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Abstract

EMAN2.1 is a complete image processing suite for quantitative analysis of greyscale images, with 

a primary focus on transmission electron microscopy, with complete workflows for performing 

high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical 

tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide 

the first detailed description of the high resolution single particle analysis pipeline and the 

philosophy behind its approach to the reconstruction problem. High resolution refinement is a 

fully automated process, and involves an advanced set of heuristics to select optimal algorithms for 

each specific refinement task. A gold standard FSC is produced automatically as part of 

refinement, providing a robust resolution estimate for the final map, and this is used to optimally 

filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to 

reduce model bias during refinement, and to permit cross-validation using other computational 

methods.

Graphical Abstract

Keywords

CryoEM; single particle analysis; image processing; 3-D reconstruction; structural biology

Corresponding Author: Steven Ludtke, Biochemistry Dept., 1 Baylor Plaza, Houston, TX 77030, sludtke@bcm.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Methods. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:
Methods. 2016 May 1; 100: 25–34. doi:10.1016/j.ymeth.2016.02.018.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

EMAN was originally developed in 1998 as an alternative to SPIDER [1,2] and IMAGIC [3] 

the two primary software packages used for single particle reconstruction at that time. Its 

successor, EMAN2[4], has been under development since 2003, using a modular design 

which is easy to expand with new algorithms. This also marked the beginning of 

collaborative development with the SPARX project[5], which is co-distributed with 

EMAN2.1, and shares the same C++ core library, but has its own set of workflows and its 

own conceptual framework. It is now one of over 70 different software packages identified 

as being useful for CryoEM data processing by the EMDatabank. In 2014, based on EMDB 

statistics, the top seven packages accounted for 96% of published single particle 

reconstructions: EMAN[4], SPIDER[1,2], RELION[6], IMAGIC[3], SPARX[5], XMIPP[7] 

and FREALIGN[8]. Surprisingly, each of the seven packages takes a significantly different 

approach towards the single particle reconstruction problem. With highly homogeneous data 

with high contrast, it is possible to achieve virtually identical reconstructions using multiple 

software packages. However, if the data suffers from compositional or conformational 

variability, a common issue which may often be biologically significant, then each package 

will be impacted by the variability in different ways, and there can be considerable value in 

performing comparative refinements among multiple software packages to better understand 

the specific variations present in the data.

In this manuscript, we will focus not on the problem of heterogeneous data, but rather on a 

canonical refinement of highly homogeneous data, and the methods used in EMAN2.1 to 

produce a reliable high resolution structure from the data. The fundamental problem faced 

by all of these software packages is the same. A field of monodisperse macromolecules is 

embedded in a thin layer of vitreous ice[9] and imaged on a transmission electron 

microscope calibrated for optimal parallel-beam conditions. Ideally, each particle will be in 

a random orientation, and be well away from the perturbing influences of the air-water 

interface and/or any continuous substrate (carbon or gold). The practical reality often does 

not match this idealized case. Frequently some level of preferred orientation is observed in 

the particle population, and there will always be a fraction of particles which have been 

partially denatured or otherwise perturbed from their idealized conformation, even in the 

absence of conformational flexibility. Such conformational variability may, in fact, be 

functionally relevant, rather than an artifact to be eliminated.

Each particle image collected on the microscope represents a projection of the Coulomb 

potential of the particle, distorted by the properties of the microscope optics and detector, 

generally described by approximate, but well-understood contrast transfer (CTF) and 

modulation transfer (MTF) functions[10], respectively, which are corrected for during data 

processing. These artifacts are largely well understood, and corrections for these are a 

fundamental part of the reconstruction process in any modern cryoEM software package. 

Since the particles are in random orientations, the orientation of each particle must be 

determined before they can be combined to produce a 3-D reconstruction. This can occur via 

projection matching in real or Fourier space or self or cross-common-lines in Fourier space. 

In some cases particles are classified and grouped together prior to, or as part of orientation 
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determination. Finally, in some cases, Bayesian methods are used, in which each particle is 

placed fractionally in multiple orientations when any uncertainty is present. There are 

advantages and disadvantages of each of these approaches. In the following sections, we will 

focus on the approach which has evolved over the last 17 years to produce the current 

EMAN2.12, which can produce high resolution reconstructions very efficiently, often with a 

small fraction of the computational requirements of its competitors.

2. Single Particle Reconstruction in EMAN

2.1. Project Manager

EMAN2.1 has a graphical workflow manager called e2projectmanager. This program can 

guide the user through canonical single particle reconstruction, subtomogram averaging and 

related tasks. It will use standardized naming conventions for folders and image files, 

producing a well organized project with a complete record of all processing performed 

therein. In this manuscript, we describe the methodologies and algorithms employed to 

achieve a high resolution reconstruction. However for those attempting to learn how to use 

the system, we refer the reader to extensive online tutorials (http://blake.bcm.edu/eman2) 

and documentation for detailed usage instructions.

2.2. Movie Mode Imaging

Until a few years ago, images were collected on film or CCD cameras in a single exposure, 

and if there were any stage drift during the, typically ~1 second, exposure the images would 

be discarded. Similarly, if there were any specimen charging or a significant amount of 

astigmatism, the images would also be discarded. With the development of direct detectors 

[11], a single exposure is now often subdivided into many frames forming a ‘movie’ with up 

to ~100 frames. By aligning the frames before averaging to produce a ‘micrograph’, it is 

often possible to eliminate the majority of the drift which was previously a large 

problem[12]. There are additional variants of this methodology which focus on aligning the 

individual particles within a micrograph, since they may not all move in a uniform way 

[13,14]. There are a number of software packages for performing whole-frame alignment 

[15,16], and this issue remains an active area of development. Since this is still such a 

rapidly evolving area, we will not focus on the details of this process in this manuscript. 

EMAN2.1 has a program, e2ddd_movie, for whole-frame movie processing and another, 

e2ddd_particles, for per-particle alignment, both of which are functional, but remain under 

active research. The user is also free to use any other tool for movie mode alignment they 

prefer, and can import the resulting averaged micrographs, or particles directly into the 

refinement pipeline.

2.3. Image Evaluation

Data may be imported at any stage prior to CTF correction. If images are brought into the 

project as micrographs, rather than boxed out particles, the first steps in processing are 

micrograph quality assessment, and whole-frame defocus and astigmatism estimation. There 

is an interactive program (e2evalimage) which segments each micrograph into tiled boxes, 

then computes the average power spectrum of these tiles as well as their rotational average. 

The user can assess any residual drift and interactively adjust the automatically determined 
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defocus and astigmatism. There is also an automated program which makes the CTF 

estimate for all images without user interaction (e2rawdata), as well as programs for 

importing values from other programs such as CTFFIND [17] and RELION [6] or using the 

new EMX format (http://i2pc.cnb.csic.es/emx). Typically, for small projects with a few 

hundred images, the user will interactively assess the image quality as well as ensure 

accurate initial fitting. This may be impractical for larger projects with thousands of images, 

so the automatic import tool may be preferable in those situations. There is an opportunity 

later in the workflow to make automatic quantitative assessments which do a reasonable job 

of detecting low quality images through use of thresholds in cases where manual assessment 

is impractical.

2.4. Box Size Selection

Before particle picking/boxing, regardless of what software is used, it is important to select a 

good box size for your project. There are three concerns when selecting a box size. First, the 

microscope CTF & MTF (Contrast Transfer Function & Modulation Transfer Function) 

causes particle information to become delocalized, so for proper CTF correction without 

artifacts or information loss, the box must be large enough to include this delocalized 

information. Second, as discussed in section 2.6, EMAN2.1 requires that the box size be 1.5 

– 2.5 times larger than the maximum dimension of the particle to perform accurate SSNR 

(spectral signal to noise ratio) estimations. Third, the specific choice of box size can have a 

significant impact on refinement speed. Algorithms like the FFT, which are used very 

heavily during processing, are very sensitive to the specific box dimensions. There are cases 

where increasing the box size can actually make processing faster, not slower. For example, 

if using a box size of 244, switching instead to a size of 250 can make the refinement run 

nearly 2 times faster. There is a full discussion of this issue, and a list of good sizes in the 

online documentation (http://blake.bcm.edu/emanwiki/EMAN2/BoxSize).

There may be some particles, such as very large viruses, where, due to large particle size, 

meeting the canonical size requirement would make the box size excessive. For example, a 

virus with a diameter of 1200 Å, sampled at 1 Å/pixel would technically require a box size 

of 1800 pixels, which could lead to issues of memory exhaustion, and significant slowdowns 

in the 3-D reconstruction. In such cases, reducing the box size below recommended limits 

may be the only practical choice, even if it produces some minor artifacts.

When importing particle data from another software package or non-EMAN particle picking 

tool, if the box size doesn’t meet EMAN2’s requirements, ideally the particles should be re-

extracted from the original micrograph with a more appropriate size. If this impossible due 

to unavailability of the original micrographs or other problems, then CTF correction should 

be performed on the particles with their current suboptimal size, and they can be padded to a 

more appropriate size during the phase-flipping process, along with appropriate 

normalization and masking to prevent alignment bias. It is critical that particles not be zero-

padded or masked prior to CTF/SSNR estimation and phase-flipping. To mask particles in 

such a situation typically the phase-flipped particles would be processed by setting the mean 

value around the edge of each particle to zero, resizing the box, then applying a soft 

Gaussian mask falling to zero around each particle to eliminate the corners of the original 
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box, without masking out any of the actual particle density. These tasks can be completed 

using e2proc2d.

2.5. Particle Picking

There are a wide variety of particle picking algorithms available in the community 

developed over the years, and this has been an active area for over two decades[18]. EMAN1 

used a reference-based picker, which works quite well, but runs a risk of model-bias when 

selecting particles from low contrast micrographs. EMAN2.1 currently has two algorithms, 

an implementation of SWARM[19] and a Gaussian based approach implemented through 

SPARX (but shared with EMAN2). Neither of these approaches require or are biased by 

projections of a previous 3-D map. For particles with high symmetry, like icosahedral 

viruses, there are fully automated approaches such as ETHAN[20] which can do a nearly 

perfect picking job even with very low contrast images. Various algorithms also vary widely 

in their ability to discriminate good particles from bad in cases where there is significant 

contamination or other non-particle objects present in the image. There is an advantage if 

picking is performed in EMAN2.1 or if coordinates are imported rather than importing the 

extracted particles. For example, box sizes can be easily altered, and per-particle movie 

mode alignment cannot be performed without per-particle coordinate information.

2.6. Particle-based CTF and SSNR Assessment

One of the unique features in EMAN2 is its system of particle-based data quality 

assessment. Standard data assessment methods in Cryo-EM, like the whole micrograph 

assessment provided in e2evalimage, treat any contrast in the image which produces Thon 

rings (oscillatory CTF pattern) as signal for purposes of image assessment. There are 

multiple problems with this assumption. First, if there are contrast producing agents such as 

detergent or other large-molecule buffer constituents, then these produce contrast across the 

full depth of the ice layer, which in many cases is 1000+ Å thick, producing CTF pattern 

averaging over a range of defocuses. At low resolution this will tend to average out to a 

single defocus value near the center of the ice, which is a good approximation for most 

purposes, however at high resolution it may cause CTF oscillations to interfere destructively.

A second problem with this assumption is that, from the perspective of the reconstruction 

algorithm, “signal” refers only to features present in the particle which coherently average 

into the 3-D reconstruction. If there are broken particles, a carbon film, or detergent 

producing contrast, they will be treated mathematically as noise by any 3-D reconstruction 

algorithm. This fact can be critical when assessing whether sufficient contrast exists within 

an image to proceed with image processing, and for proper relative weighting of the 

particles from different micrographs.

To achieve a better estimate of the true contrast provided by only the particle, we perform 

this quality estimate on boxed out particles, rather than entire micrographs. This assumes 

that the selected particles are largely good, well-centered, and that box size 

recommendations have been followed. The goal of this method is to isolate the contrast due 

to the particle (signal) from the contrast due to anything else (noise). This is accomplished 

using a pair of complementary real-space masks acting as windowing functions for the 
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Fourier transform (Fig. 1). The exterior mask isolates a region of each box expected to 

contain background, using these regions much like the solvent blank in a spectroscopy 

experiment. While there will be cases, for example, where neighboring particles intrude on 

this region, unless the crowding is severe, this will simply cause a modest underestimation of 

the SSNR. The central region of each box is then expected to contain the particle of interest 

with background noise comparable to the background found in the other region. If the 

rotationally averaged power spectrum of the middle region is M(s) and of the peripheral 

region is N(s), then we can estimate the SSNR as (M(s)-N(s))/N(s) which is then averaged 

over all particles in one micrograph. M(s)-N(s) is the background subtracted power 

spectrum, which can be used for CTF fitting and structure factor estimation. While this 

SSNR estimate can be subject to minor errors due to particle crowding, or poor box size 

selection, it should still be far more accurate than any method based on the entire 

micrograph, or even particle-based methods which assume a non-oscillatory background.

In EMAN1, the background subtraction method was based on fitting a sum of exponential 

decays through the zeroes of the presumed CTF. However, with counting mode detectors 

now becoming widely used, there is a new problem with coincidence loss at intermediate 

spatial frequencies. This loss appears as a significant dip in both signal and noise at 

intermediate resolutions. Rather than trying to build ever more complicated functional 

models of the expected background, we opt instead to simply measure the background as 

described above. Once an estimate of the defocus is available, we can also compute a simple 

background curve which interpolates between the zeroes of the CTF. This curve produces a 

stronger CTF pattern which can be used for more accurate defocus/astigmatism fitting. Since 

the fitting is performed directly on particle data, we can be confident that the defocus we are 

seeing is the average defocus of the actual particles, minimally perturbed by the defocus of 

any thick or thin carbon present in the image.

Aside from the background and full support for astigmatism correction, the CTF model in 

EMAN2.1 remains the standard weak-phase approximation used in EMAN1[21]. Phase-

flipping corrections are performed as a pre-processing step, including astigmatism if present. 

Several different algorithms are available for performing CTF amplitude correction and final 

filtration of the 3-D reconstruction, as discussed in 2.11. CTF parameters are stored in the 

header of the phase-flipped particles for later use during processing, including the SSNR 

estimate, which is available as an optional weighting factor in many of the alignment 

algorithms and similarity metrics.

2.7. Particle Sets

It is frequently desirable to perform multiple refinements using different subsets of the full 

particle data set. For example, when generating a low resolution initial model, it is often 

useful to use the highest defocus particles, which have the highest contrast at low resolution. 

Later in refinement, when high resolution is being targeted, it may be desirable to compare 

the refinement achieved with only the very best micrographs, with the highest SSNR at high 

resolution, for example, with a refinement performed using all of the available data. This can 

help identify any possible issues with model/noise bias and improve confidence in the 

veracity of the final reconstruction.
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EMAN2.1 includes the ability to group particles together into text files with a .lst extension, 

with each line in the file pointing to a particle in another file containing actual image data. 

EMAN will treat these .lst files as if they were actual image stack files when viewed as part 

of a project. Unlike STAR files used in some other packages, these files are used strictly for 

assembling subsets of particles, and do not contain per particle metadata, which, in EMAN2, 

is stored centrally for each micrograph in the info/*.json files and/or actual image file 

headers.

A standard naming convention is used for all particle files in the system. Particles from each 

micrograph are in a single stack file called, for example, particles/micro1234.hdf. Unlike 

EMAN1/2.0, in EMAN2.1 variants of each particle data file can be easily generated and may 

include different sampling and or box-size in addition to any filtration or masking the user 

may wish to apply as a preprocessing operation. Any such particle variants are named with a 

“__” (double underscore) separator, e.g. micro1234__ctf_flip.hdf, or 

micro1234__ctf_filtered.hdf. Each additional stack will include the same particles as the 

original parent file, but with arbitrary user-specified processing applied. Moreover, when 

sets are assembled from portions of the particle data, the set generator looks for all variants 

of each micrograph particle stack and forms additional sets corresponding to each version. In 

subsequent processing, the user can then use whichever variant they like, regardless of which 

portion of the data they selected. For example, down-sampled and low-pass filtered particles 

could be used to generate reference free class averages, and then the corresponding particles 

at full sampling could be extracted for further processing.

2.8. 2-D Reference Free Class-averaging

While demanding that 2-D class-averages appear like one of the projections of a 3-D map is 

a powerful restraint, this restriction is undesirable for initial analysis of our 2-D particle data. 

If, for example the particles exhibit conformational variability, then it will not be possible to 

construct a single 3-D map which is consistent with all of the data. For this reason, initial 

class-averaging is performed using reference-free, also known as unsupervised, methods.

e2refine2d uses an iterative process to generate reference-free class-averages (Fig. 2), which 

requires an initial set of class-averages as seeds. While the process is termed ‘reference-free’ 

meaning no external references are provided and no 3-D projections are involved, the 

previous round of results is used at the beginning of each iteration to align the particles. In 

the first iteration, alignment references are derived from rotational-translational invariants 

computed for each particle. These initial ‘seed’ averages are frequently of relatively low 

quality, and often classes will contain poorly discriminated mixtures of populations. Much 

like 3-D initial model generation, the sole purpose of this step is to provide some self-

consistent alignment references to bootstrap the iterative process.

Once seed averages have been produced, the iterative process begins. A user-selected 

number of the least-similar initial averages are identified and mutually aligned to one 

another. The particles are then aligned to each of these initial averages, using the alignment 

from the best-matching class-average. Note that there is no classification process occurring 

at this point, this is strictly alignment to try and bring similar particles into a common 2-D 

orientation, and is based on a small fraction of the reference averages. The similar program 
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in EMAN1 (refine2d) made use of all of the averages as alignment references, but not only 

did this dramatically slow the process, but it could actually make the particle alignments less 

self-consistent, as similar class-averages were often in slightly different 2-D orientations.

Once the particles are aligned, PCA (principal component analysis) is performed on the full 

set of class-averages after mutual alignment similar to that performed on the particles. Since 

the averages are derived from the particles, the first few basis vectors produced by 

performing PCA on the averages should be quite similar to those from the full set of 

particles. A projection vector is then computed for each particle into the subspace defined by 

the first N PCA images, where N is user selectable (typically ~10). K-means classification is 

then applied to these particle subspace projections to classify particles into the user specified 

number of classes.

The classified particles are then aligned and averaged in a separate iterative process for each 

class-average (Fig. 2, lower loop). In this process, particles are mutually aligned and 

compared to the previous iteration average. The aligned particles are then averaged, 

excluding a fraction of the particles which were least-similar to the previous iteration 

average. This new average then becomes the alignment reference for the next iteration. The 

number of iterations, selection of alignment and averaging algorithms, and fraction of 

particles to exclude can all be specified by the user, though the default values are normally 

reasonable. The final averages then become the seeds for the next round of the overall 

iterative class-averaging process. These averages can then be used for initial model 

generation (2.10), heterogeneity analysis, assessment of final reconstructions (2.12), and 

other purposes.

2.9. Symmetry

When solving a structure by single particle analysis, the internal symmetry of the structure 

must be specified. The question of symmetry could be viewed as somewhat philosophical, as 

it should be obvious that at room temperature in solution, even the most rigid protein 

assembly will not be truly symmetric to infinite resolution. So the question under 

consideration is whether one should impose symmetry on the map at some specific target 

resolution or to answer some specific biological question.

For example, icosahedral viruses often have one vertex which differs from the others. 

However, if full icosahedral (5-3-2) symmetry is imposed, significantly better resolution will 

be achieved. Even with one different vertex, the other 11 nearly identical vertices will 

dominate the final average. A common approach in such situations is to impose icosahedral 

symmetry and refine to the highest possible resolution, then to relax the symmetry and 

obtain an additional lower resolution map with no symmetry, and use the pair of 

reconstructions for interpretation.

Another illustrative example is CCT [22]. CCT is a chaperonin, which forms a 16 mer, 

consisting of 2 back-to-back 8 membered rings. Unlike simple chaperonins such as GroEL 

or mm-cpn, where the subunits are identical, each CCT ring consists of 8 different, but 

highly homologous, subunits, which cannot even be structurally distinguished in the closed 

state until quite high resolution has been achieved. The highest symmetry that could be 
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specified for this system is clearly D8, which might be suitable under some conditions to 

resolutions as high as 5–6 Å. Beyond this point one would expect the distinct structure of 

each subunit within a ring to begin to emerge. As the two rings are compositionally 

identical, it could still be argued that D1 symmetry should still be imposed. However, each 

subunit also binds and hydrolyses ATP, and differential binding would clearly break even 

this symmetry. The question is whether this symmetry breaking occurs in any single pattern 

which would permit multiple particles to be averaged coherently. To examine this question, 

symmetry would need to be completely relaxed.

When the symmetry of a particular target is unknown, there are various approaches to help 

elucidate this information directly from the CryoEM data. Very often a simple visual 

inspection of the reference-free 2-D class averages can answer the question. However, there 

can be cases where, due to preferred orientation, a 2-D view along the symmetric axes is 

simply not present sufficiently in the particle population to emerge in 2-D analysis. There 

can also be situations where the low resolution of the averages combined with a large 

interaction surface between subunits can make it difficult to observe the symmetry even 

along the symmetric axis. That is, the symmetric view may appear to be a smooth ring, 

rather than to have a discrete number of units. In short, there may be situations where the 

symmetry is not immediately obvious. Performing multiple refinements with different 

possible imposed symmetries can help resolve ambiguities, but even this may not always 

resolve the issue at low resolution.

Performing a refinement with no symmetry imposed is guaranteed to produce a structure 

which is asymmetric to the extent permitted by the data. If the structure were truly 

symmetric, then symmetry will be broken by model bias. When attempting to relax the 

symmetry of a map with only very slight structural asymmetries, EMAN2.1 refinement 

offers the –breaksym option, which will first search for the orientation of each particle 

within one asymmetric unit, and then perform a second search in that specific orientation 

among the different asymmetric subunits. This tends to produce much more accurate 

orientations in the case of near symmetry.

Given that all large biomolecules possess handedness, mirror symmetries are prohibited, 

leaving us with a relatively small group of possible symmetries to consider, all of which are 

supported in EMAN[23]: Cn symmetry is a single n-fold symmetry aligned along the Z axis; 

Dn symmetry is the same as Cn, but with an additional set of n 2-fold symmetry axes in the 

X-Y plane, one of which is positioned on the X-axis; octahedral symmetry is the symmetry 

of an octahedron or cube, with a set of 4-3-2 fold symmetries arranged accordingly, with the 

4-fold on Z; cubic symmetry is, strangely, not the full symmetry of a cube, but includes only 

the 3-2 components of that higher symmetry, with the 3-fold on the Z axis; finally, 

icosahedral symmetry has 5-3-2 fold symmetries, with EMAN using the convention that the 

5-fold axis is positioned along Z and a 2-fold on X. For icosahedral symmetry, a commonly 

used alignment convention is the 2-2-2 convention where orthogonal 2-fold axes are on the 

X,Y and Z axes. e2proc3d provides the ability to move between these orientation 

conventions. There is also support for constrained helical symmetry, where the symmetry 

specification includes a limit on the (otherwise infinite) number of repeats.
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Details on all of these supported symmetries is available via the e2help command or in the 

documentation (http://blake.bcm.edu/emanwiki/EMAN2/Symmetry).

2.10. Initial Model Generation

High resolution 3-D refinement is also iterative, and thus requires an 3-D initial model. 

There are various strategies in the field for producing initial models ranging from common-

lines [24], to random conical tilt [24] to stochastic hill climbing [25] to subtomogram 

averaging. The canonical approach for low-symmetry structures (with C or D symmetry) is 

embodied in e2initialmodel. This program is effectively a Monte-carlo performed using a 

subset of manually selected class averages (discussed in 2.8) as input. The user must identify 

as broad a set of different particle views as possible without including projections of other 

compositional or conformational states of the particle.

Input class-averages are then treated as if they were particles in a highly optimized form of 

the method used for high resolution refinement (discussed in 2.11). The class-averages are 

compared to a set of uniformly distributed projections of an initial model, which is used to 

identify the orientation of each class-average, which is then in turn used to make a new 3-D 

model. The initial model is produced by low-pass filtering to 2/5 Nyquist and masking to 2/3 

of the box size, pure Gaussian noise, independently for each of N different starting models. 

The goal of this process is to produce random density patterns roughly the same size as the 

particle. After refining each of these random starting models, the final set of projections is 

compared against the class-averages as a self-consistency test, and the results are presented 

to the user in order of agreement between class-averages and projections (Fig 3).

The 2-D images produced in *_aptcl.hdf files consist of pairs of class-average/projections 

for the corresponding 3-D map. It should be apparent in Fig 3 that the pairs for the better 

starting model (A) match quite well, whereas the pairs for the poor starting model (B) have 

significant disagreement. While agreement between projections and class-averages is not 

proof of an accurate starting model, any significant discrepancies are proof of a bad starting 

model. For this reason, it is not always possible to identify bad starting models using this 

method.

There is also a program called e2initialmodel_hisym for particles with octahedral, cubic or 

icosahedral symmetry. This program also requires class-averages as inputs, but uses a 

method similar to self-common-lines to identify the correct orientation of each class-average 

with respect to the symmetry axes, and generally will produce much better initial models for 

such high symmetry objects.

Other methods such as random conical tilt and subtomogram averaging are also 

available[26], but each of these methods requires following a complete workflow and 

collecting specialized data, which is beyond the scope of this paper.

2.11. High Resolution Refinement

High resolution refinement in EMAN is effectively a fully automated process, using a 

program called e2refine_easy, once the data has gone through the preprocessing steps above. 

The internal process used for refinement is outlined in Fig. 4. While the user does not need 
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to understand the details of this process to make use of the program and produce a high 

resolution reconstruction, understanding the basic process makes it possible to examine 

some of the intermediate files generated during processing, which can be useful when 

diagnosing problems should they occur. It should also be mentioned that each time 

e2refine_easy is run, producing a new refine_XX folder, a refine_XX/report/index.html file 

is also created with detailed information on all of the specific parameters used in any given 

reconstruction based on the heuristics built in to e2refine_easy. After completing a 

refinement, the first thing the user should do is look at this report file.

Technically, e2refine_easy has ~80 different command-line options available, which permit 

very detailed control of the algorithms used for every purpose during the refinement. 

However, almost none of these are intended for routine use, and only a small handful are 

presented to the user via the e2projectmanager graphical interface. If needed, the remainder 

must be manually added to the command-line. The user generally specifies symmetry, target 

resolution and a refinement ‘speed’, then e2refine_easy uses a complex set of heuristics 

based on these values and all of the other information available about the particle data to 

select values for the other parameters automatically. The speed parameter controls the 

angular sampling and a few other parameters. The default speed of 5 was computed to 

provide sufficient sampling to achieve the target resolution with a comfortable margin. 

Smaller speed values increase angular sampling past this point, compensated by including 

each particle in multiple class-averages. This makes the refinement take considerably longer 

to run, but may produce slight resolution increases and slightly improve the smoothness of 

the map. The specific values of all parameters are available to the user after refinement in a 

text file called 0_refine_parms.json.

EMAN2 is a modular system, and has a wide range of algorithms for each task in the 

system. For example, there are over 20 different algorithms which can be used for 2-D 

alignment, and most of these support specification of an image similarity metric to define 

mathematically what optimal alignment is. There are 14 choices available for this (3 of 

which are functionally equivalent to a dot product between images). Through extensive 

testing over years of development, we have identified which algorithms tend to produce the 

best results for 3-D refinement in different systems and target resolutions, and these 

decisions are embedded in the system of heuristics in e2refine_easy. It should be noted that 

this means that EMAN2 is not intrinsically a “correlation-based refinement”. Indeed, 

correlation is used as the similarity metric for determining 3-D orientation only for very 

coarse refinements at low resolution. For higher resolution refinements, the heuristics will 

normally select a Fourier ring correlation (FRC) metric, with SSNR weighting and a 

resolution cutoff. For many data sets, this selection of algorithm has little real impact on the 

final structure, and most reasonable algorithm combinations would produce near identical 

results.

However, it is possible to find simple examples where commonly used similarity metrics 

will produce suboptimal results. This is the sort of situation EMAN2’s heruistics are 

designed to avoid. One of the first macromolecules to inspire development of alternative 

similarity metrics in EMAN was GroEL. If correlation coefficient is used to determine the 

orientation of perfect side views of GroEL, but the envelope function of the data is narrower 
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than the envelope function of the 3-D model used as a reference, the extra “blur” of the 

particles will cause them to match slightly tilted projections better than true side-views. 

This, in turn, produces a slightly distorted 3-D map, which will not correct itself through 

iterative refinement. If, however, the data and model are compared using filter-insensitive 

metrics such as FRC, this problem does not arise, and the correct orientations are found.

In addition to the images themselves, obtaining a 3-D reconstruction requires the CTF/MTF 

for each image, which we have already determined in step 2.6 above, and the orientation of 

each particle. Additionally, EMAN2.1 includes an additional step where particles in nearly 

the same orientation are mutually aligned and averaged in 2-D iteratively prior to 3-D 

reconstruction. This step permits e2refine_easy to converge typically within 3–5 iterations, 

whereas the iterative reconstructions in many software packages which simply determine the 

orientation of each particle and reconstruct immediately can require as much as 50–100 

iterations to converge.

When iteratively refining in 3-D, model bias can be a significant issue. The iterative class-

averaging process used in EMAN begins with the same projections other software packages 

use to determine orientation, but then align the particles such that they are self-consistent 

with each other, rather than with the reference which was used to classify them. This initial 

step allows the 2-D averages to rapidly shed any initial model bias, and permits the overall 

3-D refinement process to converge very quickly. The only negative side effect is that, near 

convergence, the particles are being aligned to class-averages rather than 3-D projections, 

and the averages have higher noise levels than the final reconstruction, which was based on 

all of the data rather than data only in one particular orientation. For this reason, 

e2refine_easy includes heuristics which gradually reduce the iterative class-averaging 

process to achieve rapid convergence and the best possible resolution in the final 

reconstruction. The iterative class-averaging process is identical to the process described 

above used within e2refine2d (Fig. 2, bottom).

E2refine_easy performs all reconstructions using “gold standard” methods (Fig. 4). In this 

approach, the particle data is split into even/odd halves at the very beginning of iterative 

refinement, and the initial model is perturbed independently for each refinement by phase-

randomizing at high resolution. This ensures that the starting models are significantly 

different from one another, and that if high resolution convergence is achieved independently 

in the even and odd halves that this did not result from any model bias. For symmetries 

which do not constrain the orientation or center of the 3-D maps, the odd map is oriented to 

match the even map at the end of each iteration, to make the FSC computed in each iteration 

meaningful. It should be clear that this approach does not eliminate the bias itself, but only 

prevents the bias from influencing the resolution determined by FSC. This is mitigated by 

iterative class-averaging which can effectively eliminate significant model bias.

E2refine_easy also supports the concept of using one version of the particles for alignment, 

and a different version for the actual reconstruction. This is most commonly used with 

movie-mode direct detector images for which there remain a range of different theories 

about the best strategy for achieving high resolution when using such images. One method 

involves making a high-dose average and a low-dose average of each particle. The high-dose 
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average is then used for alignment, all the way through class-averaging, and the low-dose 

average is used for the final average after alignment. Another independent method involves 

performing damage-weighted averaging of all frames in a dose series, where only presumed 

minimally damaged information is included in the particles. In this strategy only one version 

of each particle is required, as this average contains both optimal low resolution contrast as 

well as high resolution detail. The best method remains a topic of active research.

A typical e2refine_easy strategy begins with a quick ~5 iteration refinement using 

downsampled and lowpass filtered particles to improve the starting model and achieve an 

intermediate resolution (10–20 Å) map. If this refinement doesn’t converge after 3–4 

iterations, it may imply that the initial model was suboptimal. In this situation either 

additional iterations can be run to try and converge to the correct low resolution structure, or 

another attempt can be made at initial model generation. After this, the fully sampled 

unfiltered data can be used, typically with speed set to 5, and refined for ~5 iterations (to 

ensure convergence). Finally, a third refinement is typically run with speed set to 1 for ~3 

iterations, to see if any final resolution improvements can be made.

Figure 5 shows the result of the complete analysis process described above, following the 

instructions for one of our single particle reconstruction tutorials (http://blake.bcm.edu/

emanwiki/Ws2015). This tutorial makes use of a small subset of the Beta Galactosidase [27] 

data from the 2015 CryoEM Map Challenge sponsored by EMDatabank.org. This tutorial set 

is a small fraction of the original data, downsampled for speed, and is thus not able to 

achieve the full resolution in the original publication, but the refinement can be completed 

quickly to near 4 Å resolution on a typical desktop or laptop computer. We extracted 4348 

particles (of about 30,000 total particles), and downsampled them to 1.28 Å/pixel. This data 

set includes a significant number of “particles” which are actually ice contamination, and the 

tutorial includes instructions for identifying and eliminating these. The final speed=1 

refinement to push the resolution past 4 Å can require a somewhat larger computer than a 

typical laptop, or a somewhat longer run time, but most laptops can get very close to this 

resolution in the target 24 hour period. The human effort involved in this process should be 

only a few hours, even for a novice.

2.12. Assessing Final Map

Once a final reconstruction has been achieved, it remains to turn this map into useful 

biochemical/biophysical information. If very high resolution has been achieved (2–5 Å) it 

may be possible to trace the protein backbone, and even perform complete model building 

based solely on the CyroEM data[28–30]. At subnanometer resolution, secondary structure 

should be sufficiently visible to at least confirm that the structure is largely correct. At lower 

resolutions, additional steps, perhaps even experiments, must be performed to ensure the 

veracity of the reconstruction[31]. In cases where a model is constructed for the map, or is 

available from other experimental methods such as crystallography, it is critical that a map-

vs-model FSC be computed to assess the resolution at which the model is an accurate 

representation of the data. When this is combined with the standard model validation 

methods required in crystallography[32], fairly strong statements about the veracity and 

resolution of the CryoEM map can be made.
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3. Conclusions

There are a wide range of tools available in the community for performing single particle 

reconstruction as well as related cryoEM image processing tasks. We strive to ensure that 

EMAN2.1 produces the best possible structures as well as being among the easiest to use 

and most computationally efficient packages available. However, there are many 

biomolecular systems in single particle analysis in which flexibility or compositional 

variability play a key role. Crystallography, by its nature, is ill-suited to collecting data on 

heterogeneous molecular populations. Single particle analysis data collection, on the other 

hand, produces solution-like images natively. This shifts the problem of resolving 

heterogeneity to being computational rather than experimental. In our experience, despite 

using similar high-level concepts, handling of heterogeneous data is where the various 

available software packages differ most from one another. While a highly homogenous data 

set collected to high resolution will generally produce near-identical structures in any of the 

standard available software packages, in the presence of heterogeneity, different packages 

will take this into account in different ways, producing measurably different results. This 

variation can exist at any resolution level, depending on the biophysical properties of the 

particle under study.

Due to this, it can be very useful to have the ability to cross-compare results from EMAN2.1 

with other software packages. We make this a simple process for several software packages 

through the e2refinetorelion3d, e2refinetofrealign, e2reliontoeman, e2emx and e2import 
programs. When different results are obtained among two or more packages it is critical to 

carefully examine each result, and even look at some of the internal validations provided by 

each software. For example, in EMAN2.1, one might compare 2-D reference-free class-

averages with 2-D reference based class-averages with reprojections of the 3-D map, to see 

if any disagreements match inter-software differences.

The Cryo-EM field has now reached a level of maturity where well-behaved molecular 

systems studied on high quality microscopes and detectors can readily produce 

reconstructions in the 3–5 Å resolution range, as demonstrated by the nearly 100 structures 

published at this resolution so far in 2015. While some of the reason for the even larger 

number of lower resolution structures published in the same time can be attributed to the 

lower end equipment many practitioners are still limited to, the larger factor is almost 

certainly specimen purification and sample preparation, which remain the largest barriers to 

routine high resolution studies in the field. Some of these issues can be solved by software, 

and analysis of heterogeneous data is probably the most active area for software 

development at this time. Indeed, resolution-limiting specimen variability can be used as an 

opportunity to study solution behavior of macromolecules rather than viewing this as a 

resolution-limiting factor. In addition to robust tools for high resolution refinement, 

EMAN2.1 also has a range of tools available for this type of analysis, as described in 

additional tutorials available on our website. For well behaved specimens, however, it should 

be possible to rapidly achieve near specimen-limited resolutions using the straightforward 

methods we have described.
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Figure 1. 
Per particle SSNR estimation. A. Exterior mask. B. Central mask. C. Raw unmasked 

particles. D. Background region. E. Particle region. F. Power spectra for each masked 

particle stack compared to traditional background estimate (dotted line), which 

underestimates noise and overestimates signal. SSNR is computed from the two masked 

curves. In this Beta-galactosidase example, there is only a modest difference between the 

two background calculations. In specimens with detergent or continuous carbon, the impact 

on SSNR estimation can be as much as an order of magnitude[33].
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Figure 2. 
An overview of the iterative processing strategy implemented for reference-free class-

averaging in e2refine2d.
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Figure 3. 
Reference-free class-averages used to produce an initial model using Monte-Carlo method 

implemented in e2initialmodel. Two of the possible 3-D starting maps are shown on the left 

along with corresponding class-average projection pairs for comparison on the right. For a 

good starting model, projections (1st and 3rd columns) and class-averages (2nd and 4th 

columns) should agree very well. The lower map exhibits poor agreement, so the higher 

ranked upper map would be used for 3-D refinement.
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Figure 4. 
Overview of automatic refinement process described in the text and implemented in 

e2refine_easy. The process begins by splitting a user specified set of particles into even 

(white) and odd (grey) sets. Following the “gold standard” protocol, the initial model is 

phase randomized twice at resolutions higher than ~1.5x the target resolution. The two 

perturbed starting maps are then refined independently against the even and odd halves of 

the data. Iterative refinement begins by reprojecting the initial map and classifying particles 

according to their similarity to these projections. Classified particles are then iteratively 
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aligned and averaged as shown in Fig. 2 (lower). The resulting class averages are then 

reconstructed in Fourier space to form a new 3D map, which becomes the starting map for 

the next iterative cycle. At the end of a user-specified number of iterations (typically 3–5), 

the process terminates. A Fourier shell correlation is computed between all pairs of maps 

produced from refining the even and odd subsets to assess resolution at each iteration and 

monitor convergence. In the final step, the even and odd maps are averaged, CTF amplitudes 

are corrected and the FSC is used to create a Wiener filter, ensuring that only the consistent 

portions of the separate refinements are visualized in the final averaged map.
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Figure 5. 
Refinement results of the Beta-galactosidase test data subset from the EMAN2.1 tutorial. 

e2refine_easy was run 4 times sequentially in this test, and the final FSC curves from each 

run are combined in one plot. The first 2 runs used downsampled data for speed, so the FSC 

curves do not extend to as high a resolution. The inset shows that beta-strands can be clearly 

resolved and alpha helices have appropriate shape. Equivalent results could have been 

achieved in a single run, but the intermediate results are useful in the context of the tutorial, 

and require less compute time. The table describes the basic parameters and wall-clock time 

of each refinement run. The final run was performed on a Linux cluster using 96 cores (~250 

CPU-hr).
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