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Abstract

Motivation: The advent of new genomic technologies has resulted in the production of massive

data sets. Analyses of these data require new statistical and computational methods. In this article,

we propose one such method that is useful in selecting explanatory variables for prediction of a

binary response. Although this problem has recently been addressed using penalized likelihood

methods, we adopt a Bayesian approach that utilizes a mixture of non-local prior densities and

point masses on the binary regression coefficient vectors.

Results: The resulting method, which we call iMOMLogit, provides improved performance in iden-

tifying true models and reducing estimation and prediction error in a number of simulation studies.

More importantly, its application to several genomic datasets produces predictions that have high

accuracy using far fewer explanatory variables than competing methods. We also describe a novel

approach for setting prior hyperparameters by examining the total variation distance between the

prior distributions on the regression parameters and the distribution of the maximum likelihood es-

timator under the null distribution. Finally, we describe a computational algorithm that can be used

to implement iMOMLogit in ultrahigh-dimensional settings (p >> n) and provide diagnostics to as-

sess the probability that this algorithm has identified the highest posterior probability model.

Availability and implementation: Software to implement this method can be downloaded at: http://

www.stat.tamu.edu/�amir/code.html.

Contact: wwang7@mdanderson.org or vjohnson@stat.tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent developments in bioinformatics and cancer genomics have

made it possible to measure thousands of genomic variables that

might be associated with the manifestation of cancer. The availabil-

ity of such data has resulted in a pressing need for the development

of statistical methods to use these data to identify variables that are

associated with binary outcomes (e.g. cancer or control, survival or

death). The topic of this article is a statistical model for identifying,

from a large number p of potential feature vectors, a sparse subset

that are useful in predicting a binary outcome vector. Throughout

this article, we assume that the binary vector of interest is denoted

by y, and that the matrix of potential explanatory variables is

denoted by X. Letting Xk denote the submatrix of X containing the

‘true’ predictors, we assume that

p ¼ FðXkbkÞ; (1)

where F denotes a known binary link function (assumed to be the lo-

gistic distribution in what follows), and p is the n vector of success

probabilities for y. The regression coefficient bk represents the non-

zero regression effect for each column of Xk in predicting p. The
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primary statistical challenge addressed in this article is the selection

of the submatrix Xk to be used for the prediction of p.

A number of related methods have been proposed to address this

problem. These include the LASSO (Tibshirani, 1996), which is a

penalized likelihood method that maximizes a product of the binary

likelihood function implied by (1) and a constraint on the sum of the

absolute value of components of the regression coefficient bk. A

closely related method called Smoothly Clipped Absolute Deviation

(SCAD) (Fan and Li, 2001) uses a non-convex penalty function and

has been demonstrated to have certain oracle properties in idealized

asymptotic settings. Other penalized likelihood functions include

the adaptive LASSO (Zou, 2006) and the Dantzig selector (Candes

and Tao, 2007); these methods share asymptotic properties similar

to SCAD.

In ultrahigh-dimensions (p >> n), an effective computational

technique for implementing the techniques described above is the

Iterative Sure Independence Screening (ISIS) procedure (Fan and Lv,

2008), which iteratively performs a correlation screening step to re-

duce the number of explanatory variables so that penalized likeli-

hood methods can be applied. ISIS has been used in conjunction

with several penalized likelihood methods—including adaptive

LASSO (Zou, 2006), the Dantzig Selector (Candes and Tao, 2007),

and SCAD (Fan and Li, 2001)—to perform model selection.

A number of Bayesian methods have also been proposed for vari-

able selection. Notable among these are the approaches proposed by

George and McCulloch (1997), which used a mixture-of-normals

approximation to spike-and-slab priors on the regression coeffi-

cients. Lee et al. (2003) proposed a hierarchical probit model along

with MCMC based stochastic search to perform gene selection in

high-dimensional settings using a latent response variable and

Gaussian priors on model coefficients. West et al. (2000) provided a

Bayesian approach to this problem employing singular value regres-

sion and classes of informative prior distributions to estimate coeffi-

cients in high-dimensional settings. Liang et al. (2008) studied

mixtures of g priors for Bayesian variable selection as an alternative

to default g priors to overcome several consistency issues associated

with the default g prior densities. Along more similar lines, Rossell

et al. (2013) studied the utilization of non-local priors in Bayesian

classifiers where they also address the problem of identifying vari-

ables with high predictive power.

Except for Rossell et al. (2013), each of the Bayesian methods

described above impose local prior densities on regression coeffi-

cients in the true model. That is, the prior density on the regression

coefficients has a positive prior density function at 0 (and in most

cases has its mode at 0), which from a Bayesian perspective makes it

more difficult to distinguish between models that include regression

coefficients that are close to 0 and those that do not. Johnson and

Rossell (2012) proposed two new classes of non-local prior densities

to ameliorate this problem. In the model selection context, non-local

prior densities are 0 when a regression coefficient in the model is 0.

This makes it easier to distinguish between coefficients that do not

have an impact on the prediction of y from those that do. Johnson

and Rossell (2012) used a Markov Chain Monte Carlo (MCMC) al-

gorithm to sample from the posterior distribution on the model

space; the convergence properties of this algorithm were studied in

Johnson (2013).

The primary goal of this article is to extend the methodology

proposed in Johnson and Rossell (2012) for application to binary

outcomes and to compare the performance of this algorithm to lead-

ing penalized likelihood methods. In addition, we describe a default

procedure for setting the hyperparameters (i.e. tuning parameters) in

the non-local priors, and we examine a numerical strategy for iden-

tifying the highest posterior probability model (HPPM).

2 Methods

Let yn ¼ ðy1; . . . ; ynÞT denote a vector of independent binary obser-

vations, Xn an n � p matrix of real numbers, b a p� 1 regression vec-

tor, and xi the ith row of Xn. We denote a model by k ¼ fk1; . . . ; kjg
where ð1 � k1 < � � � < kj � pÞ and it is assumed that bk1

6¼ 0; . . . ;

bkj
6¼ 0 and all other elements of b are 0. The design matrix corres-

ponding to model k is denoted by Xk and is defined to have cardinal-

ity k. We assume that the columns of X have been standardized. The

ith row of Xk is denoted by xik. Assuming the logistic link function for

F in (1), the goal of the model selection procedure proposed in this

article is to identify sparse regression models that have high predictive

probability. We propose to do this by identifying the highest posterior

probability model k for data y, distributed according to

yi jbk � Bernoulli
expðx0ikbkÞ

1þ expðx0ikbkÞ

" #
; (2)

under prior constraints on the model space and the assumption of

non-local prior density constraints on the regression parameter bk.

Our primary focus is on the case p >> n.

Bayesian model selection is based on the calculation of posterior

model probabilities. From Bayes theorem, the posterior probability

of model j 2 J is specified as

pðjjynÞ ¼
pðjÞmjðynÞX

k2J
pðkÞmkðynÞ

; (3)

where

mkðynÞ ¼
ð

pðynjbkÞpkðbkÞdbk: (4)

The art in implementing a Bayesian model selection procedure

thus focuses on specifying the prior densities pkðbkÞ for bk under

each model, as well as the prior model probabilities pðkÞ for the

models themselves. Except for the intercept, we assume non-local

priors on the components of the regression vector in each model.

These non-local priors are described in the next section. Discussion

of the prior on the model space is described after that.

2.1 Non-local priors
The form of the non-local prior densities imposed on the (non-zero)

regression coefficients bk in this article take the form of a product of

independent iMOM priors, or piMOM densities, expressible as

pðbkjs; rÞ ¼
srk=2

Cðr=2Þk
P
k

i¼1
jbij�ðrþ1Þexpð� s

b2
i

Þ: (5)

Here bk is a vector of coefficients of length k, and r; s > 0. The

hyperparameter s represents a scale parameter that determines the

dispersion of the prior around 0, while r is similar to the shape par-

ameter in the Inverse Gamma distribution and determines the tail

behavior of the density. An example of an iMOM density is illus-

trated in Figure 1 for the particular case of r ¼ 1 and s ¼ 3.

An important feature of this non-local prior, as highlighted in

Johnson and Rossell (2012), is that these priors do not necessarily

impose significant penalties on non-sparse models, provided that the

estimated coefficients in the non-sparse models are not too small.

That is, large values of regression coefficients are not penalized since
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the value of the exponential kernel in (5) tends to 1 as bi becomes

large. This fact lies in stark contrast to most penalized likelihood

methods.

2.2 Prior on model space
To define the prior on the model space, we adopt a subjective ver-

sion of the prior proposed by Scott et al. (2010). In the fully

Bayesian version of the beta-binomial prior, this formulation speci-

fies that the prior probability for model k is

pðkÞ ¼ Bðaþ k; bþ p� kÞ
Bða; bÞ ; (6)

where B(a, b) denotes the beta function and a and b are prior param-

eters that describe an underlying beta distribution on the marginal

probability that a selected feature is associated with a non-zero re-

gression coefficient in (2). This type of prior on the model size is

also recommended in Castillo et al. (2015), where it is suggested

that an exponential decrease in prior probabilities with model size

provides optimal results when the prior density on regression param-

eters has the form of a double exponential.

To incorporate our belief that the optimal predictive models are

sparse, we arbitrarily set a ¼ minðk�; blogðpÞcÞ, and b ¼ p� a. For

large n, this implies that we expect, on average, a feature vectors to

be included in the model. Here, k� ¼ argmaxk
p
k

� �
< 2n. This

choice of k� for the prior hyperparameter reflects the belief that the

number of models that can be constructed from available covariates

should be smaller than the number of possible binary responses.

Similarly, by restricting a to be less than logðpÞ, comparatively small

prior probabilities are assigned to models that contain more than

logðpÞ covariates. Finally, we impose a deterministic constraint on

model size and define PðkÞ ¼ 0 if k > n=2.

A sensitivity analysis for a and b in (6) is provided in

Section 4.1.1.

2.2.1 Choosing hyperparameters

A critical aspect of implementing our model is the choice of the

hyperparameters r and s. The value of r determines the tail behavior

of the piMOM prior, while s plays a role similar to the tuning par-

ameter in penalized likelihood methods, with its value largely deter-

mining the minimum value of a component of bk that will be

selected into a high posterior probability model.

To pick an appropriate, application-specific value for s, we

adopt a strategy in which we compare the null distribution of the

maximum likelihood estimator for bk (i.e., when all components of

bk are 0), obtained from a randomly selected design matrix Xk, to

the prior density on bk under the alternative assumption that the

components are non-zero. By choosing s to be just large enough so

that the intersection of these two densities falls below a specified

threshold, we are able to approximately bound the probability of

false positives in the model, while at the same time maintaining sen-

sitivity to regression coefficients that fall outside of the distribution

of MLEs that estimate 0. In principle, we could employ this strategy

to obtain a distinct value of s for each model k, but were unable to

do so in this article because of the computational expense this pro-

cedure would impose. Instead, we mixed over models to obtain a

single value of s.

Numerically, our strategy is implemented as follows. We begin

by sampling a model from the prior on the model space. That is, we

randomly sample k columns of X where k is determined by a draw

from the prior on the model space. A Bernoulli vector of length n

with success probability p̂ is generated, where p̂ is the proportion of

successes in the observed data. Then the MLE for the model is esti-

mated using standard logistic regression software with an intercept

included in the model. This process is repeated N times to obtain a

normal density approximation to the marginal density of maximum

likelihood estimates under the condition that all true regression coef-

ficients (except for the intercept) are 0. Typically, N ¼ Oð104Þ.
Next, piMOM priors corresponding to different values of s are

compared to the null distribution of the MLE. Based on these com-

parisons, we numerically determine the value of s so that the overlap

of these densities falls below a threshold of p�1=2. This overlap value

is chosen heuristically in a way that suggests the number of false

positives will decrease to 0 as p and n become large. Other thresh-

olds of the form p�a might also be considered, but we have found

that a ¼ 1=2 provides good performance in a wide range of simula-

tion studies and in real data examples. Further justification for this

threshold is provided in the supplementary data.

Notice that for a fixed p, the dispersion of the null distribution

of the MLE around 0 decreases as the sample size n increases, al-

though the rate of decrease is also affected by the structure of the de-

sign matrix X. This effect is illustrated in Table 1.

We also note that a similar procedure for setting the scale param-

eter for local priors on the regression coefficients could potentially

be implemented. Unfortunately, the application of this procedure to

local priors can require extremely large values of tuning parameters

in order to ‘squash’ the prior near 0 and achieve small overlap with

the null distribution. As a consequence of this fact, the tuning par-

ameters selected by this procedure will not reflect any reasonable

prior belief on the values of the regression parameters in a logistic

model with a standardized design matrix.

Fig. 1. iMOM prior for r ¼ 1 and s¼3

Table 1. Selected s parameter of piMOM prior for different simula-

tion settings

n ¼ 50 n ¼ 100 n ¼ 200 n ¼ 400 n ¼ 600

P ¼ 1000 5.50 1.66 0.68 0.30 0.20

P ¼ 10 000 4.28 1.85 0.76 0.34 0.21
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To find an appropriate value of r for the piMOM prior (5), we

impose a constraint that the prior mass assigned to the interval

(�10,10) equals 0.95. This constraint is imposed because coeffi-

cients larger than 10 in magnitude are not expected when the col-

umns of the design matrix have been standardized.

Together, these constraints identify a unique combination of r

and s for the piMOM prior.

A numerical strategy for finding this hyperparameter vector is

outlined in Algorithm 1.

Notice that this procedure for choosing the hyperparameters de-

pends on the prior on the model space. This implies that s will tend

to be larger in larger models, because it is more likely that the

sampled columns X will exhibit high collinearity in large models.

Ideally, we would adjust s for each individual model, but as men-

tioned earlier it was not computationally feasible to do so for the ap-

plications and simulations reported in this article.

3 Numerical aspects of implementation

The model described in Section 2 leads to a joint density for the

data, model k and its parameters. As a result, the posterior distribu-

tion of model k and its coefficients can be expressed as

pðbk;kjynÞ /
srk=2

Cðr=2Þk
Yk
i¼1

jbij�ðrþ1Þexp � s

b2
i

 !
�

Bðaþ k; bþ p� kÞ
Bða;bÞ

Yn
j¼1

(
e

xT

jk
bk

1þ e
xT

jk
bk

)yj
(

1

1þ e
xT

jk
bk

)1�yj

:

(7)

Because of the high dimension of the parameter space and the com-

plexity of the posterior density function in (7), it is not feasible to maxi-

mize this function analytically to obtain the HPPM. To search for the

HPPM, we therefore utilized a Markov chain Monte Carlo algorithm.

To reduce the dimension of the parameter space, we used a Laplace ap-

proximation to marginalize over the regression coefficient bk associ-

ated with each model. The resulting approximation to the marginal

posterior density of the data y under model k can be expressed as

mkðynÞ ¼
ð

pðynjbkÞpkðbkÞ dbk �

ð2pÞ
k

2jRj
�

1

2pðynj~bkÞpkð~bkÞ:

(8)

Here ~bk is the MAP estimate of bk and jRj is the determinant of

the Hessian of the function f ðyn; bkÞ ¼ �logðpðynjbkÞÞ� logðpkðbkÞÞ,
computed at ~bk. The elements of the Hessian matrix can be ex-

pressed as

Hi;jðbkÞ ¼

i ¼ j; � rþ 1

b2
ik

þ 6sb�4
ik þ

X
s

x2
sie

x
0
sk

bk

ð1þ ex
0
sk

bk Þ2

i 6¼ j;
X

s

xsixsje
x
0
sk

bk

ð1þ ex
0
sk

bk Þ
2

:

8>>>>><
>>>>>:

(9)

A simple birth-death scheme was used to sample from the poster-

ior distribution. At each iteration of MCMC algorithm, each of the

p covariates was visited in random order. The update at position i

was performed by proposing a candidate model by flipping the in-

clusion state of that variable in the model. The candidate model was

accepted using a Metropolis algorithm where the probability of ac-

cepting the candidate model, k
cand, was

r ¼
m

kcand ðynÞpðk
candÞ

mkcurr ðynÞpðk
currÞ : (10)

The MAP estimate for bk was obtained using the nlminb()

function in R. We assumed that an intercept was present in all

models.

3.1 Convergence diagnostics
Convergence diagnostics of MCMC can be used to assess whether an

adequate number of iterations have been performed. Because of the

high dimension of the parameter space for even moderately large p,

we implemented a modified coupling diagnostic (Johnson, 1996,

1998) to assess the probability that our MCMC algorithm had identi-

fied the true model. In the standard implementation of this method,

one randomly initializes two MCMC chains by independently includ-

ing each variable in the model according to a fixed probability. The

components of the model in each chain are then updated synchron-

ously, using the same uniform random deviate to perform acceptance/

rejection of the candidate models. The chains are said to couple when

the models from each chain are identical. Note that once the chains

become coupled, they never uncouple. In theory, the distribution of

the number of updates of the chains required to obtain coupling can

be used to establish a bound on the total variation distance (TVD) be-

tween iterates in the chain and the target distribution.

In our implementation of the coupling diagnostic, we started

100 pairs of model chains. Each pair was updated until either they

had coupled or all p components in each of the chains had been

updated N times where N ¼ 250. The (local) HPPM identified by

each chain was recorded, and then the HPPM’s for the 100 chains

were compared. We then identified the global HPPM among the

100 models in the paired chains, and also examined the proportion

of chains that had both coupled and identified the ‘global’ HPPM.

4 Results

To investigate the performance of the proposed model selection pro-

cedure, we applied our procedure to both simulated data sets and

real data. We compared the performance of our algorithm to ISIS-

SCAD (Fan and Lv, 2008) in both real and simulated data because

ISIS-SCAD has proven to be among the most successful model selec-

tion procedures used in practice. For the real data analyses, we also

compared our method to another Bayesian procedure based on the

product moment prior (Rossell et al., 2013).

Algorithm 1 Choosing Appropriate r and s for piMOM

1: Procedure RTAUSELECT (X; p̂; n;p)

2: yn  Sample from Binomialðn; p̂Þ
3: for (i in 1:N) do

4: ksize Sample from prior on model space in ð6Þ
5: Xk  Randomly choose ksize columns from X

6: bi  MLE ðyn;XkÞ
7: b ½b; bi	
8: f  Normal density approximation to density of b
9: ov Overlap area between f and iMOMðs; rÞ
10: tp Area under iMOMðs; rÞoutside the interval ð�10;10Þ
11: ½r�; s�	  argminr;s ðjov� 1ffiffi

p
p j þ jtp� 0:05jÞ

12: return ½r�; s�	
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4.1 Simulation studies
In all simulation studies, we assumed that the response vector repre-

sents a sequence of Bernoulli samples whose component probabil-

ities of success are given by

pi ¼
exik

Tbk

1þ exik
Tbk

(11)

for a true model k.

Elements of the design matrix X were sampled from a multivariate

normal distribution with mean 0 and covariance matrix R, where the di-

agonal elements of R were 1 and off diagonal elements were 0.5. That is,

R ¼

1 0:5 � � � 0:5

0:5 1 � � � 0:5

..

. ..
. . .

. ..
.

0:5 0:5 � � � 1

0
BBBBBBBB@

1
CCCCCCCCA

p�p

xj � Npð0;RÞ; xj : jth row of design matrix X

yi � BernoulliðpiÞ:

(12)

Different combinations of n and p were investigated. Moreover,

different ranges of regression coefficients were tested. In our simula-

tions, the true model contained three variables. The following com-

binations of n, p and b were used to perform the simulation studies.

• n 2 f50; 100;200; 400;600g
• p 2 f1000; 10000g
• b 2 fb1;b2; b3g, where the non-zero coefficients of the bi vector

were the ith row of the matrix

1 2 3

2 3 4

4 5 6

2
664

3
775.

The hyperparameters s and r for the piMOM prior were selected

by the procedure explained in Section 2.2.1 for each of the 10 com-

binations of n and p. Values of s and r selected by this procedure are

summarized in Tables 1 and 2, respectively.

To run ISIS-SCAD, we used the R package ‘SIS’ (Fan et al.,

2015) available from CRAN.

The variable selection procedure in both algorithms was run 50

times for each of the 30 combinations of n, p and b. In each trial,

true and false positive values for iMOMLogit and ISIS-SCAD were

counted by comparing the selected model with the true one. TP and

FP rates were defined as the average true and false positive values

over 50 trials. A true positive, TP, was defined to be the number of

variables that were correctly selected, while false positives, FP, were

the number of variables that were mistakenly selected.

Figures 2 and 3 show average TP and FP counts of both methods

for all combinations of n and p and b ¼ b1. The figures for b2 and

b3 are provided in the supplementary materials and demonstrate

similar trends. In all cases, the average FP count for iMOMLogit

was less than ISIS-SCAD, while its average TP count was higher.

The only case where both iMOMLogit and ISIS-SCAD had the same

average TP count was when they both found the true model in all 50

simulation trials.

We next compared the performance of both methods in estimat-

ing the regression coefficients. For each simulation setting, we com-

pared the mean squared error in estimating the probability of

success for each binary observation by performing 10-fold cross val-

idation. The point estimate b̂ was estimated as the posterior mode

under the HPPM. The predicted value of p̂ was then computed ac-

cording to (1). Note that the prediction of the response vector in-

volves both coefficient estimation and variable selection. The mean

squared error of prediction (MSE) was defined as follows:

MSEðp̂Þ ¼ 1

n
jjp̂� pjj2 ¼ 1

n

Xn

i¼1

ðp̂i � piÞ2: (13)

The comparison between cross validated MSEs of both methods

is shown in Figures 4 and 5. As in the comparisons of TP and FP

Table 2. Selected r parameter of piMOM prior for different simula-

tion settings

n ¼ 50 n ¼ 100 n ¼ 200 n ¼ 400 n ¼ 600

P ¼ 1000 2.04 1.50 1.24 1.07 1.00

P ¼ 10 000 1.90 1.54 1.27 1.09 1.01

Fig. 2. Average true positive count for b1

Fig. 3. Average false positive count for b1
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rates, these figures suggest that iMOMLogit is preferred to ISIS-

SCAD in estimating the success probabilities of binary observations.

4.1.1 Sensitivity analysis for prior parameters on model space

To assess the sensitivity of our results to the prior hyperparameters

on the model space (6), we conducted a brief sensitivity analysis

under the simulation settings for which n ¼ 200, p ¼ 1000 and

b ¼ ½4; 5; 6	T. We also fixed b ¼ p� a as before. This insured that

the prior mean of the number of variables selected would be a.

Based on the default procedure for defining a described in Section

2.2, the default value for a in this setting was 6. We examined sensi-

tivity to this choice of a by varying a around this default value

within the interval (3, 9). To quantitatively assess the sensitivity of

the selection procedure to values of a in this range, we examined the

consequent changes to MSEðp̂Þ described in (13). This measure

incorporates errors in both variable selection and coefficient

estimation.

The figure provided in the supplementary material depicts MSEðp̂Þ
for different values of a in the described simulation setting. As shown

in that figure, model output does not change dramatically with changes

in a, varying by at most 4:8� 10�5 from the default choice of a.

4.2 Real data analysis
We applied iMOMLogit to two data sets, one with a small sample

size and one with a large sample size. These two data sets are pub-

licly available and have good clinical annotations. The first data set

was the Golub leukemia data (Golub et al., 1999). The goal of our

analysis for these data was to discriminate between two types of

acute leukemia, myeloid (AML) and lymphoblastic (ALL). The de-

sign matrix consisted of gene expression levels produced by cDNA

microarrays from bone marrow samples, and was pre-processed by

RMA (Irizarry et al., 2003). There are 72 samples and 7,129 genes

in the data set. The second data set was the clear cell Renal Cell

Carcinoma (ccRCC) RNAseq data, available from the Cancer

Genome Atlas projects (Cancer Genome Atlas Research Network,

2013) (TCGA). There were 467 tumor samples and more than 20

000 genes in this data set.

As mentioned earlier, we also compared our selection procedure

results to a related Bayesian method proposed in Rossell et al.

(2013), called pmomPM. This method uses a probit link function

with a moment prior, (pMOM), another type of non-local prior.

The pMOM prior has Gaussian tails and decreases quadratically

near the origin. We implemented this method with the default

hyperparameter suggested in Rossell et al. (2013) for sparse models.

To run pmomPM method, we used the R package ’mombf’ (Rossell

et al., 2015) available from CRAN.

In contrast to iMOMLogit and ISIS-SCAD, the mombf package

focuses on prediction using Bayesian model averaging, rather than on

the identification of biologically important genes using the HPPM.

Because of the behavior of the pMOM prior near the origin, the

pMOM model selects many more genes in the models over which it

averages. Though model averaging can improve prediction accuracy

(Raftery et al., 1997), the current version of the mombf package does

not provide estimates of the HPPM, which complicates comparisons

with the other methods considered here. These attributes of the

pmomPM method are illustrated in the examples that follow.

4.2.1 Leukemia data

Following Golub et al. (1999), we split the data into training and

test sets. The training set contained 38 samples, with 27 ALL and 11

AML. The testing set contained 34 samples, with 20 ALL and 14

AML.

Table 3 summarizes the results of applying iMOMLogit, ISIS-

SCAD and pmomPM to these data. The error rate for predicting the

test data observations was 5.88% for iMOMLogit, which misclassi-

fied 2 out of 34 observations, samples 17 and 31. Both ISIS-SCAD

and the method described in Golub et al. (1999) resulted in an error

Table 3. Comparison between iMOMLogit and other methods for

leukemia data set

Method Error rate Reported genes

iMOMLogit 5.88% Zyxin

ISIS-SCAD 14.70% Zyxin - FAH

pmomPM 23.53% No genes had marginal posterior

probability greater than 0.5

Fig. 4. 10-fold cross validation MSEðp̂Þ of iMOMLogit vs. ISIS-SCAD, P ¼ 1000

Fig. 5. 10-fold cross validation MSEðp̂Þ of iMOMLogit vs. ISIS-SCAD, P¼ 10 000
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rate of 14.7%. ISIS-SCAD achieved this error rate by finding two

significant genes, ‘Zyxin’ and ‘FAH’, whereas Golub et al. (1999) se-

lected 50 genes. The pmomPM method achieved an error rate of

23.53% with an average model size of 11.08. None of the genes

were assigned marginal posterior probability of 0.5 by the

pmomPM method; the highest marginal posterior probability of any

gene was 0.052, acheived by CD33.

iMOMLogit selected a model containing only one gene named

‘Zyxin’, which perfectly predicted the classifications in the training

data. This gene was also listed in the top 50 genes reported by

Golub et al. (1999), and was found to be advantageous for classify-

ing the two types of leukemia in four published data sets (Baker and

Kramer, 2006). The gene ‘FAH’ found only by ISIS-SCAD is

involved in certain metabolic pathways that are not known to be

associated with leukemia (Kegg.org).

Following the methodology discussed in Section 3.1, 74% of

pairs of chains that were updated using the coupling algorithm

found the same highest posterior probability model (HPPM).

Among all pairs, 95% coupled.

4.2.2 Renal cell carcinoma data

The second data set was generated by the Cancer Genome Atlas

Research Network (2013) and contained Illumina HiSeq data on

mRNA expression for 467 patient samples. The survival outcomes

of these patients were available. A hierarchical clustering of the gene

expression data [preprocessed using DeMix (Ahn et al., 2013) to re-

move stromal contamination] were performed on the data. That led

to the identification of four clusters of patients based on survival

times. To apply iMOMLogit, we considered two of those clusters,

presenting the best and worst survival outcomes and labeled them as

0 (worst) and 1 (best). The resulting number of samples included in

our analysis was 193, with 14150 features in the design matrix.

The results using iMOMLogit, ISIS-SCAD and pmomPM are

summarized in Table 4. To compare methods, we performed a 10-

fold cross-validation. The error rate of iMOMLogit was 9.79%,

ISIS-SCAD’s error rate was 12.97%, and pmomPM was 9.84%. In

the model selected by iMOMLogit, there were 3 significant genes

named ‘C7orf43’, ‘NUMBL’ and ‘SAV1’, with the latter two being

uniquely identified by our model. ‘NUMBL’ participates in the

Notch signaling pathway and is believed to contribute to nervous

system tumors (glioma) (Tao et al., 2012) as well as lung cancer

(Yingjie et al., 2013). The Notch signaling pathway is highly con-

served, manages communication between adjacent cells and main-

tenance of adult stem cells, and is linked to the development of

various cancers (Alketbi and Attoub, 2015). Not surprisingly, we

identified NUMBL as differentiating two groups of kidney patients.

‘SAV1’ has been reported to play a role in kidney cancer (Matsuura

et al., 2011), and is located in a Hippo signaling pathway

(Kegg.org). The Hippo signaling pathway is highly conserved and

controls epithelial tissue growth. Recently, its relation to other

signaling pathways has been studied to identify new therapeutic

interventions for cancer (Yimlamai et al., 2015).

Among all pairs of chains with different random starts, 32% of

them reported the same global HPPM and 6% of paired chains were

coupled. This suggests that convergence in this data set was more

problematic, and that our multiple coupled chain approach (or other

modifications of the standard, single chain MCMC algorithm) is

required to identify the HPPM model.

The genes uniquely selected by ISIS-SCAD were ‘C19orf66’,

‘ATXN7L2’ and ‘MIICAL1’. ‘ATXN7L2’ was previously reported

to be associated with non-small cell lung cancer (Wu et al., 2013),

whereas ‘MICAL1’ was previously reported to control survival in

melanoma cell lines.

As for the leukemia data, the pmomPM selected substantially

more genes in each of its sampled models, and the genes selected in

each model were highly variable. The average model size of the

pmomPM method for this data set was 13.84. As before, none of

the genes were assigned marginal probability of 0.5; the highest mar-

ginal posterior probability assigned to any gene was 0.33, for API5.

The genes identified by iMOMLogit seem to be more biologic-

ally meaningful and better annotated in the literature for ccRCC

than those selected by ISIS-SCAD.

5 Discussion

In this article, we introduced a Bayesian method, iMOMLogit, for

variable selection in binary response regression problems in high

and ultrahigh-dimensional settings. There are many applications

associated with these type of data. Such data are of great interest to

bioinformaticians and biologists, who routinely collect gene expres-

sion data to find prognostic features to classify cancer types.

For two real datasets, iMOMLogit identified sparse models with

low prediction error rates. In both cases, biological considerations

suggest that the genes reported by iMOMLogit appear to be valid

predictors of biological outcomes.

The primary disadvantage of the iMOMLogit procedure is that

it is computationally much more intensive than ISIS-SCAD and

related penalized likelihood methods. We are currently investigating

methods for reducing the computational burden of our algorithm by

implementing various screening procedures that are similar to those

used in ISIS-SCAD.
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