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Abstract

The multifaceted field of metabolomics has witnessed exponential growth in both methods 

development and applications. Owing to the urgent need, a significant fraction of research 

investigations in the field is focused on understanding, diagnosing and preventing human diseases; 

hence, the field of biomedicine has been the major beneficiary of metabolomics research. A large 

body of literature now documents the discovery of numerous potential biomarkers and provides 

greater insights into pathogeneses of numerous human diseases. A sizable number of findings have 

been tested for translational applications focusing on disease diagnostics ranging from early 

detection, to therapy prediction and prognosis, monitoring treatment and recurrence detection, as 

well as the important area of therapeutic target discovery. Current advances in analytical 

technologies promise quantitation of biomarkers from even small amounts of bio-specimens using 

non-invasive or minimally invasive approaches, and facilitate high-throughput analysis required 

for real time applications in clinical settings. Nevertheless, a number of challenges exist that have 

thus far delayed the translation of a majority of promising biomarker discoveries to the clinic. This 

article presents advances in the field of metabolomics with emphasis on biomarker discovery and 

translational efforts, highlighting the current status, challenges and future directions.
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INTRODUCTION

The field of metabolomics, which focuses on the quantitative analysis of large numbers of 

metabolites in complex specimens including bio-fluids, tissue and cells has grown extremely 

rapidly [1–3]. Small molecule metabolites (<1000 Da), represent the end products of gene, 
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transcripts and protein function, and provide an instantaneous snapshot of biological status. 

While vast progress in genomics and proteomics enables understanding of altered genes and 

proteins under a variety of perturbations, including disease conditions, metabolomics 

provides an alternative approach to help understand altered metabolic pathways and discover 

new gene functions [4, 5]. The strong interest in metabolomics is partly based on the fact 

that subtle changes in genes, transcripts or protein levels can cause substantial changes in the 

levels and dynamics of metabolites. Hence analysis of metabolites represents a sensitive 

measure of biological status in health or disease. The altered metabolic fingerprints, which 

are unique to every individual, offer novel avenues to better understand systems biology, 

detect or identify potential risks for various diseases and ultimately help achieve the goal of 

“personalized medicine” [6].

Metabolomics studies have taken advantage of newly advanced instrumentation, an array of 

mature analytical and statistical methods, and well-established publicly available metabolic 

pathways and large metabolite databases [7–12]. Over the past 10 years there has been an 

exponential growth in the number of investigations made in the field of metabolomics. For 

example, a PubMed search using the keyword “metabolomics” provides nearly 5000 papers 

published between 2003–2012 ranging from approximately 30 in 2003 to more than 1300 in 

2012 (Fig. 1a). Broadly, metabolomics investigations focused on human diseases can be 

grouped into three categories. A major group of investigations is focused on understanding 

the molecular basis of pathogenesis of diseases and identifying altered metabolic pathways. 

The second group is focused on identifying metabolite biomarkers that classify diseases with 

high sensitivity and specificity. The number of such studies, however, is smaller but 

increasing exponentially owing to the urgent need to discover sensitive biomarkers for 

improving disease diagnostics. As an example, Fig. 1b shows the growing number of 

investigations focused on metabolite based biomarker discovery as obtained from the 

PubMed search using the key words “metabolomics” and ‘biomarker”. The third group of 

investigations describes translational opportunities and applications in metabolomics. Such 

investigations are far fewer, but are also increasing exponentially. Fig. 1c lists the number of 

published articles obtained from the PubMed search using the key words “metabolomics’ 

and “translational” and represents a qualitative measure of translational applications. This 

review will focus on the primary analytical methods and steps in the biomarker discovery 

process, and emphasize both successes and challenges in translating metabolite profiling to 

the clinic.

ANALYTICAL METHODS

The two premier analytical methods used in the field of metabolomics are nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS). NMR and MS methods are 

both supplementary and complementary to one another. Numerous techniques within NMR 

and MS offer multifaceted approaches to measure concentrations of a variety of metabolite 

classes for disease diagnostics and understanding cellular functions in health and disease.

NMR spectroscopy is rapid, non-destructive, and non-invasive; requires little or no sample 

preparation; and provides highly quantitative and reproducible results. Peaks in the NMR 

spectra can be reliably assigned to specific metabolic species, and thus NMR provides a 
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wealth of information on the identity and quantity of a large number of metabolites in 

parallel, often from a single experiment. Detailed protocols for sample collection, 

preparation, parameter selection, data acquisition and data analysis for serum/plasma, urine 

and tissue extract [13], and intact tissue [14] provide step by step procedures along with 

useful information especially for researchers new to the field. To date NMR-based 

metabolomics approaches are used to study, among others, the effect of drugs, toxins, and 

various diseases, to trace metabolic pathways and measure fluxes; numerous reviews provide 

accounts of NMR based metabolomics research [15, 16] and investigations of diseases 

including diabetes [17], cardio vascular disease [18], and prostate cancer [19, 20] and toxins 

[21], drug development [22], and metabolic pathways and flux analysis [23]. Importantly, 

the non-invasive nature of NMR provides unique opportunities to translate in vitro findings 

to clinical applications in vivo. The latest technological advancements in NMR such as 

strong magnetic fields, cryogenic probes and micro-coils, and automation have improved the 

detection limit, throughput and enabled detection of over hundred quantifiable metabolites 

from single NMR experiment in biological mixtures [24].

Mass spectrometry (MS) is intrinsically a highly sensitive method and a powerful tool for 

detection, quantitation and structure elucidation of metabolites. MS’s high sensitivity 

enables detection of several hundred to over a thousand small molecules from a single 

experiment, and thus MS applications in metabolomics increasingly dominate the field. 

Generally, MS methods employ prior separation techniques such as liquid chromatography 

(LC), gas chromatography (GC), or capillary electrophoresis (CE) to unravel the metabolite 

complexity, although direct sample infusion and related methods are also used. A majority 

of the metabolomics studies documented in the literature have used either LC or GC 

methods. Based on its versatility and recent advances in MS technologies, LC-MS is 

increasingly the most popular approach for metabolomics applications. The unique 

characteristic of this approach is that the liquid chromatography allows direct detection of 

metabolites from biological mixtures with no requirement for chemical modification such as 

derivatization. GC-MS methods provide a complimentary approach to detect a wide range of 

metabolites, although chemical derivitization is generally required. Due to the associated 

gaseous phase and nature of its ionization source, GC-MS achieves better metabolite 

separation and generally avoids ion suppression, a major challenge faced by LC-MS. 

Excellent protocols are available for the analysis of urine [25, 26] and serum [27] samples 

by LC-MS and GC-MS methods. Step by step protocols for animal and human tissue 

analysis using LC-MS are also reported [28]. More recently, detailed protocols for 

characterization of unknown peaks using tandem mass spectra and METLIN database of 

over 10,000 metabolites have been provided [29]. Using a more reliable and quantitative 

selected reaction monitoring approach, more than 250 targeted metabolites can now be 

analyzed in a single run of about 15 min with positive/negative ion switching [30]. As with 

NMR, applications of MS-based methods have spanned numerous areas as reviewed in a 

number of articles detailing investigations, for example, of breast cancer [31], colorectal 

cancer [32], prostate cancer [33], oesophago-gastric cancer [34]; cardiovascular [35, 36] and 

kidney [37] diseases, inborn errors of metabolism [38], toxicology [39], nutrition [40] and 

metabolic fluxes [41, 42].
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GLOBAL AND TARGETED METABOLIC PROFILING

While it is still impossible to completely profile all metabolites in a complex biological 

sample, current analytical methods are quite capable of measuring hundreds to a few 

thousand metabolites, especially when several platforms are combined. Initially, 

metabolomics investigations primarily used global metabolic profiling methods involving 

the analysis of all detectable signals, including both known and unidentified metabolite 

peaks. Very often, metabolites are not identified prior to analysis. Instead, the complex data 

are subjected to multivariate statistical analysis, after a preprocessing step. For NMR, 

preprocessing includes apodization and zero-filling, Fourier transformation, phase and 

baseline correction, peak alignment, solvent peak removal and (optionally) data binning. For 

MS, spectral peak quantitation and alignment are typically followed by metabolite 

identification where possible. Typically only 1/3 of metabolite identities are assigned with 

any confidence. For LC-MS, preprocessing also includes the removal of isotope and adduct 

peaks resulting in simplified and better quantified spectra. Subsequently, metabolite features 

that distinguish sample classes are identified and then the structures of distinguishing 

metabolic features are established where possible. Global profiling approaches are primarily 

useful for discovery research, and provide an important starting point for further studies to 

identify distinguishing metabolic changes, or for generating biological hypotheses.

A second approach uses targeted metabolite profiling in which a set of known metabolites 

are quantitated. The identities of metabolites are initially established based on available 

databases and using standard compounds; the identified metabolite peaks are then quantified 

relatively, or sometimes absolutely based on the inclusion of internal or external reference 

compounds. The resulting data can then be used for pathway analysis to prove or disprove 

biological hypotheses, or as input variables for statistical analysis. Because of the reliable 

peak identification and measurement of metabolite intensities or even concentrations, 

targeted metabolomics provides greater insights into the dynamics and fluxes of metabolites 

and promises more robust statistical models for distinguishing sample classes with better 

classification accuracy. As NMR spectroscopy already provides highly reproducible results 

with a coefficient of variation (CV) of 1–2%, targeted metabolomics can be performed easily 

using NMR. Targeted metabolomics using tandem mass spectrometry (LC-MS/MS) enables 

fast MS data acquisition resulting in quantitative data with reasonably good reproducibility 

(5–30% CV) [43–46]. A variety of internal standardization methods using isotope labeled 

compounds (2H, 13C, 15N) as well as external standardization methods are also available to 

provide much better reproducibility. First developed to provide improved quantitation in the 

field of proteomics, the use of mixtures of metabolites containing light and heavy isotopes is 

a popular method for relative and absolute quantitation of metabolites using MS methods 

[47–50]. Targeted methods that use such internal standards compensate ion-suppression 

effects and provide reliable metabolite quantitation.

A limitation of the analysis of metabolites at steady state is that their concentrations may 

lack sufficiently specific information to obtain an unambiguous understanding of the 

biosynthesis of metabolites. This situation occurs because many metabolites are associated 

with multiple metabolic pathways. In addition, in cells and tissues many metabolic levels are 

controlled by regulation through homeostasis. Hence the contribution of each metabolite to a 
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specific pathway is masked. Thus it has been increasingly realized that a metabolic pathway-

focused, hypothesis testing approach is desirable to further understand pathogenesis and 

potentially to discover additional disease biomarkers. An approach that promises more 

specific information on metabolic pathways involves the incorporation of stable isotopes into 

the downstream metabolites using precursors enriched with stable isotopes such as 2H, 13C 

or 15N. This approach provides vital clues regarding disease mechanisms through the tracing 

of isotope enriched metabolite products through the various metabolic pathways and through 

the measurement of fluxes. Flux analysis allows a better understanding of the dynamics of 

metabolic pathways, enables quantification of intracellular metabolite levels and 

determination of the rates at which metabolites are produced or consumed. More 

specifically, metabolite profiling of cells supplied with 13C-labeled glucose facilitates the 

determination of the glucose consumption rate as well as the rates at which the downstream 

metabolic products of glycolysis are produced from the labeled glucose. For example, 13C-

labeled lactate produced from the glycolysis of 13C-glucose in cancer development can be 

distinguished from the same lactate produced from other pathways based on the presence or 

absence of the embedded 13C isotope [51–52]. Advances in targeted metabolic profiling 

methods have improved the accuracy in metabolite quantitation and facilitated increased 

interest in understanding diseases based on altered metabolic pathways. Both NMR and MS 

methods are used in stable isotope based flux analysis using labeled precursors.

STATISTICAL ANALYSIS

In addition to the analytical methods, advanced statistical and typically multivariate methods 

play an essential role in metabolite profiling [53–55]. While univariate methods such as p-

values or Welch’s t-test calculations are extremely useful in identifying individual biomarker 

candidates, it has been recognized for some time that individually almost all metabolite 

biomarkers are likely to be insufficient in terms of performance. Thus, the need to build 

predictive models based on multiple biomarkers that can improve performance necessitates 

the use of multivariate methods. Multivariate methods are also very useful for reducing the 

dimensionality of the NMR/MS data, and to extract the maximum information. Multivariate 

methods are generally capable of processing several thousand inputs or “variables” and their 

corresponding intensities; however, most practical applications typically involve a dozen or 

less biomarkers because of the increased effort needed to develop and validate each marker 

individually.

In general, multivariate statistical approaches are broadly classified into two categories: 

“unsupervised” and “supervised” methods. Most predictive models currently rely on 

supervised models in order to reduce the effects of confounding factors. Supervised methods 

require a training data set, in which the outcome (i.e., disease or healthy) is known, to build 

a (hopefully) predictive model. Initially, sample data sets are split into training and test sets, 

although some practitioners utilize an intermediate set of data that is used to improve the 

modeling. After training, the model’s accuracy is evaluated by classifying unknown samples 

in the test set of samples. Supervised methods are very useful for detecting subtle 

differences between similar samples, however, care must be taken to try to avoid 

confounding factors and especially overtraining. Typically, cross validation [53] is used to 

test the robustness of putative biomarker candidates during the training process as well as to 
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identify the best model given the training set of sample data. Supervised techniques can be 

appropriate to force classification and thereby determine which metabolites distinguish 

between groups, i.e. for biomarker discovery, or to regress a pattern against a trend (such as 

correlating a temporal progression with metabolic changes). By far the two most popular 

methods for supervised pattern recognition include partial least squares discriminant 

analysis (PLS-DA) [56], which is often combined with orthogonal signal correction [57] and 

logistic regression. Other methods, including soft independent modeling of class analogies 

(SIMCA), genetic programming and neural networks are also used. In general, it is 

extremely important to validate the findings of any of these multivariate methods (including 

unsupervised methods) using extensive cross validation [58] and, in particular, a second set 

of samples (preferably blinded and from a second location, vida infra) which is sufficiently 

powered to yield a statistically significant result. Beyond the statistical aspects of validation, 

ultimately, biological validation, involving a disease hypothesis specifically related to the 

discovered biomarkers, may be required before acceptance by the medical and scientific 

communities can be anticipated.

TRANSLATIONAL PROCESS

As illustrated below, there are 5 main steps along the path of translating a diagnostic 

biomarker to the clinic (Fig. 2), and these steps are discussed separately in the following 

sections. The last step of commercialization may also include its own development process, 

and many of the other steps can have multiple iterations, complicating the picture somewhat. 

It should also be stated that this process is not unidirectional, but that in practice later steps 

can inform earlier processes and such feedback can be used to improve the overall process. 

For example, results from pre-validation may show that additional biomarker discovery is 

needed, or that development of a particular biomarker candidate is difficult suggesting that 

another model involving a different mix of biomarkers should be used in the pre-validation 

stage. The following sections describe the various steps in the chronological order using 

selected excerpts of studies from the exhaustive literature search.

BIOMARKER DISCOVERY

Many major diseases including, but not limited to inborn errors of metabolism, diabetes, 

cardiovascular disease, neurological diseases and cancer have been studied using MS- or 

NMR-based metabolomics methods. To date, significant progress has been made in the 

discovery of metabolite based biomarkers for these diseases [3, 24, 58–66]. A selected set of 

studies that illustrate this progress and breadth of the investigations are provided below.

Investigations of diseases of inborn errors of metabolism (IEM) are among the early studies 

focused on metabolite based biomarker discovery, and essentially predate the field of 

metabolomics [3, 24, 67]. An IEM is generally characterized by a single genetic defect, 

which deleteriously affects the function of a specific enzyme [68]. It often leads to 

dysfunction of metabolic pathways and causes accumulation of metabolites associated with 

the affected enzyme. Such accumulation is reflected in the elevated metabolite levels by 

several orders of magnitude in body-fluids, particularly in urine. Analytical techniques such 

as GC-MS and NMR have been widely used to identify and establish metabolite bio-markers 

Nagana Gowda and Raftery Page 6

Curr Metabolomics. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for IEMs [60, 61, 69, 70]. Comprehensive screening of urine samples for IEM performed 

using electrospray tandem mass spectrometry with no need for separation represents a faster 

and less labor intensive approach for routine applications to a wide variety of IEM [71].

Ever since the early investigations of altered metabolite levels in serum, plasma and urine 

from diabetic patients [72], a vast number of studies have focused on discovering additional 

biomarkers for diabetes beyond glucose and insulin, resulting in the identification of 

numerous potential bio-markers for both Type 1 and Type 2 diabetes [3,24, 73]. The 

investigations have utilized NMR and MS, either individually or in combination, to identify 

biomarkers in blood plasma/serum, urine, and tissue from humans as well as animal models. 

For example, a multiplatform approach utilizing NMR, LC-MS and GC-MS measured over 

400 unique metabolites in blood [74]. This study focused on Type 2 diabetes found a number 

of lipids, organic acids, carbohydrate molecules and amino acids, including branched chain 

amino acids that were shown to be distinguishing markers for diabetes. Separately, 

metabolites associated with lipid and amino acids were found to be linked with Type 1 

diabetes [75] and a panel of five branched chain amino acids were shown to be predictive of 

Type 2 diabetes as early as 5 years before disease onset [76]. An exhaustive metabolomics 

review on diabetes describes a large number of studies focused on identifying various 

classes of biomarkers and their association with metabolic pathways linked to Type 1 and 

Type 2 diabetes [73]. Interestingly, studies indicate that many metabolite biomarkers 

identified in human patients compare well with the findings from animal models as well as 

with the studies that investigate altered metabolites during a glucose tolerance test, the gold 

standard test used to diagnose diabetes. For example, biomarkers in Type 2 diabetes that 

relate changes in metabolism of N-methylnicotinamide and N-methyl-2-pyridone-5-

carboxamide were observed in studies of both human and animal models [77]. Such 

biomarkers can potentially be of unique value to follow the progression of Type 2 diabetes in 

clinical settings.

Numerous studies focused on the search for small molecule metabolites as biomarkers for 

underlying cardio vascular (CVD) and coronary heart diseases have found a number of 

metabolites to be of potential diagnostic value [3, 24, 59, 78, 79]. To cite a few examples, an 

MS based metabolomics study of more than 2000 patients undergoing cardiac 

catheterization finds five baseline metabolic factors to be associated with mortality due to 

CVD, independent of the standard predictors; they are medium-chain acylcarnitines, short-

chain dicarboxylacylcarnitines, long-chain dicarboxylacylcarnitines, branched-chain amino 

acids and fatty acids [79]. Similarly, a targeted metabolomics study focused on identifying 

metabolite markers that are predictive of CVD has found 3 phosphocholine metabolites: 

choline, trimethylamine N-oxide (TMAO) and betaine to be associated with the disease. The 

study included validation (vida infra) using nearly 2000 patients has confirmed their 

association [59]. It was inferred that gut flora promote CVD based on the fact that gut 

bacteria metabolize dietary lipid phosphocholine to form TMAO, which promotes 

atherosclerosis. Previously, investigations involving the measurement of blood lipids using 

NMR have led to the identification of certain lipid particles and their prevalence that predict 

the risk of CVD and have opened avenues for clinical assessment and management of 

atherosclerotic cardiovascular disease [80, 81]. The methodology involves the multivariate 
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deconvolution of the lipid signals into 15–18 lipoprotein classes and subclasses beyond the 

normal HDL and LDL designations.

Metabolomics studies focused on identifying distinguishing metabolite biomarkers for 

neurological disorders including Alzheimer’s disease (AD) and Parkinson’s disease (PD) are 

steadily increasing [66, 82–85]. Cerebrospinal fluid (CSF) is a rich source of biomarkers for 

neurological disorders, and therefore there has been increased interest to identify biomarkers 

for many neurological diseases using CSF [83]. Investigation using blood represents a 

minimally invasive approach and hence promises a number of transla-tional opportunities. 

Many studies have used mass spectrometry combined with multivariate statistical methods 

to identify AD biomarkers in blood serum or plasma. For example, using 20 AD and 20 

control plasma samples, ten metabolites including tryptophan, sphingosine and 

lysophosphatidylcholine were shown to be downregulated in AD [86]. Separately, using 26 

AD and 26 control samples, a metabolomics study targeted ceramide and sphingomyelin 

metabolites in blood and reported downregulation of 8 sphingolipids and upregulation of 2 

ceramides [87]. A study that focused on detecting the onset of AD reported upregulation of 

2,4-dihydroxybutanoic acid as a major predictor to the progression to AD, using 47 AD, 46 

controls and 143 mild cognitive impairment (MCI) serum samples [88]. Targeted analysis of 

steroid-related metabolites, using 10 AD and 10 control plasma samples, detected decreased 

desmosterol in AD and the result was consistent when tested using a separate set of 41 AD, 

42 controls and 26 MCI samples [89]. Similarly, many metabolomics studies of PD report 

identification of distinguishing biomarkers. For example, from the metabolic profiling of 

blood samples from 66 PD patients and 22 controls, decreased uric acid and increased 

glutathione in PD were reported [90]. A separate study found pyruvate as the key metabolite 

to distinguish between PD and controls based on 1H NMR analysis of 43 PD and 37 controls 

[91]. In the same way, many distinguishing metabolites for other neurological disorders such 

as Amyotrophic lateral sclerosis (ALS) [92, 93], multiple sclerosis [94], Huntington’s 

disease [95] and schizophrenia [96–98] have been reported.

Major efforts in the metabolomics field are also focused on biomarker identification for 

improved cancer diagnostics. A vast number of studies have focused on distinguishing 

cancer patients from matched controls, based on measurements of biofluids and excised or 

biopsied tumors. These studies have produced a sizable and new body of knowledge on 

altered metabolite levels and pathways in cancer. Preliminary investigations of almost all 

major types of cancers have resulted in the identification of numerous potential metabolite 

biomarkers, many of which are in common. For example, numerous studies have shown 

elevated choline metabolites, lower glycerophosphocholine and low glucose to have 

diagnostic value for breast cancer based on investigations of breast tissue metabolites [99–

103]. The factors including estrogen receptor, progesterone receptor, and lymph node status 

have been shown to have links with the altered metabolites in breast cancer [104]. Based on 

the combined analysis using NMR and MS methods, a panel of biomarkers was identified 

for the early detection of breast cancer recurrence [105]. Acylcarnitines and metabolites 

associated with tryptophan metabolism were found to be linked with kidney cancer [106, 

107]. It was shown, based on metabolic profiling of seminal fluid using 1H NMR 

spectroscopy, that low levels of citrate concentration outperforms the conventional prostate 

specific antigen (PSA) for detecting prostate cancer [108, 109]. Separately, it is shown that 
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the sum of concentrations of choline and creatine, when ratioed to that of citrate, correlates 

well to prostate cancer aggressiveness [110]. Sarcosine, or N-methyl glycine, has also been 

shown to be a strong marker of prostate tumor aggressiveness in biopsied tissues [111]. For 

ovarian carcinoma, a number of potential biomarkers including those involved in purine, 

pyrimidine and glycerolipid metabolism have been identified [112]. Lower levels of 

hippurate and trigonelline, and elevated 3-hydroxyisovalerate, α-hydroxyisobutyrate and N-

acetylglutamine have been shown to be distinguishing urine markers for lung cancer [113]. 

Similarly, markers for esophageal cancer have been identified using LC-MS and NMR [64, 

65, 114]. Numerous studies in colon cancer have found promising potential biomarkers, 

including lactate, pyruvate, malic acid and long-chain polyunsaturated fatty acid (GTA-446) 

identified by LC-MS or GC-MS methods [115–119]; most of these markers are relatively 

well known metabolites, but some quite promising markers also involve unknown 

metabolites [115]. The discovery of novel metabolite cancer biomarkers is anticipated to 

continue at a rapid pace.

PRE-VALIDATION OF BIOMARKERS

A large body of literature documents the identification of putative biomarkers and biomarker 

panels for numerous diseases. Biomarker identification represents only the starting point in 

the translation process from lab discovery to clinical diagnostic. The next major step 

typically involves prevalidation (a.k.a. initial validation) of the putative biomarkers. While 

this step is sometimes included as part of the discovery, the main function of the pre-

validation step is to reduce the number of false positive biomarker candidates, and to assess 

the overall accuracy of any initial multivariate models. There are a variety of approaches that 

can be used for this purpose, from simply testing individual markers against a new set of 

samples using the same analytical platform, to the initial testing of a multivariate statistical 

model using a cross validation procedure.

For multivariate models, some practitioners prefer to reduce the complexity of the model by 

selecting highly ranked metabolites based on regression analysis, p-values, variable 

influence on projection (VIP) scores, or even the output of multivariate loading plots prior to 

developing the multivariate model. In any event, multivariate models are first cross-validated 

using the same data set using a leave-n-out procedure, with n typically chosen between 1 and 

20% of the number of samples. The robustness of the model is then evaluated using the 

sensitivity (true positive rate) and specificity (true negative rate). The sensitivity and 

specificity, however, depend on the chosen boundary or the cut-off values; by changing the 

boundary, higher sensitivity can be achieved at the cost of specificity and vice versa. 

Therefore, the receiver operative characteristic (ROC) curve represents a more general form 

of representing the performance of a prediction model. The ROC curve enables visualization 

of specificity and sensitivity at any cut-off value; further, area under the ROC (AUROC) 

provides a good measure of the overall model performance. An AUROC of 1 represents the 

ideal performance with a sensitivity and specificity of 100%. An example of an ROC curve 

is shown in Fig. (3) that depicts the performance of a PLS-DA model using 11 metabolite 

biomarkers derived from the combination of NMR and MS methods for detecting recurrence 

of breast cancer [105].
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Table 1 shows sensitivity and specificity for this model selected at two different cut-off 

values and compares performance of the metabolite biomarkers with conventional breast 

cancer recurrence marker CA27.29, which is also shown in the figure at its clinically used 

threshold value. A multivariate model based on the metabolite biomarkers performed much 

better than the conventional marker, especially with respect to sensitivity.

In another example, a recent metabolomics study of pancreatic cancer combining GC-MS 

and statistical analyses of blood serum metabolites reported a multivariate model that 

possessed high sensitivity (86.0%) and specificity (88.1%) towards distinguishing pancreatic 

cancer and healthy controls. Upon validation, the prediction model fared reasonably well 

when tested using a similar number of independent samples (sensitivity 71.4%; specificity 

78.1%) and the same GC-MS instrument. A loss of performance in sensitivity, specificity or 

both is to be anticipated because of the tendency for multivariate models to be over-trained 

on even moderately large sample sets. Nevertheless, the model displayed higher sensitivity 

for detecting patients with resectable pancreatic cancer (sensitivity 77.8%) and lower false 

positive rate for chronic pancreatitis (17.4%) than conventional tumor markers [120].

Statistical model robustness can be tested using a technique called Monte Carlo Cross 

Validation (MCCV) [121]. Typically, several hundred calculations are performed in which 

the whole dataset is randomly divided into a training set (for example 60% of the whole data 

set) and a testing set (the remaining 40%). The multivariate statistical model (PLS-DA, for 

example) is then built using the training set with internal cross-validation. The internal 

cross-validation prediction on the training set and the external prediction of the testing set 

are then typically combined to form the prediction result for each MCCV run. The 

sensitivity and specificity are calculated and compared with the results of a permutation 

analysis, as shown in (Fig. 4) below. In the permutation, the sample classifications are 

randomly permuted and several hundred MCCV iterations are typically performed.

ANALYTICAL DEVELOPMENT

The analytical development stage is normally used to prepare a biomarker or panel of 

biomarkers for the final validation stage, in which a large number of samples (ideally 

originating from multiple sites) are carefully tested according to set protocols. A statistical 

model, if any, is also fixed with respect to its coefficients and parameters ahead of any 

validation sample measurements. However, in some complex marker studies there may be 

multiple steps of validation, and therefore the development stage may occur in between 

those validations. Essentially, the development stage is where the analytical performance of 

the biomarkers is determined, including the linearity, sensitivity, limit of detection, recovery, 

robustness, reproducibility, and any matrix effects or interferences are identified and 

minimized. Often internal or external standards and controls are chosen at this stage to allow 

careful quantitation. For the development of multiple metabolite biomarkers that are used as 

a panel, this will involve a significant amount of work, as each biomarker candidate will 

need to be developed individually and then combined into a panel. The inclusion of good 

quality control samples and calibrators is also part of the diagnostic development stage as 

well as the discovery stage [122]. A number of resources exist that describe this 

development process in general, which fall under the heading of Quality Control [123–126].
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VALIDATION OF BIOMARKERS

Most biomarker discovery efforts in the metabolomics field (and elsewhere) typically rely on 

relatively small numbers of case and control samples due to the cost and effort required to 

acquire such samples. For the discovery and pre-validation stages discussed above, the 

biomarker identification process typically involves dividing patient data into training and 

internal validation sets, developing prediction models using the training sample set, 

performing cross validation to evaluate the statistical model, and then validating the model 

using a validation sample set. While such practice is accepted in biomarker discovery 

efforts, and one might argue necessary at this early stage of biomarker development and 

translation, it comes with many limitations. For example, the number of samples used in 

both training and validation is often too small and hence potentially confounding factors 

including diet, age, gender and subtle differences in pathology can strongly affect biomarker 

performance and especially selection into biomarker panels. This is particularly true for only 

moderately strong biomarker candidates, where the concentration differences between 

disease and control are often small. In addition, as often practiced, randomly dividing the 

same sample set into two groups, training and validation sets, still may not sufficiently 

represent independent sample sets, since both groups are often collected, stored and 

processed using the same procedures and analyzed under identical conditions using the same 

analytical platform(s). While this approach can reduce confounding factors that arise in the 

analysis stage and are of a technical nature, a number of other existing biases will likely be 

carried over to both sets of samples. Therefore, a thorough validation of identified and pre-

validated biomarkers is very important, and should involve large cohorts of samples from 

diverse patient groups. Such validation studies should consider the fact that metabolite 

profiles are very sensitive to conditions including patient confounding factors such as age, 

gender, ethnicity, diet, etc., as well as sample processing, chromatographic separation and 

analytical instrumental settings. Thus validation design should take into account both 

biological and technical variance, and provide the important information on biomarker 

sensitivity, specificity and also robustness to the technical aspects of measuring the 

biomarkers.

As there is no single, universally accepted procedure for metabolic profiling, different 

laboratories often use their own optimized protocols and hence it can be challenging to 

obtain identical metabolic profiles for the same samples by independent laboratories. Thus 

well designed cross-over studies are important to validate marker performance across 

different laboratories. Inter-laboratory differences in measuring metabolite biomarkers 

contribute to the list of bottlenecks in biomarker validation and translation. And obviously, 

the proper use of appropriate quality control samples is also very important. A small 

difference in protocols between discovery and validation steps can affect the outcome and 

inferences. For example, a GC-MS based metabolomics study reported sarcosine as a 

potential marker for aggressive prostate cancer [111]. Sarcosine was an especially strong 

marker in prostate tissue, but less so in urine. Considering its potential implications for 

clinical use, a validation study was undertaken by an independent group using the same 

types of bio-specimens and analytical technique, but reported negative results [127]. 

However, the outcome of such a validation study is somewhat inconclusive as there were 
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fundamental differences in the two studies, as noted by an accompanying editorial [128]. 

While both studies used GC-MS for analysis, the discovery study used urinary sediment and 

analyzed the sarcosine to alanine ratio, while the validation study used urine supernatant and 

determined sarcosine to creatinine ratio for comparison. In sum, validation studies for 

translational applications should be properly designed and ideally take into account all 

sources of variation, whether biological or technical, and have standardized protocols for 

sample acquisition, chemical analysis as well as data analysis. For further confidence, 

samples should be processed and analyzed using well developed standard protocols to limit 

the potential bias introduced by different lab personnel. Many researchers believe the 

samples should be blinded to the analyst, especially for the validation studies. And in 

appropriate cases, the use of different analytical platforms would provide additional 

information on biomarker robustness.

Additional, well designed validation studies may be used to further assess the clinical 

performance and utility of a certain biomarker assay. Finally the use of multisite clinical 

trials is an increasingly important step in the validation process, since some confounding 

factors (diet, environment, race, socioeconomic factors) may have a geographic origin. 

Additionally, SOPs and protocols might be altered by clinical or laboratory personnel in 

different centers. Despite these challenges efforts to surmount them are increasing. For 

example, an international team of scientists performed a multisite study to discover a panel 

of metabolites in blood for the prediction of preeclampsia in early pregnancy. They were 

able to validate the 14 metabolite model using an independent patient cohort from a 

participating center in a different country. The metabolite panel was consistently 

discriminatory for predicting preeclampsia with an ROC area of 0.94 and 0.92 for discovery 

and validation, respectively [129]. As a second example, major efforts have been focused on 

discovering and validating reduced blood levels of gastrointestinal tract acids to be 

associated with the risk of developing colorectal cancer [115, 116]. A large validation trial 

involving almost 5,000 patients was performed and showed that gastrointestinal tract 

acid-446, a 28 carbon fatty acid metabolite with m/z 446, was low in patients with high risk 

for colon cancer [116]. The relative risk of having colorectal cancer for a patient under 50 

with low GTA-446 was 10. It is anticipated that additional and 446 was 10. It is anticipated 

that additional and similarly large scale trials will be performed for a number of important 

diseases, despite the significant resources required.

COMMERCIALIZATION

Metabolomics investigations, specifically, over the last few years have led to the 

establishment of putative bio-marker panels for many diseases. Efforts to commercialize 

such findings for diagnostics, however have generally met with many challenges, which is 

much the case for many types of biomarker candidates, whether they are genes, transcripts, 

proteins or other markers. A major challenge is the cost involved to validate diagnostic 

metabolite profiles using larger patient cohorts. In some cases, and depending on the 

application, the technology or biomarkers themselves may need to be approved by the FDA. 

In spite of the challenges, efforts have been made to commercialize metabolic technologies 

for disease diagnostic applications, and a number of companies are currently focusing on 

developing metabolite biomarker based diagnostic tests (Table 2). Within this group of 
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companies, specific metabolic profiles for diseases including colon cancer, breast cancer and 

prostate cancer are being tested, further validated and readied for translation of the 

technology from the bench to the beside. Metabolon, one of the longest established 

metabolomics related companies, is focused on providing diagnostic services for several 

diseases including prostate cancer, and provides a wide range of global and targeted 

metabolic profiling services to customers from academia and pharma/biotech. In Europe, 

Metanomics Health GmbH is a large metabolomics service provider which offers metabolite 

profiling services to healthcare customers in industry and academia. Liposcience, established 

in 1997, has commercialized its NMR technology that provides a personalized diagnostic 

test to assess the risk of heart disease through the measurement of lipoprotein particles in the 

blood. Two Canadian companies are focused on detecting colon cancer. Metabolomic 

Technologies Inc. (MTI) is developing diagnostic tests to detect adenomatous polyps and 

colorectal cancer (CRC) using spot urine samples, while Phenomenome has developed a 

blood test for colon cancer screening. Matrix-Bio is focused on developing blood-based 

diagnostic test to detect breast cancer recurrence.

Other companies have focused on providing broad-based metabolic technology for academic 

and industrial research. For example, the start-up company Metabometrix possesses 

advanced analytical technology for data processing, and statistics tools for generating data 

and providing interpretation. ClinMet offers metabolomics services to pharmaceutical 

companies to improve efficacy of drug discovery and development focusing diabetes and 

kidney diseases. The bio-marker discovery company Stemina offers a broad range of 

metabolomics services including diagnostics and cardiotoxicity screening, with a 

specialization on the use of human derived stem cells. The company SidDMAP offers stable 

isotope tracer based dynamic metabolic profiling services.

It is foreseen that more commercialization efforts for specific metabolic technologies will 

emerge as the number of validation studies using large patient cohorts increases. In addition 

to the analytical and clinical validation studies, biological validation is becoming 

increasingly important. This is in part driven by the large number of false positive biomarker 

candidates that arise. While it is reassuring when the altered metabolism can be directly 

related to the disease biology, it is not always possible at present to understand the biological 

origin of the metabolic changes, given the somewhat dormant state of metabolism studies 

over the past 40 years. In addition, some biomarkers that are well used are not too well 

understood. As a case in point, one could argue that urinary glucose was shown as an 

accurate indicator of diabetes well before the biological understanding between glucose 

levels and diabetes. Hence, in our opinion, efforts to commercialize metabolite biomarker 

panels and to find biological connection between the disease state and the derived biomarker 

panel should go in parallel. Despite the challenges (Table 3), there continues to be great 

excitement for the potential for metabolite profiling to provide improved diagnostic 

biomarkers and targets for drug development.
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Fig. (1). 
The number of metabolomics research studies published over the past 10 years has increased 

exponentially. The number of papers listed in PubMed using the following keyword 

searches: (a) “metabolomics”, (b) “metabolomics” and “biomarker” and (c) “metabolomics” 

and “translational.”
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Fig. (2). 
The major steps involved in the translation of a biomarker candidate from the lab to the 

clinic. In actual practice, some steps may be combined, such as Discovery and Pre-

Validation, or there may be multiple Validation steps. Typically, the Development step 

precedes the final validation step, which is then followed by the commercialization process 

that may take a number of forms and offered on one or more platforms.
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Fig. (3). 
(a) ROC curve generated from the PLS-DA model based on eleven serum metabolite 

markers for detection of breast cancer recurrence; the model was cross validated using a 

leave-one-patient-out procedure. The red circle compares the sensitivity and specificity for 

the conventional breast cancer marker used for recurrence test. The area under the ROC 

curve is 0.88. The sensitivity and specificity at two selected cutoff values are shown in Table 

1 [Reproduced with permission from ref. 105].
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Fig. (4). 
Results of the MCCV (200 iterations) shown in ROC space for PLS-DA models based on 3 

metabolites used to discriminate hepatocellular carcinoma and hepatitis C patients. Each 

blue diamond represents an iteration of the true model; each red square represents an 

iteration of the permutation model [Reproduced with permission from ref. 63].
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Table 1

Comparison of the Diagnostic Performance of the Breast Cancer Recurrence Metabolite Profile, at cut-off 

Values of 48 and 54, and CA 27.29

Sensitivity Specificity

Metabolite biomarkers 86% 84%

68% 94%

CA27.29 35% 96%
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Table 2

List of Commercialization Ventures of Metabolomics Technologies

Metabolomics Company Technology Country

Metabometrix Ltd.
http://www.metabometrix.com/

Broad metabolomics services company UK

Metabolomic Discoveries GmbH
http://www.metabolomicdiscoveries.com/

Broad metabolomics services company Germany

Metabolon, Inc.
http://www.metabolon.com/

Diagnostic and broad metabolomics services company USA

Matrix-Bio, Inc.
http://www.matrix-bio.com/

Diagnostic company for screening breast cancer recurrence using blood USA

Metabolomic Technologies Inc
http://www.metabolomictechnologies.ca/

Diagnostic company for screening colorectal cancer using urine Canada

Lipo Science, Inc.
http://www.liposcience.com/

Diagnostic company that tests cardiovascular disease risk based on measurement
of lipoprotein particles in blood

USA

ClinMet, Inc.
http://www.clinmet.com/

Metabolomics and clinical solutions to drug discovery and development USA

Metanomics Health GmbH
http://www.metanomics-health.de/

Metabolite profiling services Germany

Stemina Biomarker Discovery, Inc.
http://www.stemina.com/

Diagnostic, cardiotoxicity screening and metabolomics services company USA

SiDMAP, Inc.
http://www.sidmap.com/

Stable isotope tracer based metabolite profiling USA

Phenomenome Discoveries Inc.
http://www.phenomenome.com/

Diagnostic company for screening colorectal cancer using blood Canada
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Table 3

Some of the Challenges Faced in Biomarker Discovery and Translation in Metabolomics

Major Steps Major Challenge

Biomarker Discovery 1 High inter-laboratory variations due to differences in sample collection, processing and analysis protocols 
used by different research groups as there are no single, universally accepted procedure for metabolic 
profiling.

2 Unknown metabolite identification.

Pre-validation 1 Confounding effects induced by biological variations of individuals recruited for metabolomics studies.

2 Collection of samples that truly represent patient populations.

Development High costs of or inaccessibility to isotope labeled analogues for accurate metabolite quantitation using mass 
spectrometry.

Validation Limited access to large and independent sample cohorts.

Commercialization 1 High costs and slow adoption by medical community.

2 Establishment of a strong biological connection to the derived biomarkers.
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