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Abstract

Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific

discoveries.

Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary
teams for large-scale image-based studies. It uses web development methodologies and machine
learning in order to readily organize, explore, share and analyze (semantically and quantitatively)
multi-gigapixel imaging data over the internet. We illustrate how it has been used in several bio-

medical applications.

Availability and implementation: Cytomine (http://www.cytomine.be/) is freely available under an
open-source license from http://github.com/cytomine/. A documentation wiki (http:/doc.cytomine.
be) and a demo server (http:/demo.cytomine.be) are also available.

Contact: info@cytomine.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In various scientific domains (incl. biology, biomedicine, astronomy,
botany, geology, paleobiology, marine research, aerobiology, cli-
matology), projects leading to terabytes of multi-gigapixel images
become increasingly common (The data deluge, 2012) e.g. biomed-
ical research studies often rely on whole-slide virtual microscopy or
automated volume electron microscopy. In these fields, significant
advances could be made by multidisciplinary collaboration involv-
ing distributed groups of life scientists and computer scientists ex-
ploiting large-scale image networks (Moody et al., 2013; Poldrack,
2014), or eventually by enlisting the help of members of the general
public in large imaging surveys (Clery, 2011) through interactive
games (e.g. EyeWire (http://eyewire.org/) and Brainflight (http://
brainflight.org/) projects). For example, researchers in experimental
histology are willing to precisely annotate images and need to con-
sult distant experts in pathology or molecular biology. Developers
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of image processing algorithms are willing to collaborate with ma-
chine learning specialists to build complementary image analysis
workflows. Furthermore, all these individuals need to actively col-
laborate to gain new insights, e.g. computer scientists require realis-
tic ground truth and proofreadings (Ground-truth data cannot do it
alone, 2011) provided by life scientists to design and refine their
analysis methods. Vice versa, life scientists increasingly rely on algo-
rithms or crowdsourced outputs in combination with proofreading
tools to enable efficient analysis of very large image sets.

Bioimage informatics aims at developing software to ease the
analysis of large-scale biomaging data (Myers, 2012). In recent
years, several software have been developed including CellProfiler
(Carpenter et al., 2006), CATMAID (Saalfeld et al., 2009), BisQue
(Kvilekval er al., 2010), ilastik (Sommer et al., 2011), Icy (de
Chaumont et al., 2012), Fiji (Schindelin et al., 2012), OMERO
(Allan et al., 2012) and BigDataViewer (Pietzsch et al., 2015).
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Applications and extensions of these software packages have been
proposed in various research fields (e.g. in the context of Drosophila
(Jug et al., 2014) and Zebrafish (Mikut et al., 2013) research, or in
plant sciences (Lobet ez al., 2013)) to address rather specific biolo-
gical questions (e.g. to map neuronal circuitry in Schneider-Mizell
etal., 2015).

In this work, we present Cytomine, a novel open-source, rich
web environment to enable highly collaborative analysis of multi-
gigapixel imaging data. This tool has been designed with the follow-
ing objectives in mind:

* provide remote and collaborative principles,

* rely on data models that allow to easily organize and semantic-
ally annotate imaging datasets in a standardized way,

* efficiently support high-resolution multi-gigapixel images,

* provide mechanisms to readily proofread (Ground-truth data
cannot do it alone, 2011) and share image quantifications pro-
duced by machine learning-based image recognition algorithms
(de Souza, 2013; Murphy, 2011).

While some of these features are available in existing tools, none
of these tools provide all these features simultaneously. By empha-
sizing collaborative principles, our aim with Cytomine is to acceler-
ate scientific progress and to significantly promote image data
accessibility and reusability (The data deluge, 2012; Moody et al.,
2013; Poldrack, 2014). We want to break common practices in this
domain where imaging datasets, quantification results and associ-
ated knowledge are still often stored and analyzed within the re-
stricted circle of a specific laboratory. To achieve this goal, the
Cytomine platform permits active collaboration between distributed
groups of life scientists, computer scientists and citizen scientists. It
allows seamless online sharing and reviewing of semantic and
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quantitative information associated with large images, either pro-
duced manually or automatically using machine learning algorithms,
as schematically illustrated in Figure 1.

The paper is structured as follows. In Section 2 we describe the
main design principles and functionalities of Cytomine. In Section 3,
we briefly present use cases initiated by our collaborators to help
readers to determine how they can use our software to address their
own research questions. We then discuss the concepts of extensibil-
ity of the platform in Section 4, and finally, we conclude.

2 System and methods

To allow image-based collaborative studies and meet software effi-
ciency and usability criteria (Software with impact, 2014; Carpenter
et al., 2012; Prins et al., 2015), the software is decomposed into four
main components (Supplementary Note 1) communicating through
(through a RESTful API):
(Cytomine-Core), Cytomine Image Management System (Cytomine-

web  mechanisms Cytomine core
IMS), Cytomine web user interface (Cytomine-WebUI) and Cytomine
analysis modules (Cytomine-DataMining), designed as follows.

2.1 Cytomine-core

Cytomine-Core relies on recent web and database software develop-
ment technologies. Its underlying data models (Supplementary Note
2) allow to create and store projects. Each project can be accessed
by multiple users through authentication. A project can contain
multi-gigapixel image sequences and a user-defined ontology, i.e. a
structured list of domain-specific semantic terms. Each image in-
stance can be annotated by users or software using annotation ob-
jects of various shapes for regions of interest (e.g. a cell or a tissue
subregion) and labeled with one or multiple semantic terms from the
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Fig. 1. Overview of multidisciplinary collaborative principles illustrated for tumor segmentation in H&E lung cancer whole tissue slides: (a) Images are uploaded
using Cytomine-WebUI or remote clients. (b) Images and related data are stored by Cytomine-Core and Cytomine-Image Management System. (¢) Once up-
loaded, multi-gigapixel images are de facto available to other distributed users according to access rights and referenced by URLs. (d) Remote, multidisciplinary
individuals are collaboratively and semantically annotating regions of interest in images and each annotation is referenced by its URL. (e) Expert annotations can
be filtered and sets of annotations can be displayed or retrieved through the API. (f) Distributed algorithms can exploit these annotations, here a segmentation
recognition model is built by supervised learning based on expert training examples. (g) An algorithm or recognition model can be applied remotely on new
multi-gigapixel images for automatic annotation. (h) Experts review other user and automatic annotations by using Cytomine-WebUI proofreading tools.
(i) Reviewed annotations can eventually be reused to refine and re-apply the recognition model. (j) Once image annotations are validated by an expert, final quan-

tification results of the ‘reviewed layer’ are exported in standard formats
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ontology (e.g. a specific cell type or tissue structure). In addition,
metadata (key-value properties, associated files and rich descrip-
tions) can be associated to any project, image and annotation. Such
data can be created remotely either by human experts (through
Cytomine-WebUI) or automatically (by our analysis modules or any
third-party software implementing basic web communication mech-
anisms). Because these data are identified by URLs they are de facto
shared with any authenticated user. Also, as they are represented in
standard formats (namely JSON, a lightweight data-interchange for-
mat), they can be automatically parsed and generated by registered
external applications.

2.2 Cytomine-IMS

Cytomine-IMS backend server provides web services that encapsu-
late a collection of distributed, specialized image server instances. It
is used to upload 5D image sequences (x,y,z,c,t planes) and to dy-
namically deliver original image areas and annotation masks over
the internet — at any pyramid resolution. It supports various stand-
ards and specific microscopy image formats (including most of
whole-slide scanner formats) either by directly accessing their native
formats, or by seamlessl conversion to a pyramidal format during
the upload phase (see Supplementary Note 1 for a list of supported
formats).

2.3 Cytomine-WebUI

Cytomine-WebUI is a customizable and responsive rich internet ap-
plication (Fig. 2), accessible through regular web browsers and mo-
bile devices. It allows to create, organize, visualize and edit all data.
It includes a zoomable, tile-based viewer for multi-gigapixel images
with the visualization of overlaid (human or computer-generated)
annotation layers and their properties. Furthermore, an ontology
editor, several modules to derive annotation statistics and visualize
annotation galleries, a textual search engine and proofreading tools
for expert reviewing of annotation objects are part of this user inter-
face. In addition, we have implemented functionalities to allow vari-
ous forms of collaborative works. One of them is the tracking of all
user activities to e.g. allow multiple users to follow remotely another
user’s observation paths and actions. Conversely, a blinded mode
can be activated to hide image and user information to allow inde-
pendent studies and reduce bias when analyzing imaging data. An
additional module (Cytomine-IRIS, the interobserver reliability
study module) also allows independent ground-truth construction
and inter-observer annotation statistics e.g. to identify cell type clas-
sification disagreements among experts.

2.4 Cytomine-DataMining

Cytomine-DataMining analysis modules currently include variants of
machine learning based image recognition algorithms (Marée et al.,
2013a) that can be run on remote servers (Supplementary Note 3).
This property facilitates large-scale analysis on distributed cluster sys-
tems where expensive computations can be outsourced. We provide
an unsupervised, incremental, content-based image retrieval method
that searches on-the-fly for visually similar annotations in the data-
base and displays them in Cytomine-WebUI every time a user draws
an annotation (see examples in Supplementary Note 4.2). Variants of
supervised image recognition algorithms are also provided for object
classification, semantic segmentation and landmark detection (see ex-
amples in Supplementary Note 4.2). Through web communication
mechanisms, these analysis modules can be launched from
Cytomine-WebUI. These modules typically retrieve filtered sets of
labeled annotation objects through the API and build computational

image recognition models. These models can be applied at any pyra-
mid level of a gigapixel image in order to analyze its content at differ-
ent resolutions and automatically create novel annotation objects
(e.g. cell or tumor geometries and their semantic terms for cell sorting
and tumor quantification, or coordinates of points corresponding to
landmarks for morphological measurements). Despite progress in
machine learning, it often remains necessary for experts to proofread
automatically generated annotations. For this purpose, we also pro-
vide Web Uls to revise computer-generated annotations (e.g. edit
their shape or spatial localization, modify their ontology term,...).
Notably, these editing tools are independent of our image recognition
algorithms and can be used to remotely review annotation objects
created by other software (see Supplementary Note 5.3 for details on
extensibility) or scientists. Reviewed annotations are stored as novel
entities in the database so they can be disseminated or used later to
refine recognition models.

3 Applications

While our first developments were primarily motivated by the ana-
lysis of brightfield cytology and histology images (digital slides) in
lung cancer research (Marée et al., 2013b), we have significantly
increased our software’s versatility and improved its extensibility.
Cytomine has now been used on various bio(medical) imaging data-
sets that involved various types of images and experts in different
collaborative operating modes to perform various quantification
tasks. In particular, we briefly present here several use cases to help
readers to determine how they can use our software to address their
own research questions (see illustrative examples in Fig. 3 and
Supplementary Note 5 for a user guide). These applications were re-
grouped into 4 categories corresponding to different image recogni-
tion tasks.

3.1 Tissue area quantification

In these use cases, scientists aims at quantifying the size (area) of tis-
sue regions (e.g. the ratio of tumor islets with respect to whole tissue
sections). This type of task implies to delineate the whole tissue sec-
tion as well as the specific regions of interest within the tissue, either
manually or semi-automatically (see Supplementary note 5.2.4.1 for
a step-by-step guide using automatic recognition algorithms on toy
data).

Following these principles, Cytomine enabled semi-automatic
tumor area assessment in hundreds of whole lung Hematoxylin—
Eosin (H&E) stained digital slides in mice inflammation and cancer
research (Marée ez al., 2014) (Fig. 3a). Experts (pneumologists and
biomedical researchers) first used Cytomine-WebUI drawing tools
to provide manual tumoral islets and non-tumour annotations.
Cropped images of these annotations were retrieved using web ser-
vices and fed into our supervised learning algorithms for semantic
segmentation. The task was formulated as pixel classification prob-
lem using multiple outputs. User interfaces and communication
mechanisms to launch algorithms from Cytomine-WebUI were im-
plemented to allow experts to execute training and prediction algo-
rithms in an autonomous way. As our algorithms were not perfectly
recognizing tumors, tools were implemented in Cytomine-WebUI to
allow scientists to proofread annotations that were generated auto-
matically. Experts are therefore able to accept or reject annotations
and edit their shapes using drawing tools which allow to edit verti-
ces, scale, substract or merge polygons, or fill internal holes. These
manual operations are automatically translated internally into spa-
tial queries on polygons, and validated annotations are stored in
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Fig. 2. Overview of Cytomine-WebUI: (a) Zoomable multi-gigapixel image viewer (a la Google Maps) with overlaid annotations colored according to ontology
terms (Original image size: 19968 x 25088 pixels). (b) Annotation drawing tools including various shapes and operations on polygons. (¢) Gallery of bronchus an-
notations in current image. (d) Main menu including project listing, ontology editor, storage to upload images, user activity statistics, textual search engine. (e)
Selected annotation panel with thumbnail, suggested terms (based on content-based image retrieval algorithm), textual description. (f) Project-specific, user-
defined ontology for semantic annotation. (g) Activation of annotation layers of possibly distributed users and softwares. (h) Annotation properties (key-value
pairs). (i) Proofreading tools to accept or edit annotations. (j) Job template panel to launch pre-configured processing routines on regions of interest. (k)
Gigapixel image overview with current position. (I) Multidimensional image panel with selectors for channel, slice in a z-stack, and time point. (m) Image layer

panel to apply on-the-fly tile image processing

Cytomine-Core. After expert validation, statistics can be exported in
standard formats for further analysis.

A similar workflow was used in (Leroi et al., 2015) for semi-
automatic tumor delineation in tens of whole Hematoxylin—

Diaminobenzidine (HDAB) stained immunohistochemical digital
slides in mice lung cancer research (Fig. 3b). Manual annotations
(tumor, stroma and necrosis) were provided by experts to build a
binary semantic segmentation model whose predictions were then
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Fig. 3. Examples of annotations created using Cytomine in images from various research fields (see Section 3 for additional details): (a) Delineation of tissue com-
ponents in H&E images in mice lung cancer research (D.Cataldo’s lab), (b) Tumoral areas in HDAB images in mice lung cancer research (P. Martinive’s lab), (c)
Area quantification in immunofluorescent mouse ear sponge assays in tumor angiogenesis (C. Gilles’ lab), (d) Counting of oocytes in H&E images in
Chondrostoma nasus sexual maturation research (V. Gennotte's lab), () mRNA expression quantification through in situ hybridization assays in human breast
cancer research (C.Josse’s lab), (f) Cell types in fine-needle aspiration cytology in human thyroid (I. Salmon’s lab), (g) Landmarks in Danio rerio embryo develop-
ment (M. Muller’s lab), (h) Phenotypes in Danio rerio toxicology research (M.Muller’s lab), (i) Region delineation and cell counting in immunohistochemistry
images in renal ischemia/reperfusion research (F.Jouret’s lab), (j) Cell scoring in immunohistochemistry images in melanoma microenvironment research

(P.Quatresooz’s lab), (k) Nucleus counting in H&E images in human breast cancer research (E. De Pauw’s lab)

proofread. In this study, this step was followed by quantitative as-
sessment of antibody staining in relevant tissue area.

Finally in (Suarez-Carmona et al., 2015), Cytomine was used to
enable independent assessment by two observers (using the blinded
configuration mode) of recruitment of CD11b+ GR1 + myeloid-
derived suppressor cells using mouse ear sponge models from whole
immunofluorescent stained frozen sections. Experts used manual
freehand annotation tools and multidimensional image visualization
interface to analyze and merge fluorescent images (Fig. 3c).

3.2 Scoring and object counting

In these use cases, scientists aim at scoring or counting ‘objects’.
This type of task implies to define (manually or automatically) re-
gions of interest and count different types of ‘objects’ (e.g. cells
marked with a marker-specific antibody) within these regions.

Cytomine was used to enable independent assessment by two ob-
servers (using our blinded configuration mode) of tens of thousands
of BRCA1 mRNA expression signals and nucleus counts by in situ
hybridization assays in tens of formalin-fixed, paraffin-embedded
tissues in human breast cancer research (Boukerroucha et al., 2015)
(Fig. 3e). This study involved pathologists (for manual tumor delin-
eation) and biomedical researchers (for manual annotation of spots
and nucleus using point annotations). It required the development of
web services performing polygon intersection operations to count
spots within specific regions of interest. In addition, scripts using
these web services were implemented to export quantification statis-
tics in standard formats for further statistical analysis. Similarly, ex-
perts in sexual maturation research performed manual classification
and counting (using point annotations) of thousands of oocytes in
whole H&E slides of Chondrostoma nasus (Fig. 3d).

In Weekers et al. (2015), semi-automatic counting of immuno-
reactive cells in regions of interest (cortex, medulla, corticomedul-
lary junction) of tens of kidney sections was performed (Fig. 3i).
Experts (nephrologists, pathologists and biomedical researchers)
first provided manual freehand annotations (regions of interest,
positive and negative cells) to train semantic segmentation models.

These were applied for positive cell detection whose statistics were
exported for each region of interest.

Other applications include manual double-blind scoring within
tissue subregions from immuno-histostained digital slides in melan-
oma cellular microenvironment research (Fig. 3j), and manual point
annotations of hundreds of thousands of nuclei for microproteomics
from small regions of interest in H&E formalin-fixed paraffin-
embedded tissue samples in human breast cancer research
(Longuespée et al., 2015) (Fig. 3k).

3.3 Labeled ground truth creation and object
classification

In this family of tasks, scientists aim at sorting ‘objects’ (e.g. to de-
tect rare abnormal cells or phenotypes). This type of task implies to
detect objects and then classify them according to predefined catego-
ries (see Supplementary Note 5.2.4.2 for a detailed guide on using
automatic detection and recognition algorithms on cytology toy
data, and Supplementary Note 5.2.7.2 that describes how to create
independent ground truth data).

Following these principles, Cytomine enabled manual semantic
annotation of eleven categories of Danio rerio larva defects (e.g.
edema, dead, curved tail,...) in hundreds of brightfield microscopy
images by consensus voting of three biologists (Fig. 3h). These anno-
tations were then used as ground-truth to build a worfklow for auto-
matic phenotype classification using tree-based supervised learning
(Jeanray et al., 2015).

In Marée et al. (2016), we analyzed tissue components in human
renal biopsies (Masson-Trichrome stain). We proposed an auto-
matic glomeruli detection workflow combining image processing
operations using Icy (de Chaumont ef al., 2012) and variants of our
supervised classification algorithms. Icy was registered in Cytomine-
Core using our software parameter templating mechanisms and it
was therefore able to import and export image and annotation data
using our web services (see examples in Supplementary Note 5.3).
To build a large ground truth dataset (almost thirty thousand tissue
components), glomeruli candidates automatically detected by Icy


http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw013/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw013/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw013/-/DC1

1400

R.Marée et al.

were analyzed using our proofreading tools for object classification.
These interfaces show galleries of classified objects and allow a user
to readily validate or correct (by drag and drop) predictions of
ontology terms.

Other large ground truth datasets were collected using manual
annotation tools. Several thousands of cells were annotated to build
a large ground truth dataset in human thyroid cytology for the (on-
going) development of rare cell detection algorithms (Fig. 3f),
inspired by previous work on cervical cancer screening (Delga et al.,
2014). We also implemented novel user interfaces (Cytomine-IRIS,
see Supplementary Note 5.2.7.2) to enable different users to inde-
pendently assign ontology terms to objects of interest. In particular,
it was used by several pathologists to annotate bone marrow cells in
order to study inter-observer agreements and build a large concord-
ant ground truth dataset for the design of cell classification
algorithms.

3.4 Landmark detection and morphometric
measurements
In this fourth family of quantification tasks, the goal is to detect spe-
cific landmarks (or interest points) in images to perform morpho-
metric measurements (e.g. distances between skeletal points in
developmental studies). This implies to scan images to identify local-
izations of specific points (see Suppl Note. 5.2.4.3 for a step-by-step
guide using automatic recognition algorithms on toy data).
Cytomine was used to perform manual annotation of tens of
thousands of landmarks (positioning and naming) in hundreds of
microscopy images of Danio rerio embryo for morphometric meas-
urements in hormonal and hypergravity bone development studies
(Aceto et al., 2015) (Fig. 3g). These annotations are currently used
to design and evaluate a generic landmark detection algorithm, fol-
lowing previous work in cephalometry (Huang et al., 2015). For this
type of tasks, we implemented proofreading web interfaces to rap-
idly and precisely visualize the localization of detected interest
points, and to manually move them if they are not well positioned.

4 Discussion

The proposed software and its algorithms have already been applied
to a wide variety of image types to accelerate discovery and to en-
able collaborative analysis. These results encourage its exploitation
in many domains. However, in practical applications, obtaining sat-
isfactory recognition performance using automatic algorithms de-
pends on many factors including image variations (e.g. due to image
acquisition and sample preparation protocols), and the quality and
quantity of annotations provided for training (see e.g. empirical
evaluations in Supplementary Note 4.2). Although the combination
of our algorithms and proof-editing tools enabled to derive relevant
quantification results in various applications, it is important to note
that further adaptation of algorithms or developing novel recogni-
tion algorithms might be needed for specific types of images or vary-
ing acquisition conditions. A key advantage of our platform is
therefore its extensibility. Indeed, our architecture enables computer
scientists to add their novel software, register them to the Cytomine-
Core and launch them from Cytomine-WebUI or from the command
line. Also, annotation objects created by each instance of a software
are stored in the database and are available through web services.
These can then be subsequently proofread, or retrieved through the
API by other software for further analysis and creation of novel —
more precise — annotation objects. This allows to create complex
image analysis pipelines based on distributed software.

It has to be noted that although the software allows visualization
of 5D image planes (x,y,z,c,t), current applications cited in Section 3
have involved independent analysis of 2D image planes only (e.g.
fluorescent image planes in (Suarez-Carmona et al., 2015) and tissue
slices in (Marée et al., 2014)). Using our API based on web services,
one is able to extend the software by designing analysis algorithms
that integrate 5D information if needed, or to interoperate with
existing software.

5 Conclusion

Cytomine is a versatile software for collaborative analysis of multi-

gigapixel
applications. With our design choices, we also believe our platform

images as already demonstrated by its various
will facilitate accessibility, curation and dissemination of imaging-
related data. In the future, it might be extended and tailored to sup-
port: (i) the setup of large-scale, multi-centric image repositories or
the emergence of an imaging ‘data bazaar’ (Poldrack, 2014) to en-
able new research questions or validate results on larger cohorts, (ii)
the organization of image analysis challenges on unprecedented
benchmarks to foster image machine learning research, (iii) the
crowdsourcing of image annotation tasks to tackle intractable data-
sets, (iv) the dissemination of multi-gigapixel imaging data and asso-
ciated quantification results to support scientific claims of research
papers and (v) increase the reproducibility of scientific results by
providing a platform where published results are available along the
algorithms and the image data. We have also started to derive the
software for teaching purposes (see Supplementary Note 4.1.2).
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