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Abstract

Purpose—To develop data acquisition and image reconstruction methods to enable high-

resolution 1H MR spectroscopic imaging (MRSI) of the brain, using the recently proposed 

subspace-based spectroscopic imaging framework called SPICE (SPectroscopic Imaging by 

exploiting spatiospectral CorrElation).

Theory and Methods—SPICE is characterized by the use of a subspace model for both data 

acquisition and image reconstruction. For data acquisition, we propose a novel spatiospectral 

encoding scheme that provides hybrid data sets for determining the subspace structure and for 

image reconstruction using the subspace model. More specifically, we use a hybrid chemical shift 

imaging (CSI)/echo-planar spectroscopic imaging (EPSI) sequence for two-dimensional (2D) 

MRSI and a dual-density, dual-speed EPSI sequence for three-dimensional (3D) MRSI. For image 

reconstruction, we propose a method that can determine the subspace structure and the high-

resolution spatiospectral reconstruction from the hybrid data sets generated by the proposed 

sequences, incorporating field inhomogeneity correction and edge-preserving regularization.

Results—Phantom and in vivo brain experiments were performed to evaluate the performance of 

the proposed method. For 2D MRSI experiments, SPICE is able to produce high SNR 

spatiospectral distributions with an approximately 3 mm nominal in-plane resolution from a 10-

min acquisition. For 3D MRSI experiments, SPICE is able to achieve an approximately 3 mm in-

plane and 4 mm through-plane resolution in about 25 min.

Conclusion—Special data acquisition and reconstruction methods have been developed for high-

resolution 1H-MRSI of the brain using SPICE. Using these methods, SPICE is able to produce 

spatiospectral distributions of 1H metabolites in the brain with high spatial resolution, while 

maintaining a good SNR. These capabilities should prove useful for practical applications of 

SPICE.
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INTRODUCTION

Significant efforts have been made in the last several decades to achieve fast, high-resolution 

MR spectroscopic imaging (MRSI), through the development of fast sequences (1–10) and 

advanced image reconstruction methods (11–25). SPICE (SPectroscopic Imaging by 

exploiting spatiospectral CorrElation) is a relatively new approach that we recently proposed 

to achieve high-resolution MRSI with good signal-to-noise ratio (SNR) and speed (26). A 

key feature of SPICE is the use of a subspace model for both data acquisition and image 

reconstruction. Specifically, SPICE proposes a novel spatiospectral encoding strategy to 

generate hybrid data sets, from which the subspace structure and the spatiospectral 

distribution are recovered. In this work, we present pulse sequences and algorithms to 

implement SPICE for high-resolution1H-MRSI of the brain.

One practical issue in SPICE data acquisition lies in balancing the resolution, speed, and 

SNR tradeoff when acquiring the hybrid data sets for subspace determination and for 

subspace-based reconstruction, respectively. To this end, we propose a hybrid chemical shift 

imaging (CSI)/echo-planar spectroscopic imaging (EPSI) sequence to achieve an extended 

(k,t)-space coverage in a short acquisition period for 2D MRSI using SPICE. The CSI 

component has limited k-space coverage but high SNR, and uses the entire free induction 

decay (FID) period for spectral encoding; it is used to acquire the data needed for accurate 

subspace estimation (denoted as ). The EPSI component has high data acquisition speed 

and allows an extended k-space coverage within a short period; it is used to acquire the data 

needed for high-resolution spatiospectral reconstruction (denoted as ). For 3D MRSI 

using SPICE, however, this sequence may be too slow for practical applications. To address 

this issue, we propose a dual-density, dual-speed sequence that performs a hybrid of slow 

EPSI scans (to acquire ) and rapid EPSI-like scans (to acquire ), which benefits from 

the increased sensitivity offered by 3D encoding. The proposed hybrid sampling scheme, 

enabled by the subspace model, effectively combines the advantages of slow scans (i.e., high 

SNR and full spectral encoding) and rapid scans (i.e., high resolution) for accelerated MRSI 

using sparse sampling.

Given the (k,t)-space data acquired using the proposed acquisition scheme, the main issues 

for SPICE reconstruction are estimation of the subspace structure (or the basis spanning the 

low- dimensional subspace) from  and reconstruction of the underlying spatiospectral/

spatiotemporal function from . A key problem in subspace estimation is the removal of B0 

field inhomogeneity effects from the limited k-space data. Assuming the availability of a 

high-resolution field map, we utilize a regularized super-resolution reconstruction scheme to 

solve this problem. With the subspace determined from the field corrected data, the 

reconstruction problem can be translated into the estimation of a set of spatial coefficients, 

with a significantly reduced number of degrees-of-freedom compared to the high-
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dimensional spatiospectral/spatiotemporal function of interest (making possible a high SNR 

reconstruction from the very noisy and sparse data). This problem can then be solved using a 

regularized linear least-squares formulation that incorporates an explicit low-rank model as 

well as the capability to incorporate field inhomogeneity correction and edge-preserving 

regularization. The use of regularization not only serves to stabilize the coefficient 

estimation problem but also enables the incorporation of additional prior information for 

improved reconstruction.

We have obtained results from both phantom and healthy volunteers to evaluate the 

performance and in vivo feasibility of the proposed SPICE data acquisition and image 

reconstruction methods. In particular, for in vivo 2D MRSI experiments, the proposed 

method is able to produce1H metabolite maps with an 80 × 80 matrix size over a 220 × 

220mm2 field of view (FOV) with an 8 mm slice thickness (i.e., a nominal 2.75 mm in-plane 

resolution) in a 10-minute acquisition with a similar SNR to an equivalent-time CSI scan. 

For in vivo 3D MRSI experiments, the proposed method is able to produce metabolite 

distributions with an 80 × 80 × 20 matrix size over a 240 × 240 × 72 mm3 FOV (i.e., a 

nominal 3 mm in-plane and 3.6 mm through-plane resolution) in a 25-minute acquisition. In 

the subsequent sections, the proposed acquisition and reconstruction methods are described 

in detail, and accompanied by some representative results.

THEORY

Subspace Model

SPICE exploits the spatiotemporal partial separability (PS) of high-dimensional 

spectroscopic signals and models the spatiotemporal function ρ (r; t) (the Fourier 

counterpart of the underlying spatiospectral function of interest  as (26–29)

[1]

where  and  represent the sets of temporal basis functions for the 

metabo lite signal of interest and the “nuisance” signals (e.g., the water, lipid, and baseline 

signals),  and  the corresponding spatial coefficients, and L1 and L2 

the model or ders (typically a small number) for each signal component. Note that the PS 

model in Eq. [1] implies that the following Casorati matrix formed from ρ (r; t) over any 

point set 
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is low rank (with the rank upper-bounded by the model order). This model significantly 

reduces the number of degrees-of-freedom in the imaging problem, providing a better 

tradeoff for SNR, resolution, and speed. Furthermore, it decouples the spatial and temporal 

variations of ρ (r, t), thus enabling special methods for both data acquisition and image 

reconstruction to achieve fast, high-resolution MRSI with good SNR. The proposed data 

acquisition and reconstruction methods are described in the subsequent sections.

Data Acquisition

The low-dimensional subspace/low-rank model described above presents new flexibilities 

for spatiospectral encoding, which are not available with the conventional Fourier model. 

One straightforward approach to using the model for accelerating data acquisition is to 

perform a random undersampling in the corresponding (k,t)-space of ρ (r, t) and perform 

low-rank matrix recovery to jointly determine ϕl(t) and cl(r) from the undersampled data. 

Although such a joint subspace pursuit and reconstruction approach has been successfully 

used in various dynamic imaging applications (e.g., (30–32)), it is not effective for high-

resolution in vivo MRSI due to the limited SNR. An alternative is to acquire complementary 

data sets that allows for determining ϕl(t) and cl(r) separately. Such a scheme is desirable 

because if ϕl(t) is predetermined, a high SNR and high-resolution reconstruction can be 

obtained from sparse and very noisy data by estimating only cl(r). Figure 1 compares these 

two scenarios in a simulation setting to demonstrate this point, using a numerical phantom 

with additional features to increase the spatiospectral complexity (Details on the numerical 

phantom can be found in (26, 28)). The gold standard (first row in Fig. 1) has a rank of 8. A 

noisy data set was generated by adding complex white Gaussian noise onto the noiseless 

spatiotemporal distribution. The results from a rank-8 truncation of the noisy data (third row 

in Fig. 1) represent the best one can do if jointly estimating ϕl(t) and cl(r) from a single very 

noisy data set (in the maximum likelihood sense). By comparing them to the images in the 

last row obtained by projecting the noisy data onto the predetermined subspace, we can 

observe that the subspace model with known subspace structure clearly leads to better 

recovered spatiospectral features. It is worth noting that the acquisition of complementary 

data sets also supports joint determination of ϕl(t) and cl(r).

To implement the above described hybrid acquisition strategy, we propose a hybrid CSI/

EPSI sequence for 2D MRSI using SPICE. The proposed sequence is shown in Fig. 2a, 

where the CSI component is used to obtain  for determining ϕl(t) (subspace), and the EPSI 

component is used to obtain  for determining cl(r) (spatial coefficients). Note that the CSI 

data have good SNR which is desirable for subspace estimation; the EPSI data have 

extended k-space coverage which is desirable for achieving high-resolution in cl(r). Figure 

2b illustrates the corresponding (k,t)-space trajectories. As can be seen, only a limited 

portion of the central k-space is covered for  (due to SNR and speed consideration) while 

 covers an extended k-space (for the desired spatial resolution). Note that the proposed 

EPSI encoding has a highly flexible temporal sampling design, i.e., it does not have to 

satisfy the spectral Nyquist criterion, bypassing the tradeoff between the achievable spectral 

bandwidth (BW) and the extent of k-space coverage in the conventional EPSI sequences due 

to gradient limitations (2, 8). Additionally, this allows for using lower sampling BWs to 

further reduce the noise level.
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While the proposed hybrid CSI/EPSI sequence can be readily extended to 3D by adding 

additional phase encodings along the third spatial dimension, it may be too slow to provide 

the desired number of spatiospectral encodings for practical high-resolution 3D1H-MRSI 

(e.g., acquiring 12 × 12 × 12 spatial encodings using a 3D CSI for  alone would take 

about 30 minutes with TR= 1 s). To address this problem, we propose a dual-density, dual-

speed EPSI sequence to further accelerate the spatiospectral encoding for 3D MRSI using 

SPICE. More specifically, for the acquisition of , we replace the CSI component with a 

slow 3D EPSI scan (with a lower readout bandwidth) that covers a limited region of k-space 

and has full spectral encoding (Fig. 3a, left column). Moreover, this 3D EPSI scan has two-

dimensional phase encodings, making the acquisition time for  equivalent to the CSI 

encoding in the 2D SPICE sequence. For the acquisition of , we can further reduce the 

data acquisition time by performing a rapid EPSI scan (Fig. 3a, right column) that 

simultaneously encodes two spatial dimensions (e.g., x and y) as well as the spectral 

dimension during each FID. The third spatial dimension (e.g., z) is phase encoded, and 

multiple echo shifts are used to obtain additional spectral encodings. The resulting (k,t)-

space trajectories for such a 3D sequence are shown in Fig. 3b. As can be seen, the entire 

(ky, kx) plane is traversed by each echo shift in , providing many spatial encodings after 

each excitation.

Image Reconstruction

The measured (k,t)-space MRSI data can be expressed as

[2]

where V is the excited volume, γ the gyromagnetic ratio, Sc(r) the sensitivity profile of the 

cth coil, ∆B (r) the B0 field inhomogeneity map (assumed to be readily available from an 

auxiliary scan), ξ (k; t) contains the measurement noise (modeled as complex white 

Gaussian), ρm (r, t) represents the metabolite signal of interest and ρns (r, t) the residual 

nuisance signal components, i.e., the residual water, subcutaneous fat and baseline signals 

for1H-MRSI of the brain. Accordingly, a discretized data model can be used as

[3]

where sc is a vector containing the data for the cth coil, Ω a (k,t)-space sampling operator, F 
a Fourier transform matrix, B a phase term modeling the field inhomogeneity effects as 

described in Eq. [2] , ⊙ denotes entry-wise multiplication, ρc,m 

and ρc,ns are matrix representations of ρm (r, t) Sc (r) and ρns (r, t) Sc (r), and ξc the noise 

vector. In the following discussions, for notational convenience, we assume a uniform 

sensitivity profile (i.e., Sc(r) = 1) and drop the coil index.1

1See the Method section for more details on multi-coil processing.
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For image reconstruction from   and  (expressed 

as ), we incorporate low-rank models on ρm and ρns (based on the 

PS representation in Eq. [1]) and use the following imaging equation (26,27,30)

[4]

where , ,  and  are low-rank 

matrices (L1, L2 < min {N2; M1}). If the contribution of the nuisance signals is negligible 

(or removed from the data in preprocessing (29)), we can let Cns Φns = 0. Otherwise, this 

component can be included to capture the remaining nuisance signals. According to Eq. [4], 

SPICE defines the reconstruction problem as determining Φ = [Φm; Φns] and C = [Cm, Cns].

Subspace Estimation—According to Eqs. [3] and [4], Φ can be easily estimated from 

(e.g., through singular value decomposition (26, 27)) in the absence of field inhomogeneity. 

In the presence of non-negligible field inhomogeneity, as it is the case for in vivo 

experiments, its effects need to be removed (28). The challenge in solving this problem lies 

in the limited data available in  (33). We propose to obtain a field inhomogeneity 

corrected  by solving the following regularized reconstruction problem using a coil-

combined , denoted by a vector ,

[5]

where  has a size of  (with  matching the grid size of the field map to ensure 

accurate field inhomogeneity modeling (33)), Ω1 is a sampling operator for data in , and F 
and B the same as described in Eq. [3]. The regularization term ∥·∥* is the nuclear-norm 

penalty (34) and λ is the regularization parameter. While other choices for the regularization 

term can be used, the low-rankness encouraging nuclear-norm penalty is well motivated by 

the low-dimensional subspace model of the underlying ρ. We solve Eq. [5] using the 

augmented Lagrange multiplier method described in (35). After  is obtained, it is 

rearranged into a Casorati matrix to which a singular value decomposition (SVD) can be 

applied. The first L right singular vectors are then chosen to form the matrix Φ. The model 

order L is selected based on examining the singular value decay of the Casorati matrix. For 

further separation of the subspaces for metabolite and nuisance signals, i.e., Φm and Φns, 

please refer to (29).

Estimation of Spatial Coefficients—Given the estimated subspace, the model in Eq. 

[4] can be further specified as

[6]
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where  denotes the vector containing data from , Ω2 the sparse sampling 

operator for data in , and ξ2 the noise vector. Accordingly, image reconstruction can be 

done by estimating Cm and Cns, which can be formulated into the following regularized 

least-squares problem

[7]

where  measures the data consistency and Ψ1(·) and Ψ1(·) represent the regularization 

functionals for metabolite and nuisance signals, respectively, with regularization parameters 

λ1 and λ2. Many choices can be made for Ψ1,2(·) to incorporate prior information about the 

unknown spatiospectral/spatiotemporal function (e.g., those in (19, 23)). In this work, we 

choose the following regularization form for the metabolite signal component

[8]

where D is a finite difference operator, W contains edge weights derived from high-

resolution anatomical images (17) and Ψ denotes a temporal sparsifying transform (e.g., the 

Fourier transform for MRSI (24)). This choice is motivated by the advantages of such edge-

preserving (or non-quadratic) penalties shown in recent developments for sparse sampling 

and denoising. Similar forms of regularization can also be found in the context of dynamic 

imaging (36–39). For the nuisance signal component, an ℓ2 regularization was used as in (29) 

for better conditioning and faster computation, although more sophisticated schemes can 

also be considered in the future. A number of efficient algorithms can be used to solve the 

problem in Eq. [7] with the non-quadratic regularization in Eq. [8]. Here, we use a variable 

splitting reformulation and an alternating direction method of multipliers (ADMM) based 

algorithm. Further description of this algorithm can be found in the appendix.

METHODS

Practical Implementations

Sampling Consideration—Given a subspace with dimension L, the number of spatial 

encodings in  (i.e., N1) theoretically has at least to be greater than L. This is easy to satisfy 

since L is typically a small number with the field inhomogeneity effects removed (26,28). In 

practice, however, a sufficiently large N1 is needed for effective field inhomogeneity 

correction and nuisance signal removal. Based on our experience in simulation and 

experimental studies, an N1 greater than 12 × 12 for 2D and 12 × 12 × 12 for 3D provides a 

good tradeoff between acquisition time and the performance of field inhomogeneity 

correction and nuisance signal removal (29,33). Meanwhile, the number of echoes (or echo 

shifts) acquired for  typically ranges from 4L to 6L in order to provide reasonable 

conditioning for the spatial coefficient fitting problem.
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Echo Inconsistency Correction—For maximizing encoding efficiency, we have 

incorporated the capability of acquiring data on both polarities of the gradients into the 

SPICE sequences. To make use of all the data, the inconsistency between echoes acquired on 

positive and negative gradients (referred to as “odd” and “even” echoes) need to be corrected 

(9). To this end, two navigator echo trains with reversed x-gradients (without phase encoding 

and water suppression) were acquired preceding the actual EPSI encoding. With these data, 

the k-space center misalignments (∆k) were first estimated from each pair of positive and 

negative gradients and the averaged ∆k was then used to correct the misalignment between 

odd and even echoes in the actual EPSI encodings. In addition, a phase correction term was 

estimated from the aligned echoes of the navigators and applied to the even echoes in the 

EPSI encodings. The advantages of using such navigators for echo correction are: 1) since 

no water suppression is applied, the estimated correction parameters will have high fidelity 

due to the high SNR of the water signals; and 2) the phase differences estimated from the 

time-matched gradients from the navigators do not include chemical-shift-induced phase 

differences thus only reflects the effects of the gradients.

Nuisance Signal Removal and Multi-Coil Processing—For1H-MRSI of the brain, 

the strong nuisance water and subcutaneous fat signals need to be removed for the SPICE 

reconstruction. To this end, a recently proposed subspace-based nuisance signal removal 

method is included in the data processing (29). Since multiple coils are used for acquisition, 

the removal is applied coil by coil to both  and . Afterwards, the nuisance signal 

removed  data are combined using an SVD-based scheme (40) for subsequent field 

inhomogeneity correction and subspace estimation. After the subspace is estimated, a spline-

based interpolation is applied to the temporal basis functions (rows of Φ) to match the 

temporal sampling grids of  for spatial coefficient estimation, which is also performed in a 

coil-by-coil fashion followed by an SVD-based combination to form the final spatiotemporal 

reconstruction. All the regularization parameters were selected using the discrepancy 

principle (43). A flow chart summarizing the entire data processing pipeline for1H-MRSI of 

the brain using SPICE is shown in Figure S1 (Supporting Materials).

Experimental Studies

Experimental1H-MRSI data from both a physical phantom and healthy volunteers have been 

acquired to evaluate the performance of the proposed method (also referred to as SPICE 

hereafter) and demonstrate its feasibility for obtaining high-resolution1H metabolite 

distributions from the brain. All experiments were performed on a Siemens Trio 3T scanner 

(Siemens Medical Solutions, Erlangen, Germany) equipped with a 12-channel receiver 

headcoil.

Phantom Experiments—A customized brain metabolite phantom was built using a 

cylindrical jar (made with polymethylpentene) filled with NaCl-doped water and three rows 

of vials with different diameters to demonstrate the resolution capability of the SPICE. The 

vials contained solutions of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), and myo-

inositol (mI) with physiologically relevant concentrations (41). The design of the phantom is 

illustrated in Fig. 4a. More specifically, the bottom row (vials with the largest diameter) 

contains approximately 20 mmol/L NAA, 15 mmol/L Cr, 5 mmol/L Cho and 10 mmol/L mI. 
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The middle row contains approximately 10 mmol/L NAA, 10 mmol/L Cr, 5 mmol/L Cho 

and 10 mmol/L mI. The top row (vials with the smallest diameter) contains approximately 

15 mmol/L NAA, 10 mmol/L Cr, 5 mmol/L Cho and 10 mmol/L mI.

Data from this phantom were acquired using the proposed 2D SPICE sequence. The 2D 

acquisition was performed with 12 × 12 spatial encodings in , each having 512 temporal 

samples, and 80 × 80 spatial encodings in , each having 128 echoes. Six averages were 

acquired for  (with a factor of 9/10 partial Fourier sampling), making the total acquisition 

time 9.7 minutes. An equivalent-time standard CSI acquisition with 24 × 24 spatial 

encodings was performed. The other relevant imaging parameters were (for both 

acquisitions): FOV=220 × 220 mm2, volume of excitation (VOX)=160 × 160 × 10 mm3, TR/

TE=1000/30 ms, WET water suppression BW=80 Hz (water suppression enhanced through 

T1 effects, see (42) for details), and delta frequency (for PRESS excitation)=−2.4 ppm 

(water at 0 ppm). The sampling BWs for the CSI and EPSI scans were 2 kHz and 100 kHz, 

respectively. A high-resolution 2D GRE image (with a matrix size of 192 × 192) and a 2D 

∆B0 map (with a matrix size of 110 × 110) were acquired for extracting edge information 

and performing field inhomogeneity correction. These images were co-registered to the 

spectroscopic data and had the same FOV and slice thickness.

For 3D acquisitions,  contained 12 × 12 × 12 (kx-ky-kz) spatial encodings each with 512 

echoes. The spectral BW was approximately 1700 Hz.  contained 48 echo shifts 

(uniformly spaced by 1.57 ms) each with 72 × 72 × 20 spatial encodings. Other imaging 

parameters were: FOV=220 × 220 × 72 mm3, VOX=160 × 160 × 56 mm3, TR/

TE=1000/30ms, and water suppression BW=80 Hz. The sampling BWs for the slow and 

rapid EPSI scans were 60 kHz and 100 kHz, respectively. The total acquisition time was 

18.5 minutes. Co-registered multi-slice GRE images and ∆B0 maps with a matrix size of 110 

× 110 × 36 and matched FOV (isotropic 2 mm resolution) were also acquired.

In Vivo Experiments—Human brain1H-MRSI data were acquired with the approval of 

the Institutional Review Board at the University of Illinois and the written consent of the 

participants. For in vivo experiments, a 3D, T1-weighted structural scan (MPRAGE, 

0.9×0.9×1.0 mm3 voxel size) was first performed for localizing the MRSI slice/volume and 

for extracting anatomical information used in data processing, e.g., segmented water and fat 

images for nuisance signal removal (29) and edge structures for reconstruction.

For 2D acquisitions, 12 × 12 spatial encodings each with 512 temporal samples (for ) and 

80 × 80 spatial encodings each with 128 echoes (for ) were acquired. Four signal averages 

were used for , making the total acquisition time 10 minutes. The rest of the imaging 

parameters were: FOV=220 × 220 mm2, VOX=150 × 160 × 8 mm3, TR/TE=1300/30 ms and 

water suppression BW=80 Hz. Eight outer volume suppression (OVS) slabs were included 

for lipid suppression. The sampling BWs for the CSI and EPSI scans were 2 kHz and 100 

kHz. Moreover, as in phantom experiments, a ∆B0 map was acquired for field 

inhomogeneity modeling and correction (with matched FOV and slice thickness, and a 

matrix size of 110 × 110). To further demonstrate the capability of SPICE in achieving a 

combination of high resolution and high SNR, equivalent-time CSI and conventional EPSI 

scans were also performed for comparison. In the same data acquisition time (10 min), the 
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CSI acquisition generated 22 × 22 spatial encodings while the EPSI acquisition had 80 × 80 

spatial encodings with three averages and two temporal interleaves (to satisfy the spectral 

Nyquist criterion). The other imaging parameters remained the same.

For 3D1H-MRSI experiments on the brain, the proposed data acquisitions contained 16 × 16 

× 16 spatial encodings each with 512 echoes in  (spectral BW≈1500 Hz) and 80 × 80 × 20 

spatial encodings in  each with 120 echoes. The other important imaging parameters were: 

FOV=240 × 240 × 72 mm3, VOX=240 × 240 × 64 mm3, TR/TE=1100/20ms, water 

suppression BW=80 Hz and number of OVS slabs=8. The sampling BWs for the slow and 

rapid EPSI scans were 68 kHz and 125 kHz, respectively. The total acquisition time was 

25.5 minutes. For field inhomogeneity correction, multi-slice ∆B0 maps were acquired (with 

matched FOV and a matrix size of 120 × 120 × 36, i.e., 2 mm isotropic resolution). The 

MPRAGE image was registered to the field maps for obtaining structural information 

needed for processing and reconstruction.

RESULTS

Phantom Experiments

Figures 4 and 5 present representative results from the 2D phantom studies. The CSI 

reconstruction was obtained using a field inhomogeneity corrected conjugate phase (CP) 

reconstruction (33, 44). The SPICE reconstruction was obtained using a model order L = 6. 

Figure 4b compares the spatial distributions of NAA, Cr, Cho and mI from CSI and SPICE. 

The spatial distributions were obtained by integrating around the strongest peaks for each 

metabolite. As can be seen, the CSI reconstruction has high SNR but suffers from serious 

blurring and ringing artifacts (due to the truncation in k-space). With the same data 

acquisition time, SPICE achieves high spatial resolution while maintaining very good SNR. 

Particularly, the vials at the first and second rows (with the smallest and medium sizes) are 

severely blurred in the CSI reconstruction, while even the smallest vials can be distinguished 

in the SPICE reconstruction (e.g., the center two which are merged together in the CSI). 

Figure 4c shows spectra from both CSI and SPICE corresponding to voxels selected from 

each row of the vials (the voxel locations are indicated in Fig. 4a). SPICE produces high-

quality spectra with a similar SNR compared to those from CSI.

The resolution and SNR capability of SPICE is further demonstrated in Fig. 5. The line plots 

clearly show that SPICE was able to spatially resolve the smallest vials (Fig. 5e) while CSI 

cannot (Fig. 5b). The peak SNR maps for NAA (Fig. 5c and f) show that the SPICE 

reconstruction has similar SNR to the low-resolution CSI but the SNR distribution for 

SPICE is more uniform due to higher spatial resolution and the effects of regularization. 

Note that the peak SNR for NAA was calculated as

where ωNAA contains the frequency indices for the strongest NAA peak centered at 2.02 

ppm, |ωNAA| denotes the cardinality of ωNAA, and σf denotes the noise standard deviation in 
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the spectral domain. The range of ωNAA was chosen as 0.2 ppm for our experiments. σf was 

estimated from a spectral region with negligible metabolite spectral components.

Figure 6 shows a set of representative results from 3D phantom experiments. The SPICE 

reconstruction was obtained using a model order L = 12. The reconstruction was then zero-

filled to a matrix size of 100 × 100 × 24 for visualization. The spatial maps of NAA for 

different slices obtained by spectral integration are shown in Fig. 6b. As can be seen, 3D 

SPICE achieved simultaneously very high spatial resolution and high SNR, clearly resolving 

the smallest vials and cross-slice variations in the NAA distribution.

Figure 7 demonstrates the reproducibility of SPICE. In this experiment, four 3D SPICE data 

sets were repeatedly acquired with the same imaging parameters. The GRE image was 

acquired only once while the field mapping scan was repeated for each 3D acquisition. 

SPICE reconstructions were generated from each data set with the same reconstruction 

parameters. As shown by the mean intensities of NAA in three regions of interest (3×3 

blocks selected from one vial in each row) and the plot of NAA intensities obtained from 

scan 1 versus those from scan 4, SPICE achieved very high repeatability (with coefficients 

of variation less than 10%, Fig. 7b–d) even at this high spatial resolution. Moreover, the 

NAA maps from different scans are highly correlated (e.g., the correlation coefficient for 

scans 1 and 4 is 0.92, Fig. 7e) while the noise samples (from background regions) show 

negligible correlation (Fig. 7f). This implies that the strong correlation in the estimated 

metabolite distributions does not come from a strong systematic bias introduced by the 

model or the regularization.

In Vivo Experiments

Figure 8 compares the results from the equivalent-time in vivo 2D experiment (10 min). The 

spatial maps of NAA obtained by CSI, EPSI and SPICE (all having the same data 

acquisition time) are compared along with representative spectra. The CSI and EPSI 

reconstructions were obtained by the CP method, while the SPICE reconstruction was 

obtained with a model order L = 8. All reconstructions were then zero-filled to a matrix size 

of 128 × 128. As can be seen, SPICE yields similar SNR but significantly higher resolution 

than CSI, which again suffers from severe truncation artifacts. Compared to the equivalent-

time high-resolution EPSI acquisition which produced very noisy spatiospectral distribution, 

SPICE yields dramatic improvement in SNR. It is worth noting that although concealed by 

noise, the high-resolution EPSI data contained the metabolite signals of interest.2 The 

capability to recover these signals with a predetermined subspace structure from the high 

SNR  is a unique property of SPICE.

The spatial maps of NAA, Glx (glutamine+glutamate), and Cr obtained from another 2D 

SPICE acquisition are also shown in Fig. 9b along with representative spectra in Fig. 9c. As 

is clear from the images, SPICE reveals local variations of the metabolite distributions that 

appear to have good correspondence with anatomical structures. Additionally, the spectra 

2Fourier reconstruction from a truncated k-space data revealed the underlying spatiospectral distribution, not shown here due to space 
consideration.
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from SPICE reconstruction again show very high quality. Further validation is needed to 

confirm these observations.

Figure 10 shows a set of 3D in vivo results. The spatial maps of NAA for six different slices 

(Fig. 10b) and representative spectra from two different voxels (Fig. 10c–d) are shown. As 

can be seen, the SPICE reconstruction shows high SNR and is able to resolve cross-slice 

differences in metabolite distributions. The reconstructed spectrum also shows high SNR, 

while the quality may be further improved by optimizing the k-t space trajectories and 

acquisition parameters. The intensity variations between the anterior and posterior parts of 

the brain could be due to remaining coil sensitivity effects. The placement of OVS bands can 

be another contributing factor for the observed variations (especially at the edge of the 

brain), which can be removed with the availability of more advanced lipid suppression/

removal methods.

DISCUSSION

We have demonstrated the capability of the proposed method in achieving1H-MRSI of the 

brain with high spatial resolution and high SNR in practical experiments. This section 

discusses several relevant issues worth of further research for enhancing the performance 

and practical utility of the proposed method.

First, the proposed sequences described in this paper used PRESS for excitation, which can 

be subject to chemical shift displacement and limited in the range of echo times (41). 

Therefore, further optimizations of the pulse sequences are desirable and currently being 

investigated. They include incorporating LASER-type of pulses (45,46) to reduce chemical 

shift displacement errors for improved spatial localization, and developing spin-echo and 

FID acquisitions to achieve shorter echo times (8,47) for improved SNR and detection of 

short-T2 and J-coupled metabolites.

Second, the multi-coil acquisition is mainly used for improving SNR in our current 

implementations (through the SVD-based coil combination). However, integration of 

parallel imaging, which has been shown useful in various MRSI studies (10), into the current 

SPICE acquisition and reconstruction framework can provide additional flexibility in trading 

off speed, SNR and resolution (10,13–15), making SPICE more adaptive to various practical 

applications. More specifically, if sufficient SNR is available (e.g., for 3D or lower 

resolution acquisitions), the parallel imaging capability can be used for further acceleration. 

If the SNR is limited, it can still allow us to design a scheme to optimally combine the data 

from multiple coils without further spatial undersampling.

Another important problem for future research is the optimization of the (k,t)-space 

sampling strategy and reconstruction scheme, especially for 3D SPICE (with parallel 

imaging). For example, in order to achieve high-resolution 3D1H-MRSI of the brain in a 

shorter time frame, the capability to further accelerate the SPICE acquisition by integrating 

compressed sensing-based sparse sampling can be explored. Furthermore, the (k,t)-space 

trajectories can also be optimized for improved spatiospectral encoding efficiency (through 

both theoretical analysis and experimental studies). Building on these optimizations, we can 
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also improve the reconstruction method. For example, stronger spatiospectral/spatiotemporal 

prior information and/or better sparsity constraints can be exploited. Other potential 

extensions also include utilizing data from both  and  for improved spatial coefficient 

estimation and jointly determining the subspace structure and spatial coefficients from the 

hybrid data sets.

CONCLUSIONS

Special data acquisition and reconstruction methods have been developed to enable high-

resolution1H-MRSI of the brain based on the recently proposed SPICE spectroscopic 

imaging framework. Experimental studies have been performed on phantom and human 

subjects to evaluate the performance of the proposed methods. These studies demonstrate 

that SPICE provides a significantly better tradeoff for resolution, SNR and speed, and 

achieves very good reproducibility in metabolite phantom experiments. For in vivo 2D 

MRSI, SPICE is able to produce high-SNR spatiospectral distributions with an 

approximately 3 mm nominal in-plane resolution from a 10-min acquisition. For 3D MRSI, 

SPICE is able to achieve an approximately 3 mm in-plane and 4 mm through-plane 

resolution in about 25 min. With further optimizations in signal excitation, data acquisition 

and image reconstruction, SPICE can be a useful tool for in vivo metabolic studies of the 

brain.
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APPENDIX

The ADMM algorithm

We introduce the following variable splitting reformulation for Eq. [7] with the non-

quadratic regularization in Eq. [8]

[9]

with auxiliary variables P and Q and Dw = WD. The variable C contains both Cm and Cns 

and Φ contains both Φm and Φns. Note that by introducing P, we separate the Fourier 

encoding operator and the field inhomogeneity operator which can significantly simplify the 

computations associated with both of them (similar approaches have been used in several 

parallel imaging reconstruction literature to separate Fourier and sensitivity encoding 
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operators, e.g., (48)). An ADMM based (49, 50) algorithm is used to solve the problem in 

Eq. [9]. More specifically, the algorithm iterates between minimizing the following 

augmented Lagrangian function

[10]

with respect to C, P, and Q alternatively, and updating the Lagrangian multipliers Y and Z 
as

μ1 and μ2 are pre-selected penalty parameters. The operation ⟨·,·⟩ denotes the inner product. 

Each resulting subproblem can be easily derived. Detailed iterative procedures are not shown 

here but similar derivations can be found in Refs. (48–50).
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Figure 1. 
Illustration of two different scenarios for data acquisition consideration (see text) in a 

simulation setting: (a) the spatial maps for the spectral component identified by the arrow (in 

b) from the gold standard (first row), a fully sampled noisy data set (second row), a rank-8 

truncation of the noisy data (third row), and the projection of the same noisy data onto the 

known subspace (fourth row); (b) the spectra for each case from the voxels whose locations 

are indicated by the blue dot. As can be seen, for the case where the spatial coefficients and 
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subspace are jointly estimated from very noisy data (third row), strong spectral distortion is 

observed. This highlights the importance of an accurate predetermined subspace.
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Figure 2. 
The proposed SPICE sequence for 2D1H-MRSI: (a) the hybrid CSI/EPSI sequence with the 

CSI component (left) to acquire  and the EPSI-like component (right) to acquire ; (b) 

the (k,t)-space trajectories generated by the sequence in (a). See the text for more detailed 

description of the sequence.
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Figure 3. 
The proposed SPICE sequence for 3D1H-MRSI: (a) the dual-density, dual-speed EPSI 

sequence with the slow EPSI component (left) to acquire  and the rapid EPSI component 

to acquire . τ denotes the timing for the echo shifts that can be used for additional spectral 

encodings; (b) the corresponding (k,t)-space trajectories generated by the sequence in (a).
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Figure 4. 
Experimental results from the metabolite phantom obtained by a 24 × 24 CSI and an 80 × 80 

SPICE with equivalent data acquisition time. The GRE image in (a) shows the structural 

arrangement of the phantom. The images in (b) compare the spatial maps (obtained by peak 

integral) of NAA (first column), Cr (second column), Cho (third column) and mI (fourth 

column) for CSI (top row) and SPICE (bottom row). The NAA maps were normalized such 

that the maximum intensity is 1 (for both CSI and SPICE), while the other metabolite maps 

were normalized to the NAA maps. All reconstructions were zero-filled to 110 × 110 grids. 
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The images in (c) show spectra from the three numbered voxels indicated in (a) for CSI (red) 

and SPICE (blue). Each spectrum was normalized to its maximum value individually.
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Figure 5. 
Results from the equivalent-time acquisitions on the phantom (10 min) obtained by CSI (top 

row) and SPICE (bottom row). Left column: NAA maps (as shown in Fig. 4); middle 

column: 1D plots corresponding to the red lines in the NAA maps; right column: peak SNR 

maps for NAA.
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Figure 6. 
A set of representative 3D phantom results obtained by the proposed method: (a) the center 

12 slices from the GRE image of the phantom; (b) the NAA maps for the corresponding 

slices.
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Figure 7. 
Reproducibility results for SPICE from 3D phantom experiments: (a) a GRE image 

indicating the three regions of interest (ROIs) for analysis; (b)–(d) mean intensities of NAA 

from the three ROIs for the four repeated scans (described in the text); (e) the plot of NAA 

intensities for scan 1 against scan 4; and (f) the plot of noise samples from scan 1 against 

scan 4. The solid lines in (b)–(d) stand for the mean of the four scans and the dash lines 

represent the standard deviation (std).
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Figure 8. 
2D1H-MRSI of the brain from three equivalent-time acquisitions (10 min): (a) a 22 × 22 

CSI; (b) an 80 × 80 EPSI; and (c) a SPICE acquisition with 12 × 12 spatial encodings in 

and 80 × 80 spatial encodings in . The left column shows NAA maps from the three 

acquisitions and the right column plots representative spectra from the voxels identified by 

the blue dots in the NAA maps.
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Figure 9. 
Results from a 10 min 2D-SPICE acquisition: (a) the T1-weighted image (T1w); (b) the 

spatial maps of different metabolites (NAA, Glx and Cr) produced by the SPICE 

reconstruction corresponding to the same slice (as in a); (c) representative spectra selected 

from the voxels indicated by the blue dots in (a). The metabolite maps were normalized 

individually, color-coded and overlaid on the T1-weighted image.
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Figure 10. 
Results from a 3D SPICE acquisition: (a) the T1-weighted images (from the MPRAGE scan) 

resized to the grids of the SPICE reconstruction; (b) spatial maps of NAA for the 

corresponding six slices shown in (a); (c)–(d) spectra from the voxels at the red and blue 

dots.
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