPKC at the NB apical cortex is critical for restricting neuronal fate determinants 

to the basal cortex. These proteins include the coiled-coiled protein Miranda with its cargo 

protein, the transcription factor, Prospero (Pros; Prox1 in mammals), and the translational 

regulator Brain Tumor (Brat; TRIM3 in mammals), as well as the Notch signaling regulator 

Numb5,6. Following mitosis, these determinants induce conversion into a ganglion mother 

cell (GMC) by preventing self-renewal and promoting differentiation. Pros is a homedomain 

transcription factor that translocates to the GMC nucleus and activates genes that specify 

differentiation while repressing genes that are necessary for self-renewal5. High Pros 

expression in NBs is sufficient to drive their differentiation28 while intermediate levels 

induce quiescence29. Differentiation is aided by the translational repressor Brat, which 

regulates important proliferation signals including Cyclin E, β-Catenin, dMyc, and 

Mad30–32, and the repressor of Notch signaling, Numb14,33.

Besides excluding neuronal fate determinants from the self-renewed NB, aPKC also plays a 

direct role in maintaining NB fate. The transcription factor Zif represses NB formation and 

in NBs lacking Zif aPKC is unpolarized34. The aPKC gene contains Zif binding sites and Zif 

appears to repress aPKC expression. Furthermore, Zif is an aPKC substrate and 

phosphorylation prevents its entrance into the nucleus, forming a feedback loop that 

regulates aPKC expression and localization.

Regulation of aPKC during asymmetric cell division is controlled by a large network of 

regulatory factors. The Rho GTPase Cdc42 is a key regulator of the Par complex by 

binding 35–37. The neoplastic tumor suppressor Lgl is a negative regulator of aPKC 

localization and helps ensure that aPKC is restricted to the proper cortical region38,39. 

Dynamin associated protein-160 (Dap160) regulates both aPKC localization and kinase 

activity40. It co-localizes with the Par complex at the apical cortex of dividing NBs and 

interacts with both aPKC and Par6. Dap160, through an unknown mechanism, also helps 

ensure that aPKC is properly polarized and does not enter the basal cortical domain. Other 

factors that control aPKC activity and localization include Clueless41 and Canoe/afadin42,43, 

although the mechanisms by which they do so are poorly understood.

Another important cellular role for aPKC is in orienting the division axis. Several recent 

reviews cover aPKC function in oriented cell divisions in detail44,45.
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Regulation of the cell cycle by aPKC

Cell fate specification can be tightly coupled to the cell division cycle. For example, in 

certain contexts a prolonged G1 cell cycle phase leads to differentiation, while a shortened 

G1 promotes proliferation (i.e. self-renewal)46. Recent evidence from the Xenopus 
neuroectoderm suggests that G1 is controlled in part by the inhibition of G1 specific cyclin/

cdks47. Although many aPKC functions involve its activity at the cell cortex, aPKC is found 

in the nucleus of progenitor cells in this tissue48 consistent with a role in transcriptional 

regulation. This seems to be the case for at least one cell-cycle regulatory protein in 

Xenopus progenitor cells, p27xic. p27xic is a CIP/KIP protein family of cyclin-dependent 

kinase inhibitors (CDKIs) that prevents the G1 to S transition by inhibiting cyclin-dependent 

kinase 2 (Cdk2) through binding and sequestering it from the nucleus (Figure 2A). In this 

manner, the level of p27xic expression in the progenitor cells can indirectly affect the 

decision to proliferate or differentiate by controlling G1 length. But what controls the level 

of p27xic? Recent work has demonstrated that p27xic is an aPKC substrate and 

phosphorylation regulates its ability to inhibit the G1 to S transition. Phosphorylation 

prevents p27xic’s binding to Cdk2 providing a simple, but elegant method for coupling 

aPKC activity to cell cycle control, and ultimately the decision to proliferate or 

differentiate49 (Figure 2B).

Transcriptional programming by aPKC

Hedgehog (HH) signaling is important for cell fate decisions that specify the animal body 

plan50. In the absence of HH ligand, Patched (Ptch) represses HH signaling through 

inhibition of the receptor Smoothened (Smo)51 (Figure 3). When HH binds Ptch at the 

membrane, transcriptional activators such as GLI (Cubitus interruptus in Drosophila) 

become active51. This pathway can regulate stem cell proliferation versus differentiation 

decisions52 and is often reactivated during the initiation and progression of cancers such as 

basal cell carcinomas (BCCs) and lung squamous cell carcinomas (LSCCs)53,54. Binding to 

Ptch requires numerous HH post-translational modifications including specific proteolysis 

followed by palmitoylation by HH acyl transferase (HHAT)51. Once HH ligand binds to 

Ptch, Ptch no longer inhibits Smo, resulting in translocation of GLI to the nucleus and 

subsequent activation of proliferative genes50. Recently, aPKC has been found to regulate 

multiple points within the HH pathway. Activity of aPKC leads to upregulation of the HH 

ligand, phosphorylation of the receptor Smoothened, and activation of the bifunctional 

transcriptional regulator of HH signaling, GLI55–57 (Figure 3).

There are multiple mechanisms by which aPKC regulates HH signaling. First, expression of 

the HHAT enzyme is dependent on aPKC activity. This control occurs by aPKC’s 

phosphorylation of SOX2, an important transcriptional regulator of stem cell maintenance. 

SOX2 modification by aPKC allows it to bind the HHAT promoter region57 (Figure 3). This 

leads to an increase in functional HH ligands. Upregulation of HHAT by aPKC can be 

important for tumorigenic growth by maintaining stemness, as has been demonstrated for 

LSCC oncospheres57.
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HH signaling can also be regulated by aPKC downstream of the Ptch receptor. The GLI1 

transcription factor is an aPKC substrate55, and, as with SOX2, phosphorylation activates 

transcription of GLI1 target genes including aPKC itself (Figure 3). This positive feedback 

loop can lead to the development and progression of basal cell carcinomas (BCCs) 

independent of Smo activation of GLI155 (Figure 3). Currently, Smo inhibitors are used to 

treat BCCs but the tumors can develop resistance50,58. Inhibition of aPKC signaling inhibits 

BCC tumor-growth indicating that inhibitors could have therapeutic potential for treating 

BCCs58. In Drosophila, aPKC phosphorylates Smo and GLI (Cubitus interruptus in 

Drosophila) to polarize them basolaterally, thereby promoting HH signaling during early 

wing development56. However, the molecular mechanism by which aPKC activity is 

controlled during HH signaling remains unclear.

aPKC regulation of Wnt signaling

Many tissues, such as the epidermal and intestinal epithelia, undergo rapid turnover 

requiring constant differentiation from precursor cells for tissue maintenance. In mammalian 

epidermal models, aPKC regulates cell fate by ensuring proper division orientation59. Adult 

intestinal stem cells are continually replenishing the cells of the epithelium, which is turned 

over ever 3–5 days60,61. In these adult stem cell models, precise regulation of β-Catenin 

(Wnt signaling) and Yap (Hippo pathway) is required for maintenance of tissue homeostasis 

and prevention of tumor initiation and progression1,62.

In the absence of Wnt ligands, β-Catenin is degraded by the “destruction” complex 

composed of the tumor suppressor adenomatous polyposis coli (APC), scaffolding protein 

Axin, glycogen synthase-3 (GSK-3β) and casein kinase 1 (CK1). While the complex is 

intact, β-Catenin is phosphorylated by GSK-3β and degraded by the proteasome63. In the 

absence of nuclear β-Catenin, downstream Wnt-dependent target genes are not transcribed, 

inhibiting proliferative and growth signals (Figure 4). When Wnt is bound to the receptor 

Frizzled (FZD) and a co-receptor, Axin is thought to be degraded and the destruction 

complex dissociates, concomitantly stabilizing β-Catenin levels, allowing for nuclear 

translocation and binding to co-activator TCF/LEF proteins. Ultimately, this leads to the 

transcription of Wnt-dependent target genes63 (Figure 4). Wnt signaling has been implicated 

in polarity through interactions with the Par complex in migratory cells64. Recent work has 

shed light on how aPKC might be playing a direct roll in Wnt signaling.

aPKC has now been identified as a component of destruction complex that interacts with 

Yap and β-Catenin65. While best known for their role in Hippo pathway signaling66, Yap and 

Yaz also interact with the destruction complex62,67. aPKC phosphorylates both β-Catenin 

and Yap, preventing their nuclear accumulation, thereby inhibiting Wnt and Hippo 

downstream targets required for proliferation and cell growth65 (Figure 4). β-Catenin must 

be phosphorylated at its aPKC phosphorylation site (either by aPKC or another kinase) 

before GSK-3β can act on it68,69. Yap activity is increased by aPKC, in a manner that is at 

least partially independent from canonical Hippo signaling. In Drosophila, GSK-3β regulates 

polarity by phosphorylating aPKC, which targets it for proteasomal degradation70 

suggesting crosstalk between these pathways.
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aPKC’s regulation of JAK/Stat

Janus Kinase (JAK) and Signal transducer and activator of transcription (Stat) are important 

growth regulators that play a prominent role in development and tumor progression71–73. 

Numerous signaling pathways activate JAK/Stat by inducing JAK recruitment to Stat and 

subsequent Stat phosphorylation. During IL6 cytokine activation, phosphorylation of the 

Stat3 isoform by JAK leads to Stat3 nuclear translocation where it activates proliferation and 

survival genes and represses differentiation genes74. Stat3 has also been implicated in the 

maintenance of cancer stem cells (CSCs)75,76.

In a recent study, aPKC activity was found to activate Stat3 in a mammalian model of breast 

cancer77. Activation occurs via aPKC’s interaction with the NF-κb signaling pathway, which 

is up regulated in many human cancers78. In this system, aPKC becomes active in the 

cytoplasm after loss of polarity where it activates IKK ultimately causing increased IL6 

production79,80. This leads to a positive feedback loop associated with proliferation and 

tumor progression (Figure 5). Up-regulation of IL6 by active aPKC in unpolarized cells also 

occurs in Drosophila models that combine polarity loss with oncogenic transformations81. In 

fact, constitutively active aPKC is sufficient to induce IL6 (Upd in Drosophila) expression, 

although the effect is dependent on the Drosophila ortholog of YAP (Yki)81. Whether or not 

aPKC induces IL6 through YAP via the canonical Hippo pathway signaling or as part of the 

destruction complex (i.e. Wnt signaling), remains to be resolved.

The above examples suggest that the output of aPKC activity is dependent on the cellular 

context. For example, while aPKC promotes self-renewal and cell growth in neuroblasts, it 

seems to inhibit self-renewal in the intestinal epithelium. This conundrum highlights the 

necessity of discovering and understanding the mechanisms that regulate aPKC activity in 

spatial and temporal manner in these diverse cell and organismal contexts.

Regulation of aPKC: localized activity

The cellular mechanisms by which aPKC regulates differentiation suggest a high degree of 

both catalytic and spatial control9. For example, the cortical exclusion of fate determinants 

in polarized neuroblasts during asymmetric cell division requires that aPKC activity is not 

only tightly coupled to the cell cycle, but that it is localized to a specific cortical domain. 

The central role of aPKC in many differentiation pathways means that incorrect activity 

levels could lead to improper fate specification or proliferation, as described in the previous 

sections. In general, PKC family enzymes are controlled primarily by kinase domain 

phosphorylation and allosteric mechanisms (Figure 1A). In aPKCs, the kinase domain is 

phosphorylated at the activation loop and turn motif8. A third site present in other PKC 

isoforms, known as the hydrophobic motif, is a non-phosphorylatable residue in aPKCs. The 

activation loop is modified by Phosphoinositide-Dependent Kinase 1 (PDK1)8. For some 

time, PKC turn motifs were thought to be modified as the result of autophosphorylation, but 

elegant work by Parker and co-workers demonstrated that the turn motif is phosphorylated 

by an exogenous kinase82. Interestingly, at least in some contexts, this kinase can be the 

mammalian target of rapamycin 2 complex (mTORC2)83,84. However, the physiological role 

of these phosphorylations in regulating aPKC remains unclear. They may be constitutive, 
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“priming” modifications85, and recent structural evidence even suggests that they may not be 

required for activity86.

In addition to modification of the kinase domain by phosphorylation, PKCs can also be 

regulated through allosteric mechanisms by binding of upstream pathway components to the 

NH2-terminal regulatory domain9. Although aPKCs have a different complement of 

upstream regulators compared to their conventional and novel counterparts, they share 

several important regulatory elements (Figure 1A). Perhaps most important is the 

“pseudosubstrate”, which has many of the sequence characteristics of a normal substrate so 

that it can bind in the kinase domain active site, but an alanine at the position that would be 

phosphorylated prevents progression through the catalytic cycle8,87. Determining how the 

pseudosubstrate is removed from the kinase domain’s active site is a key part of 

understanding PKC activation mechanisms, but other domains, such as the C1, may also 

directly repress kinase activity87,88. The C1 cysteine rich domain is directly COOH-terminal 

to the pseudosubstrate in all PKCs, and in the single structure of a full-length PKC, the C1 

binds a lobe of the kinase domain where it could potentially inhibit activity89. aPKC’s 

regulatory domain is distinguished from the other family members by the presence of a PB1 

domain that heterodimerizes with certain PB1s from other proteins, and a COOH terminal 

PDZ ligand sequence8,90–92.

The Rho GTPase Cdc42 indirectly regulates aPKC by binding to the Par complex member 

Par-6. GTP-bound Cdc42 interacts with the semi-crib and PDZ domain of Par-6 causing a 

conformational change, which is essential for aPKC polarization35–37. Par-6 contains a PB1 

domain that binds aPKC’s PB1 and this interaction, via an unknown mechanism, displaces 

the pseudosubstrate from the kinase domain active site87,9293 (Figure 6). Interestingly, Par-6 

is overexpressed in breast cancer cells and induces their proliferation94. Par-6 is also 

required to recruit aPKC to the cortex, where lipid binding can play a direct role in the 

activation of aPKC downstream of phosphatidylionositol 3-kinase (PI3K) by binding 

phosphatidylinositol 3,4,5-phosphate (PIP3)95–97. The lipid ceramide also activates aPKC by 

directly interacting with the kinase domain, an interaction that is important for junction 

formation in epithelia and signaling during cellular stress conditions98,99. Coupling of aPKC 

protein-protein and protein-lipid interactions to activation provides an elegant mechanism 

for ensuring that aPKC is active at the right place and time. Cdc42 may also play a direct 

role in controlling aPKC’s kinase activity as the Par-6 semi-CRIB and PDZ are important 

for full activation of aPKC by Par-6, further coupling aPKC localization and activity to the 

NB apical cortex35,37,100. In the Drosophila neuroblast, loss of either Par-3 or Par-6 leads to 

improper aPKC localization, defective asymmetric cell division, and improper 

development15,35,101.

While Cdc42 and Par-6 are critical for increasing the amount of cortically localized, active 

aPKC, the neoplastic tumor suppressor Lgl is an important repressor of localization and 

activity that helps ensure the basal cortical domain remains free of aPKC (and therefore 

bound to neuronal fate determinants)38,39. The mechanism by which Lgl inhibits aPKC has 

remained enigmatic. In NBs lacking Lgl activity, aPKC activity is no longer restricted to the 

apical cortex leading to an increase in proliferation and a loss of apico-basal polarity39. 
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aPKC counteracts Lgl’s repression by phosphorylating it and displacing it into the 

cytoplasm38. How Lgl inhibits aPKC’s localization to the basal cortex remains unknown.

Concluding remarks

How cellular diversity is generated during development is one of the most fundamental 

questions in Biology. Once development is complete, homeostasis requires the constant 

activity of progenitor cells to replenish rapidly turned over differentiated products. Each of 

these processes is highly intertwined with proliferation pathways, such that defects are 

commonly associated with tumorigenesis. Our understanding of the molecular mechanisms 

that control cell fate decisions is still in its infancy, but it is now clear that the atypical 

members of the PKC kinase family are involved in many aspects of fate specification. Some 

of these functions relate to aPKC’s activity in regulating cell polarity, but there are newly 

identified polarity-independent aPKC functions (both in normal and pathological Biology) 

that are essential for conferring proper cell identity. We expect that many more aPKC 

substrates and downstream pathways remain to be found, and that fitting them into the 

puzzle of cell fate determination will help provide a more complete picture of this 

fundamental process. Furthermore, the mechanisms that govern the localized activity of 

aPKC are just now being uncovered and will no doubt be important for understanding the 

diversity of physiological contexts in which aPKC functions.
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Highlights

• atypical Protein Kinase C (aPKC) regulates stem cell fate decision using 

multiple mechanisms.

• aPKC polarizes fate determinant proteins during asymmetric cell division.

• aPKC shortens the cell cycle to promote cell proliferation.

• aPKC phosphorylates conserved transcription factors to regulate cell fate 

decisions.

• aPKC controls cell fate decision by polarity dependent and independent 

mechanisms.
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Figure 1. 
PKC family kinases and regulation and function of atypical Protein Kinase C. A. Schematic 

of the protein kinase C family showing domain architectures, demonstrating both common 

and unique aspects of each PKC family member (PS = pseudosubstrate; C1 and C2 are 

cysteine rich domains; PB1 Phox/Bem1 domain). B. Schematic of Par-mediated polarity 

mechanism. aPKC generates cellular polarity through phosphorylation and exclusion of 

cortically localized substrates (pink).
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Figure 2. 
aPKC regulation of the cell cycle. A. When aPKC levels are low, p27Xic1 is able to elongate 

the G1 to S transition by binding to Cdk2, which can lead to differentiation in Xenopus 
neuroectoderm progenitor cells. B. When aPKC levels are high, p27Xic1 phosphorylation by 

aPKC blocks p27Xic1 binding of Cdk2, shortening the G1 to S transition to promote 

proliferation.
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Figure 3. 
aPKC regulation of Hedgehog signaling. In basal cell carcinomas (BCCs) and lung 

squamous cell carcinomas (LSCCs) aPKC is able to phosphorylate GLI (BCCs) and SOX2 

(LSCCs) transcription factors. These phosphorylations can lead to positive feedback, 

upregulating HH signaling genes including HHAT and aPKC itself. This activation can 

occur independently of HH ligand receptor binding. In the Drosophlia developing wing, 

aPKC phosphorylates the Smoothened receptor to regulate its activity and its subsequent 

proper development.
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Figure 4. 
aPKC regulation of Wnt signaling. aPKC is part of the destruction complex, where it can 

phosphorylate Catenin to prime it for (2) GSK-3 phosphorylation and subsequent 

proteasomal degradation. aPKC is also able to phosphorylate YAP, leading to proteasomal 

degradation. Loss of aPKC or Wnt binding leads to disassembly of the destruction complex 

and activation of Wnt signaling favoring a proliferative state. The fate of aPKC once the 

destruction complex is inactivated is unknown.
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Figure 5. 
aPKC regulation of JAK/Stat signaling. Loss of polarity leads to cytoplasmic aPKC which 

causes activation of IKKβ, degradation of IB, and translocation of p65 to the nucleus to 

upregulate IL6 production. The increase in IL6 leads to a positive feedback loop with JAK/

Stat3 signaling, which, when unregulated, leads to proliferation and tumor progression in a 

breast cancer model.
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Figure 6. 
Regulation of aPKC localization and activity. Par-6’s interaction with aPKC’s PB1 domain 

disrupts the pseudosubstrate’s (sequence = RRGARR) inhibition of the kinase domain. The 

C1 domain may also play a role in regulating aPKC kinase activity.
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