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Abstract
Progression of chronic kidney disease (CKD) is inevitable. 
However, the last decade has witnessed tremendous 
achievements in this field. Today we are optimistic; 
the dream of withholding this progression is about to 
be realistic. The recent discoveries in the field of CKD 
management involved most of the individual diseases 
leading the patients to end-stage renal disease. Most 
of these advances involved patients suffering diabetic 
kidney disease, chronic glomerulonephritis, polycystic 
kidney disease, renal amyloidosis and chronic tubulointer
stitial disease. The chronic systemic inflammatory 
status and increased oxidative stress were also inve
stigated. This inflammatory status influences the anti-
senescence Klotho gene expression. The role of Klotho 
in CKD progression together with its therapeutic value 
are explored. The role of gut as a major source of inflam
mation, the pathogenesis of intestinal mucosal barrier 
damage, the role of intestinal alkaline phosphatase and 
the dietary and therapeutic implications add a novel 
therapeutic tool to delay CKD progression.
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Core tip: The problem of chronic kidney disease (CKD) 
progression is a panic, affecting both patients and 
physicians. The fact that such patients will sooner or 
later need RRT terrifies them and makes these patients 
to survive a continuous mare. All the trials to stop this 
progression in the past only delayed this progression 
for some time. However, in the last 2 years many 
genuine experimental and clinical trials revived the hope 
to stop the progression almost completely in the vast 
variety of chronic renal diseases. In this review, we 
are highlighting most of these trials, stressing on the 

REVIEW

258 May 6, 2016|Volume 5|Issue 3|WJN|www.wjgnet.com

World Journal of 
NephrologyW J N

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5527/wjn.v5.i3.258

World J Nephrol  2016 May 6; 5(3): 258-273
ISSN 2220-6124 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.



different mechanisms that would stop CKD progression.
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INTRODUCTION
Chronic kidney disease (CKD) affects approximately 
one-seventh of adults above the age of 20 years[1]. 
Progression of CKD is a major concern during man
aging patients in stages G1-4. The suppression of 
known “causes” of progression by targeting high 
blood pressure (BP) as well as the renin-angiotensin 
system (RAS) has achieved some success in REIN, 
RENAAL, IDNT, and other clinical trials[2-4]. However, 
progression to end-stage renal disease (ESRD) is still 
inevitable. The recent discoveries of novel mechanisms 
underlying CKD progression opened the gate for more 
comprehensive understanding of the pathophysiology 
of CKD progression and the development of new 
therapeutic strategies. The role of chemokines in the 
recruitment of inflammatory cells into the kidney of a 
variety underlying diseases has opened the gate for 
new promising therapeutic modalities[5,6]. The inten
sive studies done on Klotho and fibroblast growth 
factor 23 (FGF23) and their role in the control of renal 
phosphate handling[7], and their unique anti-aging 
properties[8,9] have disclosed appreciable data concerning 
their action on vascular calcification (V.C.)[10], cardiac 
hypertrophy[11], renal tubular epithelial- mesenchymal 
cell transformation[12], and increased interstitial fibro
sis[13]. The last decade also witnessed the role of the gut 
in the pathogenesis of systemic inflammation in CKD 
patients[14-16]. This chronic inflammatory status might 
add directly, through absorbed toxins or through its 
interaction with Klotho gene to the risk of V.C. and CKD 
progression[17,18]. Therapeutic interventions manipulating 
such factors, besides the recent introduction of tolvaptan 
to treat autosomal dominant polycystic kidney disease 
(ADPKD)[19], therapeutic IgG anti-SAP for the treatment 
of amyloidosis[20,21], and anti-micro RNA for progressive 
interstitial fibrosis and/or glomerulosclerosis[22] will 
expectedly improve the strategy combating CKD pro
gression. 

Epidemiology
CKD is inevitably progressive with the consistent 
decrease of glomerular filtration rate, leading finally 
to ESRD. In 2002, the United States National Kidney 
Foundation Kidney Disease Outcomes Quality Initiative 
clinical practice guidelines defined CKD as kidney 
damage or glomerular filtration rate lower than 60 mL/
min per 1.73 m2 or the presence of increased urinary 

albumin excretion for 3 mo or longer, and proposed 
a classification scheme based on glomerular filtration 
rate[23]. The important impact of albuminuria on CKD 
progression[24] prompted the Kidney Disease: Improving 
Global Outcomes (KDIGO) Work Group on Evaluation 
and Management of CKD to include albuminuria in the 
revised 2012 classification[25]. The estimated prevalence 
of CKD worldwide is 8%-16%[26]. CKD is the 18th 
cause of death in 2010 (annual death rate 16.3 per 
100000)[27]. The 10 years all-cause mortality in diabetic 
nephropathy patient is around 5 times the rate in age 
and sex-matched nondiabetic personnel and triple the 
rate of diabetic patients without kidney disease[28]. The 
risk of death increases as the GFR declines < 60 mL/
min per 1.73 m2 of body-surface area: The adjusted 
hazard ratio for death is 1.2 in CKD stage G3a, 1.8 
in stage G3b, 3.2 in G4, and 5.9 in G5. The adjusted 
hazard ratio for cardiovascular events also increased 
inversely with the estimated GFR: 1.4, 2.0, 2.8, and 
3.4 respectively. The adjusted risk of hospitalization 
with a reduced estimated GFR followed a similar 
pattern[29]. These results indicate the serious impact 
of CKD progression on morbidity and mortality of CKD 
patients. It can also explain the marked discrepancy 
in the distribution of prevalence among different CKD 
stages[30]. 

Proteinuria is an added risk for both CKD progres
sion[31] increased cardio-vascular and overall mortality[32]. 

Pathogenesis
The mechanism of CKD progression among different 
CKD entities involves cytokine actions on renal he
modynamics, glomerular, and tubular functions. The 
characteristic pathologic feature of CKD is glome
rular and interstitial infiltration by macrophages[33]. 
Angiotensin Ⅱ contributes to the hemodynamic and 
glomerular changes following the initial renal insult. 
This contribution results in progression of glomerular 
disease[34]. Glomerular hypertension that follows renal 
insult results in increased angiotensin Ⅱ activity. 
Angiotensin Ⅱ activates transforming growth factor-β 
(TGF-β), macrophage chemoattractant protein (MCP-1), 
and vascular endothelial growth factor (VEGF) within 
the glomerulus[35,36]. Accumulation of macrophages 
and lymphocytes; thus, ensues with further increase in 
production of IL-1, TNF-α, and MCP-1[37,38]. Accumulating 
cytokines cause progressive glomerular damage by 
targeting podocytes. Although VEGF is a key player 
in the formation and maintenance of glomerular fil
tration barrier, elevated levels of VEGF are associated 
with glomerular hyperfiltration, hypertrophy, and 
proteinuria[39]. Increased podocytes VEGF contributes 
to glomerular sclerosis in transgenic mice[39]. Cytokines 
act also on mesangial cells inducing their proliferation 
or transforming them to fibroblast phenotype[33]. The 
mesangial cell fibroblast phenotype secretes extracellu­
lar matrix components with consequent glomerular 
sclerosis[33,40,41]. Endothelial cells generate endothelin, 
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TGF-β, and platelet-derived growth factor, in response 
to shear stress and glomerular hypertension. These 
cytokines and growth factors can also contribute to 
progressive glomerular sclerosis[42,43]. Endothelial cells 
can also generate IL-1, TNF-α, and MCP-1 that ultimately 
result in attraction and proliferation of inflammatory 
cells[44]. Intracellular adhesion molecule 1 (ICAM-1) 
secreted by endothelial cells facilitates neutrophil 
adhesion and enables macrophage infiltration[35]. 
Although glomerular sclerosis is the key features of CKD 
progression; the tubulointerstitial damage correlates 
better with this progression than glomerular damage[35]. 
Tubulointerstitial inflammation leads to tubulointerstitial 
damage. This inflammation starts as a consequence of 
glomerular hypertension and hypertrophy[33]. Interstitial 
infiltration of inflammatory cells occurs in the early 
phases of renal diseases irrespective of the initial renal 
insult. These are primarily macrophages and T and B 
lymphocytes recruited to the interstitium by chemo
kines and adhesion molecules expressed by damaged 
tubular epithelium[45]. Glomerular proteinuria is the 
postulated link between glomerular and renal tubular 
injury. Proteinuria may damage tubular lysosomes and 
increases MCP-1 release by proximal tubular epithelial 
cells[46]. MCP-1 recruits and activates macrophages to 
release TGF-β. Tubulointerstitial fibrosis eventually starts 
and progresses[47]. Fibroblasts maintain their activated 
phenotype even in the absence of the initial insult, i.e., 
autonomous progression once the process starts[48]. 
Tubular cells injured by lymphocytes and cytokines try 
to regenerate in a trial to replace damaged cells. This 
regeneration needs the transition of healthy epithelial 
cells into mesenchymal cells. This process is called 
epithelial-mesenchymal transition (EMT). Mesenchymal 
cells proliferate then transform back to epithelium if 
microenvironment becomes convenient (as occurs 
during recovery of acute tubular necrosis); otherwise, if 
inflammation is still there, mesenchymal cells transform 
into fibroblasts that continue the process of interstitial 
fibrosis[49]. The anti-senescence protein, Klotho, favors 
epithelial regeneration and inhibits fibroblast phenotype 
transformation during EMT[50]. Inflammation[17,18,51,52], 
angiotensin Ⅱ[19,53,54], hyperphosphatemia and vitamin 
D deficiency[55] suppress Klotho gene. Deficient Klotho 
activity enhances tubulointerstitial fibrosis[56]. The 
attempt to repair damage begins with the recruitment 
of inflammatory cells but ends with an unchecked 
inflammatory response that activates matrix-producing 
cells leading to tubular cell apoptosis, irreversible 
scarring, loss of renal function, and ultimately ESRD[57]. 
The extent of damage rather than the underlying 
disease determines the outcome[58]. Progressive fibrosis 
is likely responsible for the disruption of glomerular 
and tubular architecture. Inhibition of the major 
mediators responsible for matrix accumulation might 
slow or arrest the progression of CKD. Support for this 
concept has been provided by the results of a number 
of studies in animal models of CKD, in which inhibiting 
factors that promote fibrosis, such as TGF-β, connective 

tissue growth factor, and myofibroblast activation[59-63] 
or enhancing factors that attenuate fibrosis, such as 
bone morphogenetic protein 7 and hepatocyte growth 
factor[64,65] improved renal architecture and/or function. 
The present data indicate that TGF-β is the master 
regulator of the molecular events that result in renal 
fibrosis[66]. So far, clinical trials using TGF-β antibodies 
did not achieve satisfactory results. 

Standard of care management: Table 1
We do not have data to support the role of life style 
modification procedures (body weight control, exercise, 
and smoking quitting) on the course of CKD or cardiova
scular impact in this population. 

Protein restriction did not significantly affect CKD 
progression[67]. Very low-protein diet does not delay 
CKD progression and may increase the risk of death[68].

BP control significantly decreases the rate of decline 
in GFR in pre-dialysis CKD patients[69]. RAS blockers 
should be used to control BP in CKD patients (diabetic 
and nondiabetic) with increased urine albumin excretion. 
RAS blockers have a significant impact on the rate of 
decline of GFR in CKD patients with proteinuria[70-72]. 
They exert their action through many mechanisms 
including their hemodynamic effect on glomerular tuft 
pressure[73,74], inhibition of cytokine overproduction[75-79], 
increased serum and tissue angiotensin 1-7[80-82] and sti
mulation of Klotho gene expression in CKD patients. The 
RAS-mediated renal damage might be through Klotho 
gene manipulation[54]. This novel mechanism might 
clarify the vascular, cardiac and renal protective benefits 
of such agents[53,56]. Manipulation of Klotho gene, adds 
a new exciting mechanism for the cardiovascular and 
renal protective actions of RAS blockers. 

The addition of aldosterone antagonists whether 
non-selective (spironolactone) or selective (eplerenone 
or Finerenone) to anti-hypertension medications offered 
better BP and proteinuria control in mild to moderate 
CKD[83-85]. 

Hyperkalemia is not infrequent with RAS blockers 
and/or aldosterone antagonists treatment in such 
patients. The use of bisacodyl laxative[86], patiromer, the 
nonabsorbed potassium binder[87] or sodium zirconium 
cyclosilicate[88] can control hyperkalemia. These agents 
are not associated with the potentially serious adverse 
effects of potassium exchange resins[89,90]. 

According to KDIGO guidelines, BP should be kept at 
130/80 mmHg or lower[91]. A much lower BP (less than 
110/75 mmHg) is associated with slower rate of annual 
increase in kidney size and urine protein excretion rate 
in early cases of ADPKD as shown by a recent study, 
HALT-PKD[92].

The strict control of blood sugar has a positive 
impact on survival of pre-dialysis diabetic CKD patients. 
Diabetic patients experienced the reversal of renal 
pathology after pancreas transplantation[93]. Glycemic 
control might also delay CKD progression and postpones 
the need for dialysis[94,95].

Statins reduce the risk of atherosclerotic cardiovas
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in CKD patients[107]. The rate of progression of CKD 
(measured as 1/serum creatinine) was faster in hyper
phosphatemic patients in stage G5 when compared to 
normophosphatemic patients in the same stage[108]. 
In patients in stage G4 and G5, each 1 mg/dL higher 
serum phosphorus concentration, the mean decline 
in renal function increased with 0.154 mL/min per 
month[109]. In addition, hyperphosphatemia is associated 
with increased mortality[110]. Increased phosphate con
centration leads to the formation of calcium-phosphate 
crystals, a process called “nucleation”. If this process is left 
unchecked, calcium phosphate crystals undergo further 
aggregation to form monetite, brushite, octacalcium 
phosphate, amorphous calcium phosphate and finally 
hydroxyapatite. When exposed to such crystals, vascular 
endothelial cells increase production of reactive oxygen 
species and eventually undergo apoptosis[111]. Endothelial 
cell death can expose underlying smooth muscle cells 
to the high ambient phosphate. Transformation of such 
cells to osteochondrocytes consequently develops[112]. 
Fetuin-A is α-glycoprotein that binds calcium pho
sphate crystals, inhibiting the crystal growth and 
polymerization. Fetuin-A calcium phosphate complex 
is called calciprotein particles (CPP). In comparison to 
hydroxyapatite, CPP induce significantly less cytokine 
secretion when macrophages are exposed to equimolar 
concentrations of hydroxyapatite and CPP[113]. In spite of 
the apparent protective effect of CPP, increased serum 
level of such particles reflects increased procalcific 
melieu[114]. Higher CPP levels are thus associated with 
reduced renal function, higher scores of V.C., aortic 
stiffening and increased risk of death[115]. 

cular disease in CKD patients; however, clinical trials 
have suggested a minimal effect of statins on CKD 
progression[96]. 

The association between high serum uric acid 
(UA) and progression of CKD was suggested by many 
studies of stage G1 and G2[97-99]. A more recent study 
denied this association in stages G3, 4 and 5[100]. On the 
other hand, hyperuricemia was found as independent 
risk factor for CKD progression in children and adole
scents[101]. Treatment of CKD patients with estimated 
GFR of 40.6 ± 11.3 mL/min with allopurinol 100 mg/d 
was associated with significant decrease in renal events 
(need of dialysis, doubling of serum creatinine or > 
50% reduction of GFR) and cardiovascular events in 
comparison to control CKD patients taking only their 
standard treatment (P < 0.004 and 0.02 respecti
vely)[102]. In addition, a recent meta-analysis showed a 
significant favorable effect of allopurinol on the rate of 
GFR decline[103]. Another recent trial demonstrated the 
significant impact of febuxostat on CKD progression in 
stage G3 and G4 patients[104].

Correction of chronic metabolic acidosis was origin
ally recommended in CKD patient to inhibit excessive 
protein catabolism and calcium mobilization out of the 
bone. Sodium bicarbonate supplementation was found 
to slow the rate of progression of CKD to ESRD[105]. In 
the more recent trial, a significant improvement in the 
rate of decline of GFR was encountered in stage G4 
CKD patients treated with sodium bicarbonate to render 
serum bicarbonate level at 22 mmol/L or above[106].

High serum phosphorus was suggested as a 
potential risk factor for a rapid decline in renal function 
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Drug class On-target parameter Off-target parameters Ref.

Antihypertensive
   RAS blockers BP↓ UAE↓, GTP↓, K+↑, AT1-7↑, cytokines↓, Klotho↑ [53,54,56,69-82]
   Aldosterone antagonists  BP↓ UAE↓, K+↑ [83-85]
K+ binders
   Bisacodyl K+↓ Diarrhea [86]
   Patiromer K+↓ [87]
   Na zirconium cyclosilicate K+↓ [88]
Blood sugar control Blood sugar↓ Progression↓ [93-95]

HbA1c + 7 Postpones need of Dx
Hypocholestrolemic 
   Statins Cholesterol↓, LDL↓ Cardiovascular events↓ [96]
Hypouricemic agents
   Allpurinol Uric acid↓ Renal events↓, CV events↓ [102,103]
   Febuxostst Uric acid↓ CKD progression↓ [104]
Sodium bicarbonate HCO3

-↑, PH ↑ Ptn catabolism↓, GFR decline↓ [105,106]
Phosphate binders
   Calcium based P↓ PTH↓, Vasc calc.↑ [117-120]
   Sevelamer P↓ PTH↓, stop vasc calc, Mortality↓, Uric acid↓, Cholesterol↓, 

LDL↓, inflammation↓ Cardiovascular events↓
[121-131]

   Lanthanum carbonate P↓ PTH↓, stop vasc calc, [123-139]
   Iron compounds P↓ Iron↑ [140,141]
   Nicotinamide P↓ TG↓, LDL↓, HDL↑ [142-144]

Table 1  Standard of care therapeutic management

RAS: Renin angiotensin system; BP: Blood pressure; UAE: Urine albumin excretion; GTP: Glomerular tuft pressure; K: Potassium; AT1-7: Angiotensin 1-7; 
Dx: Dialysis; LDL: low density lipoprotein; CV: Cardiovascular; CKD: Chronic kidney disease; HCO3

-: Bicarbonate; Ptn: Protein; GFR: Glomerular filtration 
rate; P: Phosphorus; PTH: Parathormone; Vasc calc: Vascular calcification; TG: Triglycerides; HDL: High density lipoproteins.
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When phosphate intake was restricted, the rate 
of decline in creatinine clearance was much less[107]. 
Restriction of phosphate intake should start early in 
the course of CKD before the evident rise in serum 
phosphorus ensues. The restriction should initially be 
limited to food ingredients rich in inorganic phosphorus 
(like food preservatives and tasters). These food 
additives are found in sodas and processed foods[116]. 
Bioavailability of organic phosphorus is higher in animal 
proteins compared to plant proteins. Phosphorus 
in the later is tightly bound to phytate, an indigesti
ble ingredient found in plant foods. On the other 
hand, phosphate binders should only be used when 
serum phosphorus increases above normal limits. 
The very early use of the phosphate binders might 
be associated with progression of V.C. while lowering 
serum phosphorus and attenuating the progression 
of secondary hyperparathyroidism[117]. Calcium-based 
phosphate binders are still very useful to control hyper
phosphatemia, but can lead to hypercalcemia and/or 
positive calcium balance and cardiovascular calcific
ation[118]. The higher the dose ingested the greater the 
extent of V.C.[119,120]. Thus, their use in cases suffering 
V.C., hypercalcemia, low level of parathormone and/or 
adynamic bone disease has to be restricted[121]. When 
sevelamer was used in hyperphosphatemic stage 3-4 
CKD patients, a significant impact on all-cause mortality 
and the need of dialysis was observed in comparison to 
calcium carbonate[122]. Sevelamer is not just a calcium-
free phosphate binder, but it has additional pleiotropic 
effects such as correcting certain abnormalities of lipid 
metabolism[123], significant decrease in inflammatory 
parameters including interleukin (IL)-6, sCD14 and 
hs-CRP[124,125], reduces serum UA concentration[126], 
decrease serum FGF23[127-129] and increases serum 
level of Klotho[129]. The role of FGF23 and Klotho on the 
cardiovascular system and progression of CKD will be dis
cussed later in this review. Compared to calcium-based 
phosphate binders, sevelamer improves endothelial 
function in CKD patients[130]. Although sevelamer is 
more expensive compared to calcium-based phosphate 
binders[131], the significant reduction in all-cause 
mortality and the significantly fewer hospitalizations in 
the sevelamer group can offset the higher acquisition 
cost for sevelamer[132].

Lanthanum carbonate (LC) is another non-calcium 
based phosphate binder. LC had no impact on overall 
mortality in CKD patients[133-135]. Contrary to sevelamer, 
LC does not have a consistent effect on FGF23. LC failed 
to cause reductions in FGF23 in patients with CKD stage 
G3-4[136,137]. On the other hand, other studies showed 
that LC was effective in reducing FGF23 levels in CKD 
G3[138] and CKD G4-5 patients[139]. None of the trials 
on Lanthanum reported any effect on inflammation or 
inflammatory biomarkers. We are still waiting for such 
studies to assure non-inferiority of Lanthanum in this 
field.

Iron compounds represent the new class of phos
phate binders. Ferric Citrate, Sucroferric oxyhydroxide, 

and Fermagate (Iron-magnesium hydroxycarbonate) 
were tested in some clinical trials[140]. Most of the clinical 
studies done so far were using ferric citrate, stressing 
on phosphate binding and ferrokinetics after short 
periods of trial. A single study looked for non-inferiority 
of Sucroferric oxyhydroxide (PA21) compared to sevel
amer carbonate concerning phosphate binding[141].

The value of nicotinamide in phosphate control (as 
well as its effects on lipid levels) was explored in some 
short-term trials on dialysis patients[142-144]. However, 
such trials did not look for either pharmacokinetics or 
safety. None of these trials studied the impact on V.C., 
FGF23, Klotho or inflammatory mediators.

Novel therapeutic interventions: Table 2
Interstitial inflammatory cell infiltrates are a hallmark 
CKD of different etiology. Such infiltrates are the conse­
quence of the interaction between chemokines locally 
produced when renal tissue is injured, and membrane 
receptors located on the cell membrane of leukocytes. 
Seven chemokine receptors are recognized, so far, on 
the surface of leucocytes[145]. Such leukocytes potentially 
secrete pro-inflammatory, pro-apoptotic and pro-fibrotic 
cytokines that perpetuate renal tissue destruction and 
progression to CKD. A single chemokine receptor can 
respond and interact with different chemokine ligands. 
Therapeutic interventions targeting the receptors is 
thus much preferred to interrupt such renal leukocytes 
recruitment[146]. The chemokine receptor CCR1 looks 
to play a pivotal role in leukocyte migration. This role 
extends to the interaction of other receptors with their 
chemokine ligands[147]. While CCR1 is essential for 
leukocyte recruitment into the interstitium[148], CCR2 and 
CCR5 do the job in case of glomerular infiltration[149,150]. 
CCR1 antagonists proved to have a significant impact 
on leucocyte infiltration, interstitial fibrosis, tubular 
injury and kidney function tests in different rat models 
of renal injury (e.g., unilateral ureter ligation, lupus 
nephritis, Adriamycin-induced renal injury, and collagen 
4A3 deficient mice; the synonym of human Alport’s 
syndrome)[146]. When the CCR1 antagonist, BL5923, 
was used in mice suffering diabetic nephropathy, the 
interstitial recruitment of ex vivo labeled macrophages 
was markedly decreased. This was associated with 
reduced numbers of proliferating tubular epithelial and 
interstitial cells, tubular atrophy, and interstitial fibrosis. 
Glomerular pathology and proteinuria were not affected 
by the CCR1 antagonist[151]. 

A mirror-image (Spiegelmer) for MCP1 was in 
vitro built-up using non-natural nucleotides. This RNA 
oligonucleotide is called Emapticap Pegol. It binds and 
neutralizes MCP-1 (also called CCL2), a pro-inflammatory 
chemokine that plays an important role in diabetic 
kidney disease[152]. A phase Ⅱa study that looked for 
safety and efficacy of Emapticap Pegol in phase Ⅳ 
diabetic nephropathy showed statistically significant 
reduction in urinary albumin excretion after the use of 
Emapticap Pegol for 12 wk as 3 times/wk subcutaneous 
injections. The anti-proteinuric effect persisted for 12 wk 
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after discontinuation of treatment. It also succeeded to 
improve glycemic control[5,153]. A novel CCR2 antagonist 
was tried in diabetic kidney disease patients having 
type 2 diabetes. This antagonist is called CCX140. The 
results of phase Ⅱ showed that the use of CCX140 
given orally in a dose 5 mg/d on top of the standard 
of care treatment was associated with an additional 
significant reduction of urine albumin excretion rate. 
This improvement started after 12 wk and continued for 
the whole period of the study (52 wk). These patients 
were already treated with RAS blockers. Significant 
improvement in the slope of decline of GFR over that 
achieved with the standard of care treatment was also 
observed beside the improved glycemic control[6]. The 
results of phase 3, however, did not confirm the signi­
ficant impact on GFR but did confirm the anti-proteinuric 
and the glycemic favorable outcomes reported in phase 
2[154]. CCX168 is another inhibitor that targets C5aR, 
the chemoattractant receptor that binds to the comple
ment fragment C5a. Oral administration of CCX168 
ameliorated anti-MPO-induced mesangiocapillary glome
rulonephritis in mice[155]. In addition, this inhibitor is in 
phase 2 trials in patients with aHUS, IgA nephropathy, 
and ANCA-associated vasculitis.

Pentoxifylline is a phosphodiesterase inhibitor with 
anti-inflammatory action. It is used as a treatment of 
peripheral vascular disease. The addition of low-dose 
pentoxifylline, 400 mg/d, to losartan plus enalapril 
resulted in a significant decrease of urine protein 
excretion rate from a baseline of 616 mg/d to 192 
mg/d 6 mo later in type 2 diabetic patients[156]. Another 

clinical trial explored add-on pentoxifylline to maximized 
RAS blockade on renal disease progression in stage 
G3-4 CKD T2DM patients. Pentoxifylline dose in this trial 
is 1200 mg/d. After 24 mo of follow-up, treatment with 
pentoxifylline was associated with a slower rate of eGFR 
loss together with the significant reduction in urine 
protein excretion[157].

An inverse relationship was observed between 
serum level of 25(OH) vitamin D and the rate of GFR 
decline in children suffering CKD. Serum levels higher 
than 50 nmol/L were associated with 75% renal survival 
at 5 years of observation in contrast to 50% in case 
of levels below 50 nmol/L (P < 0.001). Higher serum 
levels of 25(OH) vitamin D were associated with lower 
urine protein/creatinine ratio. Renal survival increased 
8.2% for every 10 nmol/L increase in 25(OH) vitamin 
D (P = 0.03), independent of eGFR; proteinuria, and 
underlying renal diagnosis[158]. It seems that activation 
of vitamin D receptors (VDR) on podocytes improves 
glomerular membrane sieving of proteins and has an 
anti-fibrotic effect[159]. Paricalcitol in a dose of 2 μg/d 
showed a significant effect on urine albumin excretion 
in type 2 diabetic patients with overt nephropathy[160]. 
PROCEED trial is another prospective controlled study 
of paricalcitol in type 2 diabetes patients in phase Ⅳ 
diabetic nephropathy on low or high salt intake and 
already treated with RAS blockers[161]. This trial has 
already completed and results are expected within few 
weeks.

Paricalcitol treatment of uremic mice restores 
deficient Klotho synthesis in CKD renal tissue[162]. 
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Therapeutic modality Mechanism of action Primary end points Ref.

Chemokine ligand and receptor antagonists
   CCR1 antagonists Block CCR1 receptors on leucocyte surface Leuc. Inf.↓, IF↓, TI↓, and improved 

KFTs
[146]

   Emapticap pegol Binds and neutralizes MCP-1 UAE↓, glycemic control in phase Ⅳ 
D.N.

[5,152,153]

   CCX140 Block CCR2 UAE↓, glycemic control in phase Ⅳ 
D.N.

[6,154]

   Pentoxifylline Anti-inflammatory UAE↓, eGFR loss↓ [156,157]
VDRA
   Paricalcitol Improves G.M. sieving, antifibrotic UAE↓, eGFR loss↓ [160-162]
IAP
   Mediterranean diet Restores intestinal microbiota, IAP↑ eGFR loss↓ [184]
   Bound phosphorus IAP↑ [186]
   Vitamin K IAP↑ [188]
S.O.D. mimetic
   Tempol Oxidative stress↓ UAE↓, GS↓, TID↓ [189]
SRA
   Sarpogrelate Antiplatelet UAE↓ [192]
V2RA
   Tolvaptan V2 receptor blocker No. of cysts↓, growth of cysts↓ [19]
   IgG anti-SAP antibodies Binds SAP within amyloid tissue Clearance of tissue amyloid deposits [20]
   RG-012 Inhibitor of miR-21 GS↓, IF↓, TI↓, Infl.↓ [22]

Table 2  Novel therapeutic interventions

Leuc. Inf.: Leucocyte infiltration; IF: Interstitial fibrosis; TI: Tubular injury; KFTs: Kidney function tests; UAE: Urine albumin excretion; D.N.: Diabetic 
nephropathy; eGFR: Estimated glomerular filtration rate; VDRA: Vitamin D receptor agonists; G.M.: Glomerular membrane; IAP: Intestinal alkaline 
phosphatase; S.O.D.: Superoxide dismutase; GS: Glomerulosclerosis; TID: Tubulointerstitial disease; SRA: Serotonin receptor antagonist; V2RA: Vasopressin 
receptor antagonist; SAP: Serum amyloid protein; miR: Micro RNA; infl.: Inflamation.
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Klotho is an anti-senescence protein[6]. It exists in 2 
forms: The transmembrane and the soluble secreted 
form[163]. Klotho is detected as a soluble protein in 
body fluids including blood, CSF and urine[164]. The 
highest expression of Klotho is in the kidney and the 
brain[6], but it is also expressed in parathyroid gland[165] 
and heart[166] with less abundance. Klotho protein 
is a β-glucuronidase. Reduced klotho expression in 
chronically diseased kidneys is associated with chronic 
inflammatory cell infiltrate, sclerosis of intrarenal small 
sized arteries, interstitial fibrosis and renal tubular 
atrophy[16]. Decreased klotho expression underlies 
excessive fibroblast emergence as a consequence of 
EMT following acute insults posed on renal tubular 
epithelium[12]. The kidney produces and releases Klotho 
into the circulation and clears Klotho from the blood into 
the urine[167]. Exogenous Klotho prevents senescence 
of endothelial cells induced by uremic milieu[168]. In 
different models of mouse CKD (5/6 nephrectomy, 
Adriamycin nephropathy and unilateral ureteric lig
ation) exogenous Klotho abolished the induction of 
the different RAS proteins, including angiotensinogen, 
renin, angiotensin-converting enzyme, and angiotensin 
Ⅱ type 1 receptor, and normalized BP. Klotho also 
ameliorated renal fibrotic lesions[169]. 

Endothelin receptor antagonists, avosentan, and 
atrasentan, have a significant anti-proteinuric effect 
when added to RAS blockers. However, dose-dependent 
peripheral edema is a major obstacle limiting their 
routine use in CKD patients[170].

CKD is associated with inflammation and oxidative 
stress which contribute to CKD progression[171]. A 
positive correlation was encountered between the rate 
of rise in serum creatinine and 2 markers of inflam
mation, namely, hs-CRP and malondialdehyde[172]. 
Uremic status is incriminated in the pathogenesis of 
chronic inflammation; however, the exact mechanisms 
are not fully understood. Inflammation can result from 
multiple co-morbid conditions activating inflammation 
(like infections and autoimmune systemic diseases)[173]. 
Impaired activity of the nuclear 1 factor (erythroid-
derived 2)-related factor 2 (Nrf2) transcription factor 
was associated with inflammation and impaired anti-
oxidant activity in CKD animals[174]. Bardoxolone methyl 
is a potent activator of the Nrf2. When patients with 
type 2 diabetes mellitus and G4 CKD (GFR 15 to < 30 
mL/min) were treated with bardoxolone methyl, at a 
daily dose of 20 mg, there was a significant increase in 
GFR. However, the treatment group had a significant 
increase in urine albumin excretion, BP and in the 
incidence of congestive heart failure and cardiovascular 
mortality. The last 2 adverse events forced the steering 
committee to prematurely stop the trial 7 mo after its 
onset[175].

The gut has recently emerged as a major instigator 
of systemic inflammation in CKD. Postmortem examin­
ation of gut wall disclosed inflammatory changes 
throughout the digestive tract in patients on regular 
dialysis[15]. The human intestine is now recognized 

as an important metabolic organ powered by gut 
microbiota[176]. Altered gut microbiome might affect the 
integrity of the intestinal barrier leading to facilitated 
blood translocation of bacteria and uremic toxins[15]. In 
this context, the intestinal barrier function has not yet 
been carefully studied. However, recent studies have 
demonstrated marked disintegration of the colonic 
epithelial barrier structure and significant alteration 
of the colonic bacterial flora in humans and animals 
with advanced CKD[171]. The fact that circulating 
lipopolysaccharides (LPS) levels and bacteria-derived 
uremic retention solutes (indoxyl sulfate, p-cresol, and 
trimethylamine n-oxide) increase with CKD stages 
suggests a link between the intestinal barrier and 
renal dysfunction[177]. Many uremic toxins are derived 
from gut microbes. The imbalance of gut microbiota 
(dysbiosis) is provoked by dietary restrictions in CKD. 
Prescribed diet is poor in plant fibers and symbiotic 
organisms (to avoid potassium and phosphorus). 
Gut bacterial DNA and endotoxin were detected in 
the CKD serum. Endotoxin levels increase with the 
CKD stage and correlate with the severity of systemic 
inflammation[15]. When lubiprostone (a laxative) was 
used in uremic mice, reduction in the elevated BUN 
and protection against tubulointerstitial damage, renal 
fibrosis, and inflammation were observed. Change 
in the intestinal microbial composition in favor of 
Lactobacilli and Prevotella genus was also encountered 
beside a significant decrease in serum level of indoxyl 
sulfate, hippurate, and trans-aconitate. All these uremic 
toxins are of intestinal bacterial origin. These results 
indicate the possible value of change of gut microbiota 
in improving the rate of progression of CKD[178]. 
Thus, by targeting of the gut microbiome in a trial 
to restore symbiosis may prove as a potent strategy 
in reducing inflammation and disease progression in 
CKD. The efficacy of probiotics to decrease uremic 
toxin production and to improve renal function has 
been investigated in some human CKD studies[177]. 
However, none of the clinical studies, so far, looked 
for the impact of probiotics on inflammation and CKD 
progression in pre-dialysis population. We would like 
to emphasize that probiotic treatment might decrease 
serum urea and creatinine by direct degradation. The 
use of estimated GFR in the assessment will obviously 
give erroneous results. GFR should be measured using 
iohexol in such trials. Another critical issue concerning 
the use of probiotics is the possible production of urease 
enzyme. Bacterial urease would increase ammonia 
production. This later product can attack the tight 
junctions in between intestinal epithelium rendering 
the intestinal mucosal barrier looser allowing excess 
translocation of bacterial products and uremic toxins to 
the intestinal wall and then into circulation. We are still 
looking for randomized prospective trials targeting the 
colonic microenvironment in CKD aiming at modulation 
of gut microbiota, to block LPS absorption to attenuate 
inflammation, or to target rate of production and 
adsorption of uremic toxins[179].
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Intestinal alkaline phosphatase (IAP) displays anti-
inflammatory properties. This property may be related 
to detoxification of LPS, resulting in amelioration of 
intestinal and systemic inflammation; and to the 
regulation of gut microbial communities and their translo
cation. Enteral and systemic administration of exogen
ous IAP attenuates systemic inflammation. Dietary 
intervention can stimulate IAP and minimize low-grade 
systemic inflammation[180]. Intravenous administration of 
IAP improved kidney function and systemic inflammation 
in cases of sepsis[181]. Various spices (e.g., black pepper, 
red pepper, and ginger) increase IAP activity in the 
small intestine[182]. Curcumin; the active ingredient in 
the herbal remedy and dietary spice turmeric (Curcuma 
longa) increases the expression of IAP and tight junction 
proteins and corrects gut permeability. These effects 
would explain the anti-inflammatory effect of dietary 
curcumin in spite of its’ poor bioavailability[183]. It seems 
clear from this discussion; that a Mediterranean diet rich 
in indigestible fibers and in saccharolytic bacterial species 
fortified by spices like black pepper, red pepper, ginger 
or curcumin represents an innovative approach in CKD, 
potentially restoring microbiota balance, ameliorating 
CKD symptoms and slowing down CKD progression[184]. 
Dietary calcium and bound phosphate stimulate 
IAP[185,186]. In contrast, free unbound phosphorus in food 
inhibits IAP[187]. Vitamin K stimulates IAP[188].

The superoxide dismutase-mimetic drug, Tempol, 
improved elevation on serum creatinine, blood urea 
nitrogen, urine albumin, segmental sclerosis and 
tubulointerstitial damage that were induced by 5/6 
nephrectomy. These results indicate the value of the 
increased oxidative stress commonly encountered in 
CKD on the progression of the renal disease. They also 
highlight the possible value of antioxidant treatment to 
delay CKD progression[189].

Sarpogrelate is a serotonin (5-hydroxy tryptamine) 
receptor antagonist. It inhibits the production of throm
boxane A2 and is used as anti-platelet agent instead of 
aspirin[190]. Experimental studies showed Sarpogrelate 
effect on mesangial type Ⅳ collagen production, on 
albuminuria in DKD, on antibody-mediated glomerular 
injury and on nephrotoxin-induced kidney fibrosis[191]. 
A clinical trial showed a significant decrease of urine 
albumin excretion in diabetic kidney disease after 
addition of Sarpogrelate[192].

ADPKD is the most common inherited disease that 
leads to dialysis or kidney transplantation. ADPKD 
is the fourth leading cause of ESRD[193]. The disease 
manifests by one or more cysts in each kidney usually 
during the 3rd decade of life. The number and size of the 
cysts steadily progress to interfere with the structure 
and function of individual nephrons. This distraction in 
the structure and function leads finally to ESRD usually 
between the 4th and 7th decades of life[194]. Many clinical 
trials were planned using different agents to stop the 
growth in number and size of cysts. All these trials 
failed to show significant results[195]. On the other hand, 
animal studies highlighted the role of the antidiuretic 

hormone arginine vasopressin and its second mess
enger adenosine-3′, 5′-cyclic monophosphate (cAMP) as 
promoters of kidney cyst development and accumulation 
of secretions within existent cysts. These studies also 
showed that suppression of vasopressin by either 
increase of water intake, posterior pituitary ablation or 
using the vasopressin receptor antagonists inhibit cyst 
development and growth and hence preserve kidney 
function[196]. The first phase 3 prospective double-
blinded clinical study of tolvaptan (vasopressin receptor 
antagonist, V2-receptor antagonist) demonstrated a 
significant slowing in the rate of increase in total kidney 
volume and the decline in kidney function over a 3-year 
period compared to placebo in patients with ADPKD[19]. 
These results beside the more recent trial on BP, HALT-
PKD[92], open a big hope to ADPKD patients, especially if 
their disease is checked in early stages.

The kidney is the most frequent site of amyloid 
fibril deposition in AL, AA, and several of the hereditary 
amyloidoses. Amyloid fibrils are a group of soluble 
proteins that aggregate and deposit extracellularly in 
tissues as insoluble fibrils, causing progressive organ 
dysfunction. Substantial progress in understanding 
the process of amyloid fibril formation and the me
chanisms underlying disease manifestations have led 
to important advances in treatment[197]. In cases of 
systemic amyloidosis, the amyloid fibril deposits always 
contain the non-fibrillar serum amyloid P component 
(SAP). SAP binds avidly but reversibly to all types of 
amyloid fibrils and is thus specifically concentrated in 
all amyloid deposits[198]. The binding of monoclonal anti-
SAP antibodies to the SAP in amyloid deposits activates 
complement and triggers the rapid clearance of amyloid 
by macrophage-derived multinucleated giant cells[20]. 
The drug (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-
oxo-hexanoyl] pyrrolidine-2-carboxylic acid (CPHPC) 
efficiently depletes SAP from the plasma but leaves 
SAP in tissue amyloid deposits. Therapeutic IgG anti-
SAP antibodies can subsequently target tissue SAP. An 
open-label, single-dose-escalation, phase 1 trial was 
conducted in patient with systemic amyloidosis mainly 
affecting the liver. One patient had renal involvement. 
A reduction in kidney amyloid load was observed. 
The authors are planning a next trial phase, in which 
patients with clinically significant renal amyloidosis will 
be included and will receive larger and, if necessary, 
repeated doses of anti-SAP antibody, with the aim of 
achieving effective exposure in tissues that do not have 
the highly permeable sinusoidal endothelium of the liver 
and spleen[20]. 

Micro RNA (miRNA) are non-coding short RNA 
molecules (average 22 nucleotides) found in plants, 
animals, some viruses, and human being. Their main 
function is RNA silencing and post-transcriptional 
regulation of gene expression. A number of miRNAs 
are dysregulated in response to acute kidney injury 
and in CKD. This dysregulation probably contributes 
to maintenance and progression of CKD of different 
pathologic entities[199]. One of such miRNAs is miR-21, 
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probably involved in regulating kidney tissue response 
after injury. MiR-21 is expressed in many cell types 
in the kidney and is upregulated in CKD of different 
underlying etiology. MiR-21 knockout mice showed far 
less interstitial fibrosis in response to kidney injury. 
Similar results were demonstrated in wild-type mice 
treated with anti-miR-21 oligonucleotides[200]. These 
oligonucleotides are administered subcutaneously and 
have high affinity to renal tissues. When a murine 
model of Alport syndrome was treated with anti-miR-21 
oligonucleotides, no adverse effects were encountered 
after miR-21 silencing. The treated mice showed 
substantially milder renal disease compared to vehicle 
treated mice. The treated Alport mice had improved 
survival and reduced pathological end points including 
glomerulosclerosis, interstitial fibrosis, tubular injury, 
and inflammation[22]. These results demonstrate that 
inhibition of miR-21 is a potential therapeutic modality 
for CKDs in general and Alport nephropathy in specific. 
Currently, RG-012; the potent inhibitor of miR-21 is 
being evaluated in a first-in-human Phase Ⅰ clinical 
study to evaluate the safety, tolerability and pharma
cokinetics of subcutaneous dosing in healthy volunteers. 
This will be followed by a clinical multicenter study in 
cases of Alport syndrome. 

During September 2015, a new hope was created 
to diabetic patients. Treatment with low doses of IL-17A 
succeeded to reverse diabetic nephropathy in genetic 
models of diabetes in mice. Administration of low 
doses of IL-17A significantly decreased urine albumin 
excretion, kidney size, msangial matrix expansion, 
urine IP10, TNFα, IL-6, MCP1 and serum urea level in 
comparison to vehicle[201].

CONCLUSION
Today, clinical nephrologists appreciate the impact of 
BP and blood sugar control, the value of RAS blockers 
and VDR agonists on the outcome of diabetic kidney 
disease. Chemokine ligand or receptor blockers are 
about to make the progression of diabetic nephropathy 
very slow or even completely suppressed. In the time 
being, CKD patients are irreversibly driven to renal 
replacement therapy. The question answered in this 
review is: “Are we approaching the time to change the 
pessimistic concept of (inevitable progression)?”
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