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Abstract

The estimation of treatment effects on medical costs is complicated by the need to account for 

informative censoring, skewness and the effects of confounders. Since medical costs are often 

collected from observational claims data, we investigate propensity score (PS) methods such as 

covariate adjustment, stratification and inverse probability weighting taking into account 

informative censoring of the cost outcome. We compare these more commonly used methods to 

doubly robust estimation (DR). We then use a machine learning approach called Super-Learner 

(SL) to choose among conventional cost models to estimate regression parameters in the DR 

approach and to choose among various model specifications for PS estimation. Our simulation 

studies show that when the PS model is correctly specified, weighting and DR perform well. When 

the PS model is misspecified, the combined approach of DR with SL can still provide unbiased 

estimates. SL is especially useful when the underlying cost distribution comes from a mixture of 

different distributions or when the true PS model is unknown. We apply these approaches to a cost 

analysis of two bladder cancer treatments, cystectomy versus bladder preservation therapy, using 

SEER-Medicare data.
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1. Introduction

Proper medical cost estimation is imperative to health economics evaluation and decision-

making. Policy makers are often most interested in the average effect treatment effect (ATE) 

on total costs. Since medical costs are often collected from claims data which are susceptible 

to confounding, appropriate estimation of the ATE from observational data demands 
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attention. These methods must also account for other complicating features of cost data 

including informative censoring and skewness.

The primary focus of earlier studies of cost estimation has been on methods for dealing with 

their distributional skewness. Historically, researchers have used natural logarithm 

transformed costs in ordinary least square regression (OLS) or used generalized linear 

models (GLM) with a log link. However, Manning and Mullahy [1] showed that OLS 

estimators can be biased under heteroscadasticity and GLM estimators can yield imprecise 

estimates if the log-scale error is heavy-tailed. Others have suggested using median 

regression since the median is less sensitive to skewness and outliers [2]. Several studies [3–

5] have evaluated additional approaches such as OLS, OLS for log cost, standard gamma, 

standard GLM, generalized gamma, median regression, exponential models with log link, 

and the weibull model. Dodd et al. [3] found the generalized gamma model to be the most 

robust cost model. Recent works [6, 7] have focused on two part models and Bayesian 

approaches to accommodate structural zeros and end of life costs.

An important feature of medical costs is censoring, which often occurs if the study 

terminates after a fixed follow-up period. Even though survival time is non-informatively 

censored due to end-of-study censoring, cost is not. Censoring in cost is informative since 

the rate of cost accrual over time may vary greatly among patients. To address this issue, Lin 

et al.[8] introduced two estimators of mean cost by partitioning study period into 

subintervals and assuming censoring occurs only at the boundaries of these subintervals. 

Bang and Tsiatis [9] improved on Lin et al.'s work and proposed two popular methods: the 

simple weighted method and the partitioned method, to estimate mean medical cost under 

informative censoring. The simple weighted method averages subjects with complete cost 

information weighted by the inverse of the probability of not being censored. The partitioned 

estimator builds on the same weighting idea but also makes use of cost history information 

and is therefore more efficient. Properties of these methods have been widely studied [10–

12]. Lin [13, 14] and Baser et al. [15] have since extended these methods to linear regression 

and general linear models to incorporate the effect of covariates. Several studies [16, 17] 

have also applied these techniques to median regression to handle censored cost data.

Heath care cost information is often collected from observational sources, such as Medicare, 

necessitating the need to adjust for potential confounders. The propensity score (PS), first 

introduced by Rosenbaum and Rubin [18] is commonly employed to adjust for confounding 

in observational studies [19]. Propensity scores are often used in covariate adjustment, 

matching, stratification and weighting [20, 21]. Covariate adjustment of the PS is easily 

implemented but is sensitive to the assumption that the relationship between the propensity 

score and the outcome has been correctly modeled [22]. Stratification based on PS is also 

often used as it greatly simplifies implementation over standard methods; Rubin and 

Rosenbaum [23] demonstrated that stratification based on the quintiles of the PS eliminates 

approximately 90% of bias due to measured confounders. More recently, inverse probability 

of treatment weighting (IPTW) [20] has become the method of choice. The normalized 

version of IPTW has been proposed [24, 25] which belongs to a broader class of weighted 

estimators described by Robins [26]. Several studies [21, 27] compared the relative 
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performance of these methods. Covariate adjustment using PS and IPTW has been shown to 

be more sensitive to whether the PS has been accurately estimated [22, 28].

In this study, we investigate doubly robust (DR) estimation of cost and compare it to more 

conventional propensity score based approaches. DR estimation combines outcome 

regression (regression model) with weighting by PS (PS model) such that it is robust to 

misspecification of one (but not both) of these models [29, 30]. Lunceford and Davidian [21] 

demonstrated that the DR estimator performs better than stratification and IPTW. The 

doubly robust property is appealing but can still lead to biased estimates if both the 

regression model and the PS model are misspecified [31]. When using the DR method, the 

biggest challenge is to accurately model cost in the regression model. Given the 

heterogeneous nature of cost distributions and the many possible choices of cost models 

described above, we propose using an ensemble machine learning approach that relies on V-

fold cross validation called Super Learner (SL) [32]. Using SL, we can incorporate various 

potential cost models and obtain asymptotically optimal prediction. Moreover, although 

logistic regression is the most commonly used method for estimating the PS; we can use SL 

to obtain PS estimates from other potential non-parametric PS models or PS models with 

different functional forms.

The goal of this study is to develop appropriate PS methods for estimating skewed and 

censored cost data. In the current literature, Basu et al. [33] have discussed several methods 

for estimating the ATE on health care costs. Anstrom and Tsiatis [34] have proposed on 

normalized IPTW for censored cost. We extend this literature by considering PS methods on 

censored cost. We begin by reviewing some of the existing cost estimation methods and then 

examine PS covariate adjustment, stratification and weighted approaches. We follow by 

discuss DR and the application of SL in cost estimation. We provide results from simulation 

studies that compare the performance of these estimators, and we also highlight the effect of 

PS mis-specification on treatment effect estimation and demonstrate the merits of SL. 

Finally, we apply these PS approaches to a cost analysis of two competing bladder cancer 

treatments, cystectomy versus bladder preservation therapy, using costs derived from SEER-

Medicare data.

2. Cost estimation - existing methods

Cost estimation has been a great interest in the health economics literature. In this section 

we give some brief background on existing methods. We are interested in estimation cost up 

to time L. We define Yi(u) to be the known accumulated cost up to time u and Yi is the total 

cost that subject i accrues up to L. Let ti and Ci denote an individual's survival time and 

censoring time in the duration of interest respectively. Hence the random variable t is 

bounded by L. L can be considered as a large number such as 100 if we are interested in life 

time cost. The observables are given by:

Li et al. Page 3

Stat Med. Author manuscript; available in PMC 2017 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We only observe Yi for the uncensored subjects. For censored subjects, their cost is still 

accruing hence their total cost Yi is unknown. in standard survival analysis we say censoring 

is non-informative if t⫫C. In total cost estimation Y is not non-informatively censored since 

Y(t)⫫Y(C) does not hold. In practice, a patient with high cost at the time of censoring, 

Y(C), is also likely to have high cost at the time of event Y(t) as that patients may likely 

have higher cost accrual rate. Hence, censoring of cost is not non-informative and standard 

survival techniques do not apply. Now, let K(u) = Pr(C ≥ u) be the probability of not being 

censored at time u. K(u) can be estimated from either parametric or non-parametric models. 

For instance, we can assume a parametric survival model such as an exponential or weibull 

and estimate K(u) based on maximal likelihood methods. Another approach is to use the 

Kaplan-Meier estimates K̂(u), based on the data (T, 1 – δ).

Economists and policy makers are often most interested in E(Y). We describe two popular 

existing methods to estimate E(Y) assuming individual cost history data are not recorded, 

i.e. only cost at event or censoring time Yi(Ti) is observed while Yi(u), u < Ti is unobserved. 

To estimate mean total cost E(Y), Lin et al. [8] proposed to partition the study period (0, L) 

into K subintervals and then “sum up” the cost contribution from subjects who died in each 

interval. Their method assumes that censoring only occurs at the boundaries of the 

subintervals. To overcome this limitation, Bang and Tsiatis [9] propose using cost 

information from uncensored subjects and then weighting each complete cost observation by 

the inverse of the probability of not being censored, which is evaluated at the time of the 

subject's death:

This weighted estimator is unbiased as 

. This estimator is also shown to be consistent regardless of the censoring pattern [9]. 

Intuitively, a subject that is observed to die at Ti represents  subjects who would have 

been observed if there were no censoring.

Lin[13] also applied the same weighting technique to model the linear relationship between 

total cost and other covariates X as Y = β′X, when total cost is subjected to informative 

censoring. If there were no censoring, the least square normal equation can be simply 

written as . However, to account for censoring, Lin applied the 

same weighting idea and modified the above equation as follows:

This weighting method can also be applied to other regression models such as GLM or 

median regression as discussed by Lin [14] and Bang and Tsiatis[17].
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3. Propensity score approaches

Cost information is often collected from observational databases which are subjected to 

confounding, here we develop propensity score approach to modeling censored cost data. 

Let Z be an indicator of the treatment exposure: Z = 1 if treated, Z = 0 if control. We adopt 

the counterfactual framework described by Rubin [35] and define  to be the total cost of 

subject i if he were in the control group. Similarly,  is the total cost if the patient had 

received treatment. Also, let  and  denote the survival time if the patient were in the 

control and treatment group respectively.

Although we are most interested in total cost Y, we want to consider both Y and survival 

time t as Y is dependent on t. We extend the usual assumption of strong ignorability to 

include both time and total cost as follows

(1)

We also modify the assumption of non-informative censoring to state:

(2)

In other words, we assume censoring time to be independent of potential failure time and 

cost outcomes as well of other confounders conditional on covariates and treatment 

assignment. This assumption is valid for end-of-study and other administrative censoring 

commonly seen in cost studies; and was first formally introduced by Anstrom and Tsiatis 

[34].

Moreover, let μ be the average causal treatment effect on cost adjusted for covariates X. We 

use μ1 and μ0 to represent E(Y(1)) and E(Y(0)) respectively. Therefore μ can be defined as:

(3)

Further, Kz(u) = P(C ≥ u|Z = z) and must be estimated separately for the treatment and 

control groups since they may have different survival trajectories. For simplicity, we use 

K̂(u) to denote the treatment-specific estimated probability of being uncensored at time u, 

K̂z(u).

Our goal is to estimate μ from observational data utilizing propensity score methods. We 

extend popular propensity score approaches to handle censored cost data. We also provide 

general step-by-step guidelines for the proposed methods. First, we need to estimate 

propensity scores e(X) = Pr(Z = 1|X). It is routine to estimate propensity scores from (Z, X) 

using a logistic regression model:
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(4)

For simplicity, we write ei = e(Xi, β) and eβ = ∂ei/∂β. Moreover, β can be estimated using the 

maximum likelihood method by solving:

(5)

Estimated propensity scores êi can be predicted from the logistic regression model in 

Equation 4.

3.1. Covariate Adjustment

In the covariate adjustment approach, the outcome variables Y is regressed on Z along with 

the estimated propensity score ê, and any additional covariates (subset of X). Using an 

extension of the OLS model described by Lin [13], we impose the simple weights  to 

account for censoring in costs. The choice of regression model depends on the nature of the 

outcome Y. Here we present three popular options:

Normal model—The simplest method is a standard linear regression, which assumes that 

the total cost Y follows a normal distribution, something unlikely to happen in practice. We 

regress Y on Z and ê weighted by :

(6)

Hence,

(7)

Lognormal model—This is similar to the linear regression model, except the outcome is 

transformed using the natural logarithm. This is a popular approach in health economics, as 

cost is transformed to reduce its skewness. The main shortcoming of this approach is that the 

analysis does not result in a model for μ in the original scale. Re-transformation to the 

original scale of interest is problematic [1] especially in the presence of heteroscedasticity. 

Nevertheless, log transformation of the response variable followed by OLS is still common. 

Assuming log-scale errors that are normally distributed with mean zero and common 

variance σ2, we regress log(Y) on Z and ê weighted by .

(8)

Hence,
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(9)

Gamma model—The gamma distribution has a raw-scale variance function that is 

proportional to the square of the raw-scale mean function (Equation 10), an attribute 

common to many health applications. To implement this, we regress Y on Z and ê in a GLM 

model weighted by , and specify the variance family to be gamma.

(10)

(11)

Hence,

(12)

The variance of  from covariance adjustment methods can be obtained in several ways. 

Analytically, the estimated variance of  equals the variance of  estimated from 

Equation 6. The variances of  and  can be derived using the delta method on 

Equation 8 and Equation 10. We can also use non-parametric bootstrapping to estimate the 

variances of ,  and .

3.2. Stratification

In stratification, subjects are first ranked and stratified into S mutually exclusive subsets 

based on êi. If balance between treatment groups is achieved within each stratum, we can 

estimate μ by a weighted sum of the difference of sample means of Yi across strata. Simple 

weights are imposed to account for informative censoring:

(13)

where Qs is the sth sample quantile of ê, nzs is the total number of subjects with Zi = z. Here, 

K̂
s0(Ti) denotes the estimated probability of uncensoring for treated subjects in stratum s and 

K̂s1(Ti) the estimated probability of uncensoring for control subjects in stratum s. Within 

each stratum, subjects have roughly similar values of the propensity scores. Loosely 

speaking, we treat S strata as S different independent groups. Therefore, K̂(Ti) needs to be 

estimated separately for subjects in stratum s and treatment group z.

Notice that δi may be correlated with Zi since subjects on treatment may live longer; hence 

we are less likely to observe their complete cost information and δi is more likely to be zero. 
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However, consistency of  is still valid. Consistency follows from the fact that 

 is bounded, total cost is bounded (see Appendix 1 of Bang 

and Tsiatis [9] for details) and the unbiasedness property of stratification method [21].

Lunceford and Davidian [21] recommended approximating the empirical variance by 

treating  as the average of S independent, within-stratum, treatment effect estimates. If we 

further assume independence of δi and Zi, we have

where  and  are the sample variance of Yi for treated and control subjects in stratum s 

weighted by δi/K̂(Ti). In real life settings, it is unlikely that δi is independent of Zi. Hence, 

the formula above only serves as a “quick and dirty” variance estimate. In this case, it is 

preferably to obtain the variance of  via bootstrapping [36].

3.3. Weighted approaches

Weighted estimators were first introduced by Horvitz and Thompson [37] and were extended 

to propensity scores by Rosenbaum [20]. There are many different weight choices; the most 

popular being the inverse probability of treatment weights (IPTW). IPTW are defined as 

, so that a subject's weight is equal to the inverse of the probability of receiving 

the treatment the subject was actually given. Again, simple weights  are applied to 

account for informative censoring.

(14)

Another popular weight choice is the normalized version of IPTW [24, 25], which follows 

from  and the estimating equations 

, .

(15)

As above δi may be correlated with Zi but the consistency of  is still valid. Consistency of 

 and  can also be demonstrated using M estimation.

The variance of  and  can be obtained in several ways. One option is to use non-

parametric bootstrapping. In addition, Anstrom and Tsiatis [34] derived the analytic form for 

the variance of  when K(Ti) is estimated using the KM method. Similar methods can 

be used to derive the analytic variance of . If K(Ti) is estimated using parametric 
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models, we can use M-estimation to derive  in Equation 14 and 15. Here we give the 

sketch of the derivation when survival time ti follows an exponential distribution exp(λ):

λ can be estimated using the maximal likelihood 

. And thus . Together with 

Equation 5 and Equation 14 we have the following estimating equations:

(16)

Using the general framework described by Stefanski and Boos [38], var(θ) = A(θ)−1B(θ)

[A(θ)−1]T where θ = (μ, β, λ)T. Hence Var(μ) is the top left corner entry of var(θ).

where ,  and .

where , , 

,  and 

. The components of all of the above expressions can be estimated from 

the observed data.

4. Doubly Robust Estimation

Doubly Robust (DR) estimation incorporates outcome regression (regression model) and 

weighting by PS (PS model), and it is robust to misspecification of one (but not both) of 

these models. There are many forms of DR estimators; here we follow the general procedure 

described by Robins et al. [26]. DR estimator has the smallest large sample variance among 

the class of weighted estimators and is locally semi parametric efficient. First, we estimate 

the regression model for the treated group (Y ~ X for Z = 1) and obtain predicted values for 

the entire sample: m̂1(Xi). We then do the same for the control subjects and obtain predicted 

values for the entire sample: m̂0(Xi). In other words, m0(Xi) and m1(Xi) are the postulated 

models for the true regressions E(Y|Z = 0, X) and E(Y|Z = 1, X). Note that simple weights 
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 are applied to the regression models to account for informative censoring. The DR 

estimator of  is given by:

(17)

Similar to section 2.2, the regression models m1(X) and m0(X) can be modeled in several 

ways:

Normal model:

(18)

Lognormal model:

(19)

Gamma model:

(20)

The doubly robust estimates are consistent if the propensity score model or the regression 

model m1(X) = E(Y|Z = 1, X) and m0(X) = E(Y|Z = 0, X) are correctly specified. To see 

this, consider . By the Law of Large Numbers, 

estimates:

Hence for  to be unbiased, we need the second term 

 to be zero. This condition is satisfied when the 

propensity score model is correctly specified:  so 

. When the regression model m1(X) is correctly specified, 
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 so 

. Hence, the DR estimator is unbiased if 

either the propensity score model or the regression model is correctly specified. The doubly 

robust procedure has benefits over standard estimation but can result in biased estimates if 

both the regression model and PS model are misspecified [31].

5. Super-Learning

The Super-learner algorithm [32] is an ensemble machine learning approach based on V-fold 

cross validation. It allows one to specify several candidate prediction models and use them 

to produce an asymptotically optimal combination. Specifically, data are split into blocks 

and then each of the candidate algorithms are fitted on the training set and outcomes are 

predicted using the validation set. The loss function is calculated within each validation set, 

and averaging across validation sets provides the estimated cross validated risk score for 

each method The SL algorithm finds the optimal weighted combination of all the methods. 

Van der Laan et al. [32] proved asymptotic efficiency of the SL algorithm. Further, it is 

guaranteed to perform at least as well as the best estimators from the candidate models. This 

machine learning algorithm is available as an R package called Super Learner (https://

cran.rproject.org/web/packages/SuperLearner/SuperLearner.pdf) and as a SAS macro [39]

In DR estimation, our primary concern is whether the cost regression models m1(X) and 

m0(X) are correctly specified. Given the heterogeneous nature of costs, there is no one-size-

fits-all regression model. In machine learning literature, it is common to combine predictions 

from multiple models or multiple parametric and non-parametric predictive algorithms. 

Hence, one intuitive solution to accommodate the complex features of cost distribution is to 

employ SL to obtain the optimal prediction from common cost models.

Super-learner methods can also be applied when we are uncertain about model specification 

in the propensity model. Untill now, we have assumed the propensity score model to be 

correctly specified; but this is unlikely to be true in practice. If the correct subset and 

functional forms of covariates are unknown, we can include all combinations of potential 

subsets, interactions and quadratic forms of covariates and use SL to find the optimal 

estimates. Recent studies have proposed to use tree-based methods [40], random forests [41] 

and neural networks for estimating the PS. These can be included as candidate PS models, 

allowing SL to obtain optimal PS estimates from a wide variety of candidate algorithms 

[42].

6. Simulation studies

Using simulation studies, we evaluate the performances of all methods discussed in Section 

2, 3 and 4 under various settings, including different survival models, cost models, and 

censoring distributions. We report the bias, the coverage probability of the resulting 95% 
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confidence interval and the mean square error ratio (MSER) which is the ratio of MSE of 

each approach with reference to MSE of DR with SL in regression models.

We based choices of our simulation parameters on data from our bladder cancer study 

(Section 7). We simulated three covariates X = {X1, X2, X3}. Since most covariates in our 

empirical example were categorical, we simulated X1 and X2 as binary with success 

probabilities of 0.5 and 0.25 respectively. X3 followed a normal distribution with standard 

deviation 1 and mean 0. Using these covariates, we then defined treatment choice Z using a 

logit index model where D ~ Bernoulli(p) and

(21)

The coefficients were fixed so that approximately 30% of the population received treatment, 

to mirror our bladder cancer data. The sample sizes were set to be 1000 and 5000, typical 

sizes for observational studies.

We drew failure times from weibull and exponential distributions where 

. For weibull failure times, we set k = 2.5 and λ = 3.2 + 2Z + 1.2X1 

+ 1.4X2 – 0.6X3. For exponential failure times, k = 1 and λ = exp(–Z – 0.8X1 – 1.2X2 – 

0.6X3). Censoring times were independently simulated from uniform distribution U(0, 20) 

and U(0, 12) for light and moderate censoring. The probability of censoring was 

approximately 20% for light censoring and 35% for moderate censoring, respectively. The 

latter scenario was similar to our bladder cancer example. Observed time was defined as the 

lesser of survival time and censoring time.

As medical costs are often complex and can come from very different distributions, we 

generated total medical costs from normal, lognormal and gamma distributions according to 

the parametrization shown below. The mixed distribution was a weighted average of the 

normal, lognormal and gamma cases.

Propensity scores were estimated using a logistic regression model assuming correct model 

specification according to Equation 21. We then applied PS covariates adjustment with 

normal, lognormal and gamma models, stratification, IPTW, normalized IPTW, DR with 

normal, lognormal and gamma regression models and DR using SL for regression models to 

estimate μ. Jiang and Zhou [36] showed that using bootstrap methods to estimate CI of mean 

cost work well. Bang and Tsiatis [9] also showed that bootstrap estimates of variance for 

mean cost are consistent with the analytically derived asymptotic variance estimates. In our 

analysis, there are several sources of variation for . For example, when using the DR 

estimator, we have variation from the PS model, KM model, regression models and the final 

DR estimation model. This greatly complicates analytic variance estimation but can be 

easily dealt with by using non-parametric bootstrapping. We used a bootstrap estimate with 
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bias-corrected and accelerated (BCa) correction [43] to construct 95% CI confidence 

intervals of . Lastly, we included the naive regression method where total cost is regressed 

on the main effects of covariates in a linear model to recognize the consequences of analyses 

that do not properly account for confounding, skewness and censoring.

We simulated each scenario 500 times and summarize results by the empirical percentage 

bias (%bias), coverage probability of the 95% confidence interval (Coverage) and MSE ratio 

based on BCa standard errors (MSER). Note that for subjects with large observation time, if 

the estimated probability of censored K̂(ti) was zero, mini K̂(ti) in the specific treatment or 

treatment-stratum group was used instead to avoid the issue of the denominator of 

being zero. Thus, all empirical estimations of μ were under-estimations. The extent of under-

estimation depends on the censoring proportion and method used.

6.1. Simulation results

Results of the simulation with various censoring and cost settings and sample size of 1000 

appear in Table 1. The naive estimator ignoring censoring and confounders is biased under 

all settings. As anticipated, the PS covariate adjustment performs well when the correct 

model is specified, but exhibits bias when mis-specified. For example, when cost follows 

gamma distribution, covariate adjustment with gamma model yields 0.35% bias while the 

lognormal model had 18.74% bias under light censoring. If cost comes from a mixture of 

normal, lognormal and the gamma distributions, covariate adjustment methods perform 

poorly since the true relationship between outcome and PS is unknown. Of the covariate 

adjustment models, the gamma model is the most robust, with the smallest biases for 

misspecifed cost distributions, a finding consistent with Dodd et al.[3] and Basu et al. [4]. 

The PS stratification estimator has large biases and worst MSE among all PS methods. Note 

that stratification is most susceptible to under-estimation of μ. Since we need to calculate 

stratum and treatment specific K̂(u), K̂(u) is more likely to be zero for observations with 

large observation time T.

IPTW estimators yield bias ranging from −0.38% to −6.58%. The normalized IPTW 

estimator has smaller bias than the typical IPTW, consistent with findings from Lunceford 

and Davidian [21]. Estimates from DR methods had very small bias, even when the 

regression model is mis-specified. Since the PS is correctly modeled, DR estimators should 

be unbiased due to their doubly robust property as demonstrated here. Correct regression 

model specification in DR has very small effect on bias and coverage since PS model is 

already correct. Nevertheless, using SL for the regression model results in small bias and 

MSE among all DR models. Simulations with a sample size of 5000 (data not shown) 

produce similar results in terms of bias and coverage, but have smaller MSE. As expected, 

the larger sample size increases overall estimation efficiency.

6.2. Misspecified PS

Next, we explore the case of PS misspecification when the correct model is unknown. We 

use the same simulation procedure as above changing Equation 21 to
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(22)

In the simulated data, we estimated PS according to the correct model in Equation 22, and 

also a misspecified PS model with only main effects of X1, X2 and X3. Finally, we used SL 

to estimate PS using all possible combinations of the second order polynomials of X and the 

two way interactions among them. Table 2 shows the results for weibull survival time, light 

censoring, sample size of 1000, gamma and mixed cost models.

When the PS model is mis-specified, estimates from PS covariate adjustment are biased 

(4.13% to 45.15%). Estimates from IPTW methods are also highly biased (−2.00% to 

46.71%) when PS model is mis-specified, in line with Rubin [28]. When the regression 

models in DR are correctly established, DR estimators have very small bias. However, when 

both the regression model and the PS model are wrong, as anticipated we see some bias 

(0.75% to 8.91%). Overall, PS misspecification affects all of the estimators discussed, 

especially those that are sensitive to PS. The only method that is robust to PS 

misspecification is DR, provided the regression model is correctly established.

When SL is used to estimate PS, we see significant improvement of performance across all 

estimators. In most cases, using SL in PS estimation yields less bias and better coverage than 

when the correct PS model is used. Hence, we recommend using SL when the correct PS 

model is unknown. When true cost comes from a mixture of normal, lognormal and gamma 

distributions, SL in DR can provide the best regression model estimates. In real life settings, 

it is highly likely that cost comes from a mixture of different distributions and the correct PS 

model is unknown. In this case, using SL with DR and PS estimation provides added 

flexibility which improves estimates substantially.

7. Costs of Bladder Cancer Therapies

Bladder cancer affects more than 70,000 people annually in the United States and accounts 

for almost 5% of the total cancer-related costs to Medicare. The guideline recommended 

treatment for bladder cancer is radical cystectomy (RC) which involves surgical removal of 

the bladder. Bladder preservation therapy (BPT) is a less aggressive, non-surgical alternative 

that involves radiation and chemotherapy. Recent studies have shown that BPT may improve 

quality of life over RC [44]. We have applied our method to compare the life-time cost of 

RC and BPT using a cohort of patients derived from SEER-Medicare registry.

We included stage II/III bladder cancer patients diagnosed between 1995 and 2005. See 

Bekelman et al.[45] for a detailed description of inclusion/exclusion criterion. 32% of the 

study cohort were censored at the end of the study. Payment data were extracted from 

Carrier Claims file, the Outpatient file, and the Medicare Provider Analysis and Review 

Record. We adjusted all costs to year 2000 dollars using the Medicare Economics Index 

[46]. The final cohort sample size was 1860; 422 had BPT and 1438 had RC. The mean 

uncensored costs were $68,800 for BPT patients and $83,040 for RC patients. Total 

treatment cost were highly right skewed (Figure 1) with a maximum observed cost of 

$511,200. The average observation time was 3.93 years.
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In this study, both treatment assignment and total cost may have been affected by covariates 

such as stage, grade, race, marital status, comorbidities, median income at the census tract 

level and community size. Hence, we estimated PS using a logistic regression model that 

was adjusted for all of these potential confounders. We then estimated the difference in total 

cost between BPT and RC using the approaches described above including: PS covariates 

adjustment with normal, lognormal and gamma models, stratification, IPTWs, DR with 

normal, lognormal and gamma regression models and DR using SL in regression model. 

Naive linear regression ignoring censoring and non-random treatment assignment was used 

as a reference. Approximate confidence intervals for the treatment effect on cost were 

constructed using non-parametric bootstrapping with BCa correction.

From Table 3, BPT was estimated to be $7,412 cheaper than RC using naive regression. 

Difference in cost estimated from various propensity score methods ranged from −$10,661 

to −$20,937, differed significantly from the naive regression method. Failure to account for 

censoring and the effect of confounders could lead to biased estimates. Furthermore, 

covariate adjustment, stratification and weighting methods could be sensitive to the choice 

of PS model estimation. Unsurprisingly, we saw large variation in treatment effect estimates 

from these models. DR models yielded more consistent treatment effect estimates; BPT was 

estimated to be −$12,144 to −$14,117 cheaper than RC. Using SL in regression model in 

DR gave slight different estimations (−$14,163). SL in regression model in DR is likely to 

be the closest to the true cost estimate as evidenced from the simulation study. Lastly, all CIs 

did not cross zero, indicating that BPT was significantly less costly than RC.

Next we applied SL in propensity score model to obtain the estimated PS. We specify 

several potential propensity score models with different covariates functional forms: the 

basic logistic model where all covariates were included, also a model including all two way 

interactions between covariates, adding square terms of all covariates and a backwards 

stepwise selection algorithm with cut-off p-value of 0.1. SL was used to find the optimal 

combination of predications from these candidate models. We then use this estimated PS to 

find the differences in cost between BPT and RC.

From Table 3, the SL PS models provided similar estimates from the regular PS models. One 

possible explanation is all covariates were categorical, hence there was little variation in PS 

due to limited covariate patterns. Interaction and quadratic terms might not have a huge 

impact on PS estimation for the same reason. SL PS model would be more useful when we 

have little understanding of the true PS model. Nevertheless, SL PS showed that the 

estimates of cost differences were between −$11,448 and −$22,473, and 95% CIs strongly 

suggest the differences in cost between BPT and RC were significant.

All of the approaches discussed above demonstrate that BPT substantially decreases the total 

medical cost compared to the standard treatment RC. However, we observed significant 

variations in the ATE estimations and large range in the CIs. From our simulation studies, 

we believe DR with SL in both regression model and PS model provides the best estimate. 

Hence, our findings indicate that BPT was $14,086 ($787, $26,876) cheaper than RC.
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8. Discussion

In this study, we explored propensity score based approaches for estimating the treatment 

effect on censored costs in an observational study. We extended covariate adjustment, 

stratification, weighting and doubly robust methods to handle censored medical cost. We 

also utilized a machine learning algorithm, Super Learner, to better estimate PS and the 

regression models in DR. Our simulation studies showed that when PS is correctly modeled, 

stratification and weighting yield unbiased estimates. Covariate adjustment is sensitive to the 

choice of outcome model, while DR is more robust to misspecification. When the correct PS 

model is unknown, misspecification could result in biased estimates of the treatment effect 

even when using DR methods. SL mitigates this bias by producing optimal regression 

models and PS estimates. In addition, one may consider tree-based methods, random forests 

and neural networks. These methods can be easily incorporated into SL to obtain optimal PS 

estimation from both fully parametric and non parametric models.

We note that in this study, we only used total cost data and ignored cost history data which 

may be available from claims data. Bang and Tsiatis[9] have proposed partitioned estimators 

making use of cost history data which they showed to be more efficient than the simple 

weighted approach we employed. It is unclear what the effect of partitioned estimators 

would have on PS-based estimation and is worthy of future work.

We have shown that the variance of the IPTW estimator can be obtained analytically. 

However, multi-parameter or non-parametric survival models add substantial complexity to 

analyzing variance estimates due to the complex interaction between censoring and 

propensity scores.

As in any observational study, unobserved or hidden bias may be of concern. We suggest 

that in addition to a propensity score based analysis of censored cost data, one should 

conduct a carefully planned sensitivity analysis to assess the effect of an unmeasured 

confounder on the treatment effect [47].
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Figure 1. 
Cost density plot of Bladder preserving therapy and Radical cystectomy.
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Table 2

%Bias, coverage and relative efficiency for estimated treatment effect on cost under different PS estimation 

methods

Correct PS Misspecified PS SL PS

gamma model %bias Coverage MSER %bias Coverage MSER %bias Coverage MSER

naive regression −9.52 0.67 5.81

covariates adjustmt: normal 6.66 0.92 5.18 7.50 0.88 7.80 5.01 0.92 3.85

covariates adjustmt: lognormal −21.98 0.22 1.35 −22.67 0.12 2.04 −22.19 0.72 1.26

covariates adjustmt: gamma 0.30 0.94 2.07 4.13 0.94 3.12 0.30 0.96 1.53

stratification 2.85 0.91 10.54 32.58 0.77 20.65 1.77 0.94 5.94

IPTW 0.76 0.96 14.25 46.71 0.28 21.48 0.62 0.93 8.95

IPTW: normalized −0.36 0.94 1.83 8.88 0.90 2.76 0.21 0.92 1.58

DR: normal 0.61 0.94 1.46 0.75 0.93 1.31 0.30 0.94 1.07

DR: lognormal −0.71 0.94 1.45 8.91 0.89 1.05 0.38 0.96 0.93

DR: gamma 0.29 0.93 1.53 0.19 0.93 0.94 0.09 0.95 0.90

DR: SL in regression model 0.48 0.92 1 (ref) 3.10 0.94 1 (ref) 0.02 0.90 1 (ref)

mixed

naive regression −48.82 0.29 6.70

covariates adjustmt: normal 44.45 0.54 1.74 45.15 0.54 2.27 42.34 0.60 2.21

covariates adjustmt: lognormal −16.81 0.85 2.54 −26.51 0.85 5.09 −19.18 0.83 4.21

covariates adjustmt: gamma 23.84 0.79 1.46 15.84 0.79 1.84 21.56 0.84 1.71

stratification 12.64 0.91 5.49 15.47 0.77 16.84 9.25 0.95 3.57

IPTW 8.57 0.97 9.47 10.57 0.97 23.13 4.23 0.92 6.00

IPTW: normalized −1.00 0.94 1.10 −2.00 0.94 1.88 −0.80 0.92 1.05

DR: normal −1.81 0.96 1.74 −8.07 0.96 1.03 −1.21 0.95 1.06

DR: lognormal −2.00 0.97 3.85 −6.77 0.98 1.86 −1.24 0.96 1.07

DR: gamma −2.07 0.97 1.82 −1.93 0.95 0.97 −0.34 0.95 1.05

DR: SL in regression model −0.18 0.98 1 (ref) −5.72 0.97 1 (ref) −0.02 0.97 1 (ref)
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Table 3

Estimated mean cost difference for bladder preserving therapy and radical cyccwetomy

Regular PS Model SL PS Model

Estimates 95% CI Estimates 95% CI

naive regression −7,412 (−13,545, −1,279) - -

covariates adjustment normal −12,423 (−22,235, −3,047) −11,448 (−23,237, −2,689)

covariates adjustment lognormal −13,877 (−25,729, −3,323) −13,033 (−26,674, −3,092)

covariates adjustment gamma −12,482 (−22,171, −2,400) −11,599 (−24,943, −3,579)

stratification −17,678 (−28,542, −9,685) −15,416 (−26,876, −787)

IPTW −20,937 (−34,244, −7,171) −22,473 (−30,633, −8,446)

IPTW: normalized weights −10,661 (−21,073, −1,078) −11,951 (−21,469, −607)

DR: normal −12,163 (−23,285, −764) −12,312 (−23,458, −104)

DR: lognormal −14,117 (−25,070, −3,444) −14,086 (−24,449, −3,333)

DR: gamma −12,144 (−22,920, −172) −12,179 (−23,745, −235)

DR: SL mean model −14,163 (−24,216, −3,941) −14,086 (−26,876, −787)
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