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Abstract

With the development of science and technology, new applications about nanoparticles should be explored to
achieve full-scale knowledge. Therefore, in this work, the toxicity and potential application of raw cadmium sulfide
nanoparticles (CdS) in vivo were further studied through ICP-OES and CTs. Surprisingly, CdS exhibited an excellent
photographic property, except for finding the accumulation of CdS in the lungs, liver, spleen, and kidney with a strong
dependence on time; it is also found that there were a significant uptake in the pancreas for an obvious CT imaging.
And the following investigations showed that the raw CdS could damage the tissues accumulating nanoparticles.
Through this work, it can be seen that the raw CdS being modified might be an excellent photographic developer for
detecting cancers or other diseases.
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Background
Cadmium sulfide nanoparticles (CdS), especially their
quantum dots (QDs) have been raised a great deal of
attention as a special class of nanoparticles (NPs), due to
their fluorescence and semiconductor properties [1]. At
the same time, for their excellent luminescence, continu-
ous excitation spectrum, controllable and narrow emis-
sion bands, and ease of the functionalization for tissue
targeting, they show a great promise for medical imaging
and treatment of disease [2]. However, before those nano-
particles are applied in medical field widely, the safety
assessment of biology and environment needs to be in-
vestigated detailedly. Thus, a large amount of investiga-
tions on toxicity of CdS have been carried out for this
purpose in vivo and in vitro. Buffet et al. [3] examined
the toxicity effects of CdS-engineered nanoparticles com-
pared to soluble Cd, on marine ragworms exposed for
14 days to these contaminants (10 μg Cd L−1) in seawater
or via food, and they pointed out oxidative processes as

the main consequences of exposure to Cd-based NPs in
worms. Domingos et al. [4] found that CdS exerted
higher toxicity compared to the same amounts of soluble
Cd on bacteria and algae, suggesting a specific nanoeffect.
King-Heiden et al. [5] also indicated that CdS also pro-
duced distinctly different toxicity that could not be
explained by Cd release. Using Cd2+ ions, they found that
zebrafish larvae showed clear signs of Cd toxicity. How-
ever, nanoparticles were even more potent and produced
end points of toxicity distinct from that of Cd2+. But it
was also reported that the cadmium from the degradation
of CdS could be redistributed over time. Yang et al. [6]
and Rzigalinski et al. [7] have reviewed early mouse
studies of toxicity of Cd-based QDs, which all showed the
absence of any significant toxicity at low dosage.
It is reported that the primary mechanism for CdS

cytotoxicity was introduction of free radical formation
[8, 9]. Active cadmium-based QDs core did participate
in radical formation. At the cellular level, cadmium
induced oxidative stress by depletion of endogenous
antioxidants such as glutathione and was associated with
mitochondrial damage, induction of apoptosis, and
disruption of intracellular calcium signaling [10]. Where
HepG2 cells were treated with different concentrations
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of Cd, a rapid and transient ROS generation had trig-
gered Cd-induced apoptosis. Luo et al. [11] suggested
that cadmium-containing QDs caused an increase of
intracellular ROS levels in mouse renal adenocarcinoma
(RAG) cells and induced autophagy and subsequent
apoptosis. Li et al. [12] elucidated the relationship
between Cd2+ and oxidative stress with experiments of
biosurfactant-stabilized CdS (bs-CdS). They observed
that bs-CdS had the capacity to generate free radicals
indirectly and induced oxidative stress and apoptosis by
releasing Cd2+ in cells. Singh et al. [13] synthesized
highly stable and surface-protected CdS induced apop-
totic cell death by selectively generating excess ROS in
human prostate cancer lymph node carcinoma of the
prostate (LNCaP) cells.
As well known, clinically, the frequently used CT

photographic developer was iodine-containing com-
pounds for the high density and low toxicity of iodine.
But most of the iodine-containing compounds existed
various defects, such as difficult to synthesize, non-
targeting, and rapid metabolism. And so, people made a
lot of exploratory development by using carbon nano-
particles to seek new photographic materials [14–16],
but there also a problem that some special ions or
groups must be linked to the surface of nanoparticles to
achieve image effect in vivo. With a band gap of 2.4 eV
and high electron mobility, CdS has high photocatalytic
reactions and photoenergy conversion efficiency. And
so, CdS has been generally considered as a strong candi-
date for high efficiency visible-light-driven photocatalysts
[17]. As the same mechanism for CT photographic
developer, CdS nanoparticles may be an excellent CT
photographic developer. However, there are rare reports
about the potential application of CdS nanoparticles in
CT photographic developer. Therefore, in this experi-
ment, the raw cadmium sulfide nanoparticles (CdS) are
injected intravenously to the mice to determinate the
property of photographic development by CT, and also
to evaluate their acute toxicological and pathological
effects in vivo. Through this work, it can provide basic

data in vivo of CdS to help doctors alleviate the negative
effects of Cd-containing nanoparticles and facilitate
comprehensive utility of Cd-containing nanoparticles in
treatment and diagnosis of disease.

Methods
Materials
The raw CdS were purchased from Shanghai Biological
Technology Co., Ltd, with particle size about 1–30 nm.
And the CdS were characterized by XRD (D5000,
Siemens, Germany), Jeol2010 TEM (Jeol, USA), TGA,
and Raman spectrum Luminescence spectrometer
(LS55, Perkin Elmer, USA). At the same time, the UV-
visible spectrum of CdS nanoparticles was recorded with
a Perkin-Elmer Lambda 25 spectrophotometer. And the
CdS were prepared 2.5 g/L suspension by PBS. All
chemical reagents were analytically pure unless specified
otherwise.

Methods
Biodistribution of CdS in Mice
Kunming mice (female to male = 1:1) initially weighing 15
to 18 g were provided by Laboratory Center for Medical
Science, Lanzhou University, Gansu, China. All animals
were housed in individual cages in a temperature (21 to
22 °C) and light (from 0800 to 2000 h) controlled environ-
ment and were fed food and tap water ad libitum. All ani-
mal protocols were in accordance with the European
Communities Council Directive of November 24, 1986
(86/609/EEC), and approved by Institutional Animal Care
and Use Committees of Gansu Province Medical Animal
Center and Lanzhou University Animal Committees
Guideline. All mice (about 40 mice) were injected intra-
venously about 400 μg/mouse CdS solution. And the ex-
posure groups of mice (six mice) were sacrificed at 1, 6,
16, 24, and 48 h, respectively, and then the blood (1 mL),
heart, liver, spleen, lungs, and kidney were harvested and
weighed. Then the selected tissues were digested and di-
luted to a certain concentration [18]. At last, the Cd con-
tent of the solution was measured through ICP-OES

Fig. 1 The TEM of CdS
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(ICP3000). Moreover, the mice after exposure CdS about
2 and 6 h were provided to CT with dual-energy spectral
CT imaging mode (CT from Lanzhou University NO2
Hospital, Discovery CT 750HD, GE healthcare). The GSI
scan parameters were as follows: Prep Group,30 s; scan
mode, axial; gantry rotation speed, 0.5 s/circle; tube volt-
age, 140 and 80 kV; tube current, 630 mA s; detector
coverage,20 mm;30 %ASIR; matrix size,512; slice thick-
ness, 0.625 mm. Through those experiments, the biodistri-
bution and photographic property of CdS in mice were
determined, and the detailed information was exhibited as
the “Result and Discussion” section.

The Exposure Dosage Effect on Biochemical Indexes
The mice (six mice/group) were exposed to 0, 100, 200,
and 400 μg/mouse CdS solution, respectively. Then, the
exposure mice were sacrificed at 24 h later, and the
blood was collected to obtain serum. The collected
blood was stayed in room temperature about 15 min,
and then were centrifuged at 4000 rpm about 10 min,
the supernatant (serum) were collected and kept in 4 °C
refrigerator. At the next day, the blood urea nitrogen
(BUN), creatinine (CREA), cystatin-C (Cys-C), alanine
aminotransferase (ALT), aspartate aminotransferase
(AST), and total bilirubin (TB) contents in serum were
measured by ELISA kit (purchasing from Elabscience
Biotechnology Co., Ltd). Through the above experiment,
the effect of the exposure dosage of CdS on biochemical
indexes were investigated.

Histopathology
The exposure groups of mice were sacrificed at about 24 h,
and tissues such as the heart, liver, spleen, lungs, kidney,
and pancreas were collected and the fixed right lobe from
animals in each group was embedded in paraffin, sec-
tioned onto slides, and stained with hematoxylin and
eosin (H&E). H&E-stained slides were qualitatively ana-
lyzed for indications of inflammation and injury by a

certified veterinary pathologist who was blinded to the
treatment groups.

Results and Discussion
Materials Characterization
The raw CdS were provided to the characterization of
TEM, Raman spectrum, and XRD, and the results as
Figs. 1, 2, 3, and 4. The TEM results of CdS showed that
the nanoparticles size of CdS was about 30 nm with
spherical particle state, which agrees with previous
results [19, 20]. Figure 2 shows the result of Raman
spectrum of CdS had the absorption peaks at 285 and
585 cm−1, respectively, indicating the characteristic
absorption peaks of CdS nanoparticles [21–23]. Figure 3
shows the XRD pattern of a typical CdS nanoparticles
sample. The XRD peaks are very broad, indicating the
very fine size of the sample grains. The XRD pattern
exhibited prominent broad peaks at 2θ values of 26.5°,

Fig. 2 The Raman spectrum of CdS

Fig. 3 The XRD characterization of CdS

Fig. 4 The TGA of CdS
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43.96°, and 52.13°, which could be indexed as scattering
from the (111), (220), and (311) cubic phase CdS planes,
respectively, according to JCPDS file NO.10–454. By
using the Scherrer’s equation d = 0.8λ/βcosθ, where λ is
the wavelength of the X-ray radiation, β is the full width
at half maximum (FWHM) of the (111) peak, and θ is
the angle of diffraction, the average size of the CdS

nanoparticles was determined to be of the order of
3 nm. The only one losing weight peak of Fig. 4 showed
that the purity of raw CdS was very high.

Biodistribution of CdS in Mice
It could be seen from Fig. 5 that the tissues biodistribution
of CdS after exposure to mice could change with time

Fig. 5 The tissue biodistribution of CdS at 1, 6, 16, 24, and 48 h after exposure of CdS in mice (n = 6, ±SEM)

Fig. 6 The CT imaging of CdS after exposure at 2 and 6 h in mice
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passing. The results indicated that most of CdS were
retained by the lungs after injection intravenously to mice,
and the tissues of the liver, spleen, and kidney had also a
certain degree of uptake; the largest accumulation were
got at 6 h for the heart, liver, lungs, and kidney tissues
(Fig. 5). At the same time, the CdS accumulated in tissues
could decrease gradually with time going except for that
in the spleen, but increased in the heart, liver, spleen, and
kidney at 48 h after exposure (Fig. 5). It was reported that
nanoparticles injected intravenously into the blood would
pass through the right atrium, right ventricle, lungs, left
atrium, and into the left ventricle successively [18]. In the
left ventricle, nanoparticles would be pumped into the
blood circulation and carried into every tissue. In this
process, nanoparticles and other mechanism materials
would be captured by the pulmonary capillary bed to

protect heart from being hurt. Therefore, there was a lar-
gest CdS accumulation in the lungs after injection intra-
venously into mice. From the characterization of CdS
(Figs. 1, 2, 3 and 4), it could be seen that the average size
of CdS were very small, just 3 nm. Thus, the part of CdS
could pass through the pulmonary capillary bed and enter
into the blood circulation, and then into other tissues, and
so, the CdS had the largest accumulation and then rapidly
decreased in the lungs after 6 h (Fig. 5). It was reported
that the high-level accumulation of nanoparticles in the
organs depended on the rapid capture of the reticuloendo-
thelial system (RES), and RES capture occurred via
opsonization, i.e., opsonins binding to nanoparticles in the
plasma via recognition by phagocytes in the RES [24, 25].
As well known, the liver and spleen were the immune or-
gans of biology body with a lot of macrophages (e.g.,

Fig. 7 The changes of biochemical index content in serum after exposure of CdS to mice intravenously (*p< 0.05 for the groups vs. control group,
n= 6, ±SEM)
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Kupffer cells); hence, CdS as the invasive materials for
biology body were captured by RES in the liver and spleen
with a mass of phagocytes, resulting in high uptake of the
liver and spleen (Fig. 5). In addition, the spleen was the
largest immune organ of biology body, and had more lym-
phocytes and macrophages, so the accumulation of CdS in
the spleen increased after exposure. The accumulation of
the kidney showed that the CdS could be excreted
through the urinary system (Figs. 5 and 6), and so the con-
tent of CdS in tissues decreased with time extension.
However, the accumulation of CdS increased in the heart,
liver, spleen, and kidney 48 h after exposure, it might be
attributed to the redistribution of CdS from the lung tis-
sues or the releasing of Cd2+ from the degradation of CdS
nanoparticles [6], but this speculation needs to be further
studied through experiments.
However, it was interesting that the CT imaging of

CdS showed an obvious absorption in the lungs, liver,
spleen, kidney, and bladder, especially in the pancreas
(Fig. 6), as we know, the phenomenon about the

presence of nanoparticles in the pancreas was found
firstly in this work. Therefore, it should be discussed
how CdS could enter into the pancreas. As early as
1901 year, Opie et al. reported the common-channel
hypothesis as the potential triggering mechanism for
gallstone-induced pancreatitis [26]. They found the
pancreatic duct and the common bile duct communi-
cated, and called this communication as a common
channel, which could have allowed for the bile to enter
into the pancreas. Accordingly, they proposed that the
reflux of the bile through the common channel into the
pancreatic duct represents the triggering event for bil-
iary pancreatitis. What is more, it was reported that the
gallstone could stimulate Oddi’s sphincter during roll-
ing into the duodenum leading to congestion, edema,
and spasm, and then resulted in the function disorder
of Oddi’s sphincter, so far as to reverse shrink, which
could produce bile or duodenum content regurgitation
[27]. Therefore, authors thought that CdS could enter
into and damage the liver after exposure to mice, and

Fig. 8 The histopathology (×400) of tissues after exposure CdS to mice (A1–A5 and B1–B5 for the heart, liver, spleen, lung, and kidney, respectively)
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parts of CdS might enter into the bile duct with bile,
and then further into the duodenum. In this process,
the CdS stimulated Oddi’s sphincter and triggered func-
tion disorder, resulting the CdS enter into the pancreas
with bile or duodenum content regurgitation into the
pancreas. And so, there was a high uptake of CdS in
the pancreas (Fig. 6).

The Exposure Dosage Effect on Biochemical Indexes
The exposure dosage of CdS effecting on the biochem-
ical indexes in serum was studied, and such as the BUN,
CREA, Cys-C, ALT, AST, and TB contents in serum
were measured through ELISA kit. As the results shown
of Fig. 7, compared with the contents of biochemical in-
dexes of control group, there was a significant difference
from that of exposure groups (*p < 0.05). The ALT, AST,
and TB contents of the exposure groups were much
higher than that of the control group, indicating that the
CdS had a serious damage on the liver. But the CREA,
Cys-C, and BUN contents were abnormal in serum,
which might show that the kidney was injured after
exposure of CdS to mice (Fig. 7). Moreover, it was also
showed that the changes of biochemical indexes in
serum depended on the exposure dosage of CdS. The
effect levels decreased slightly with the exposure dosage
increased from 100 to 400 μg/mouse, but when the ex-
posure dosage got to 400 μg/mouse, the tissue damages
decreased slightly compared with that exposure to low
dosages. The author inferred that the reason could be
relative to the agglomeration of CdS nanoparticles in the
solution (Fig. 1).

Histopathology
The sections of organic tissues were cut to perform micro-
scopic examination, and shown in Fig. 8. The results showed
that the CdS nanoparticles could cause the extensive injury
on tissues containing the liver, spleen, kidney, and lung, but
the control groups of normal saline was normal. The cell
lineage disorder, hepatic lobules disappeared, and hydropic
degeneration with focal inflammation could be observed
from the liver section, and there was a severe hemorrhage
phenomenon. The splenic sinus eclasis, size disorder of
follicular, hyperplasia of extramedullary hematopoietic giant
cells, and serious hemorrhage phenomenon could be seen
from the spleen section. The section of the lung tissue
showed bronchial epithelial disorder and alveolar walls
broken with a severe bleeding, in addition, the brown stain
of section indicated that there were a lot of nanoparticles in
the lung tissues. The lesion of the kidney could also be
observed with glomerular swelling, smaller glomerular
capsular, and mesangial cell proliferation. Figure 9 indicates
that the amylase (AMY) content in serum of the exposure
group decreased compared with that of the control group,
and the histology section of the pancreas also exhibited
pathological changes. Those pathological measurement re-
sults were according to the biochemical indexes content
changes in serum. Therefore, it could be seen that the CdS
damaged indeed the tissues of the mice after being exposed.

Conclusions
From this work, it could be seen that the CdS exhibited an
excellent property of CT photographic developer with a cer-
tain toxicity in vivo. CdS were mainly retained in the lungs,
but slight in the liver, spleen, and kidney, with a strong

Fig. 9 The changes of AMY content in serum and histopathology of the pancreas after exposure CdS to mice (*p < 0.05 for the groups vs. control
group, n = 6, ±SEM)
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dependence on time. In addition, the accumulation of CdS
in the pancreas was found firstly, and authors gave a de-
tailed discussion about this point. Accordingly, the biochem-
ical indexes and histology sections also indicated that the
CdS had caused serious damages to the tissues. Through
this work, it could help doctors alleviate the negative effects
of Cd-containing nanoparticles and facilitate compre-
hensive utility of Cd-containing nanoparticles in
medicine.
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