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Abstract

We compared the performance of gas chromatography time-of-flight mass spectrometry (GC-MS) 

and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) for 

metabolite biomarker discovery. Metabolite extracts from 109 human serum samples were 

analyzed on both platforms with a pooled serum sample analyzed after every 9 biological samples 

for the purpose of quality control (QC). The experimental data derived from the pooled QC 

samples showed that the GC×GC-MS platform detected about three times as many peaks as the 

GC-MS platform at a signal-to-noise ratio SNR ≥ 50, and three times the number of metabolites 

were identified by mass spectrum matching with a spectral similarity score Rsim ≥ 600. Twenty-

three metabolites had statistically significant abundance changes between the patient samples and 

the control samples in the GC-MS data set while 34 metabolites in the GC×GC-MS data set 

showed statistically significant differences. Among these two groups of metabolite biomarkers, 

nine metabolites were detected in both the GC-MS and GC×GC-MS data sets with the same 

direction and similar magnitude of abundance changes between the control and patient sample 

groups. Manual verification indicated that the difference in the number of the biomarkers 

discovered using these two platforms was mainly due to the limited resolution of chromatographic 

peaks by the GC-MS platform, which can result in severe peak overlap making subsequent 

spectrum deconvolution for metabolite identification and quantification difficult.
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1. INTRODUCTION

Metabolomics has emerged as one of the latest of the “-omics” disciplines that can detect 

biomarkers (small molecule metabolites) in biological samples. Metabolites can be polar or 

nonpolar as well as organic or inorganic. These diverse characteristics make their separation 

challenging in that there is not a singular instrument capable of analyzing all of these types 

of molecules. To date, multiple analytical platforms such as liquid chromatography–mass 

spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-MS), and nuclear 

magnetic resonance (NMR) spectroscopy have been used in metabolomics for biomarker 

discovery. Frequently, biological samples are analyzed on both LC-MS and GC-MS 

platforms to achieve higher metabolite coverage,1–3 while NMR is generally best suited to 

quantitatively measure the most abundant metabolites or for structure elucidation.4,5

In GC-MS-based metabolomics, metabolites are first separated on a GC column and then 

subjected to mass spectrometry. Comprehensive two-dimensional gas chromatography mass 

spectrometry (GC×GC-MS) uses two GC columns, usually connected via a thermal 

modulator. The second column is typically much shorter than the first (i.e., 1–2 m as 

opposed to 30–60 m for the first column) with a different stationary phase and is generally 

operated at a higher temperature. In the case of metabolites that coelute from the first 

column, the second column may allow for separation due to the different stationary phase as 

well as the difference in column temperature. Thus, GC×GC-MS can provide superior 
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chromatographic peak capacity, selectivity, and lower detection limit for the analysis of 

small molecules. This provides a powerful technique for the analysis of metabolites in 

complex biological matrixes. Presently, GC×GC-MS has not been widely used for large-

scale broad-spectrum biomarker discovery likely due to the increased difficulty of data 

analysis. New bioinformatics tools have recently emerged that greatly decrease the personnel 

time necessary to properly process the GC×GC-MS data,6–8 making this approach feasible 

for large-scale metabolomics studies.9,10

Even though the advantages of GC×GC-MS over GC-MS have been extensively discussed in 

literature,11–14 the real-world application of these two analytical platforms for metabolite 

biomarker discovery in complex biological samples has not been compared in detail. This 

work examines the performance of GC×GC-MS vs GC-MS for biomarker discovery by 

analyzing the metabolic profiles of human subjects with a chronic neurodegenerative 

disorder compared to age-, sex-, and race-matched controls. Metabolite extracts of serum 

samples from 109 study subjects (54 patients with a chronic neurodegenerative disorder and 

not currently on medication and 55 controls) were analyzed on both GC×GC-MS and GC-

MS platforms. The metabolite extract from a pooled serum sample was used for quality 

control purposes and was analyzed on both GC×GC-MS and GC-MS platforms after every 

nine samples. The performance of the GC×GC-MS and GC-MS platforms was then assessed 

by the number of detected chromatographic peaks, metabolite identification, variations of 

the aligned peaks in retention times and peak area, and biomarker discovery from the 

biological samples.

2. EXPERIMENTAL METHODS

Human Serum Samples

The study set included sera from two patient populations: 54 subjects with a chronic 

neurodegenerative disorder, and 55 sex-, age-, and race-matched controls who were enrolled 

in the Measurement to Understand Reclassification of Disease of Cabarrus/Kannapolis 

(MURDOCK) Study and its multiple sclerosis substudy.15 The samples were stored at 

−80 °C until sample preparation and subsequent MS analysis.

2.1. Sample Preparation

Samples were extracted by adding 100 µL of serum to 1 mL of ice-cold extraction solvent 

consisting of methanol/chloroform (v:v = 3:1) containing 10 µg/mL heptadecanoic acid and 

10 µg/mL norleucine as internal standards. The samples were briefly vortexed and 

centrifuged for 15 min at 18 000 rcf at 4 °C. One milliliter of each supernatant was then 

transferred to a sample vial. The remaining supernatants were combined to generate a 

pooled quality control (QC) sample. All samples were then dried overnight at room 

temperature under a gentle flow of N2.

Dried samples were derivatized using a two-step method. First, 50 µL of freshly prepared 

methoxyamine in pyridine (20 mg/mL) was added to the samples which were then put on a 

heated block shaker for 90 min at 1400 rpm and 30 °C. Next, 50 µL of N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) was 
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added to the samples which were then put on a heated block shaker for 60 min at 1400 rpm 

and 70 °C. Samples were then cooled at −20 °C for approximately 1 h, and an aliquot of 

each was added to individual GC-MS vials with glass inserts for analysis.

2.2. GC-TOF MS and GC×GC-TOF MS Analysis

All sample analyses were performed on a system consisting of an Agilent 7890A gas 

chromatograph (Agilent Technologies, Santa Clara, CA) with a Gerstel Multipurpose MPS2 

autosampler (Gerstel, Inc., Linthicum, MD) interfaced to a LECO Pegasus time-of-flight 

mass spectrometer with an electron ionization (EI) source (LECO Corporation, St. Joseph, 

MI). A 60 m × 0.25 mm 1dc × 0.25 µm 1df, DB-5 ms UI GC capillary column (phenyl 

arylene polymer virtually equivalent to a (5%-phenyl)-methylpolysiloxane) (Agilent 

Technologies) was used for the GC-MS analysis. For the GC×GC-MS analysis, the primary 

column was identical to the column used in the GC-MS analysis, while the secondary 

column was a 1 m × 0.25 mm 1dc × 0.25 µm 2df, DB-17 ms ((50%-phenyl)-

methylpolysiloxane) (Agilent Technologies) column that was placed inside the secondary 

GC oven after the dual stage quad-jet thermal modulator. The column operation conditions 

of the GC-MS and GC×GC-MS were as follows: helium carrier gas at 1.0 mL/min; split/

splitless inlet at 250 °C; GC oven temperature program of 60 °C for 1 min and then 

+5 °C/min to 300 °C, holding for 12 min; a transfer line temperature of 300 °C. The GC-MS 

was operated under a splitless mode while the GC×GC-MS was operated using a split ratio 

of 30:1 because of increased chromatographic peak heights due to modulator peak focusing. 

Parameters specific to GC×GC-MS were as follows: the secondary oven temperature 

program of +10 °C relative to the primary oven; a modulator period of 2.5 s (0.5 s hot, 0.75 s 

cold); a modulator temperature program of +20 °C relative to the secondary oven 

temperature. The parameters used for mass spectrometry for the GC-MS and GC×GC-MS 

analyses were identical as follows: electron energy of −70 eV; ion source temperature of 

230 °C; acquisition delay of 710 s; acquisition rate of 20 spectra/s for GC-MS and 200 

spectra/s for GC×GC-MS; mass range of m/z = 45–1000.

One microliter of each sample was injected into the GC-MS and GC×GC-MS platforms for 

analysis. The randomized sample analysis order was the same for both platforms. Multiple 

QC sample aliquots were prepared from the single QC sample. The pooled QC samples were 

then analyzed after every nine patient samples. Two to three injections were made from each 

individual aliquot while the other QC sample aliquots were kept at −20 °C until ready for 

analysis. During sample analysis, the sample tray holder was kept at 4 °C and samples were 

removed from −20 °C storage and placed on the tray holder no earlier than 24 h prior to 

analysis. The experimental data of the pooled QC samples were used to assess overall 

reproducibility (sample preparation, GC-MS and GC×GC-MS analysis and data analysis) 

and to correct for any observed variations. Additionally, an alkane retention index standard 

(C10–C40) was run at the beginning, middle, and end of the sample runs.

2.3. Data Analysis

The raw instrument data from each of the samples were first reduced to a peak list by LECO 

ChromaTOF software version 4.50.8.0 (LECO Corporation, St. Joseph, MI) using 

parameters recommended by the vendor (Table S1, Supporting Information); the 
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NIST/EPA/NIH Mass Spectral Library 2011 (NIST11), the LECO/Fiehn Metabolomics 

Library and an in-house library were used as reference libraries for metabolite identification. 

All peak lists were further analyzed using MetPP software,6 where peak merging and peak 

list alignment were carried out using DISCO algorithms,16 and the retention index (RI) 

matching was performed using iMatch algorithms17 with the p-value threshold set as p ≤ 

0.001. The p-value in iMatch refers to the cumulative probability of empirical distribution of 

absolute RI deviation calculated from the NIST11 RI database, and a p-value threshold of p 
≤ 0.001 is equivalent to an absolute RI window of ±59 RI unites owing to the column used 

in GC-MS and the first dimension column in GC×GC-MS. Finally, a pairwise two-tailed t-
test with 1000 sample permutations was used to determine whether a metabolite had a 

significant abundance difference between sample groups with a probability threshold of p ≤ 

0.05.

3. RESULTS

3.1. Analysis of Pooled QC Samples

The GC-MS instrument provides three pieces of information for each metabolite: retention 

time (tR), fragment ions (m/z), and peak heights for the fragment ions while the GC×GC-MS 

instrument data provide an additional piece of information, the second dimension retention 

time (2tR). In both cases, the fragment ion m/z and its peak height form the EI mass 

spectrum of each metabolite. Figure 1 shows two sample chromatograms from a pooled QC 

sample analyzed by GC-MS and GC×GC-MS. The insets in Figure 1A and 1B show the 

same portion of the two chromatograms. While only three peaks were detected by GC-MS, 

five chromatographic peaks were detected from this portion of the chromatogram by 

GC×GC-MS. The two small peaks not detected by GC-MS were due to their low abundance 

and overlapping retention time with the other three peaks.

Table 1 lists the number of detected chromatographic peaks from a pooled QC sample 

analyzed by GC-MS and GC×GC-MS using different signal-to-noise ratio (SNR) thresholds 

for spectrum deconvolution. After manual verification of the chromatographic peaks, we 

chose a SNR threshold of ≥50 for analysis. The spectral similarity threshold can 

significantly affect the number of identified metabolites. A low spectral similarity threshold 

typically results in a large number of metabolites assigned to the detected chromatographic 

peaks with a high rate of false positive identifications. By setting the threshold of spectral 

similarity ≥600,9,10 366 metabolite identities were assigned to chromatographic peaks 

detected in each of the 14 GC-MS data sets with a standard deviation of 22 (i.e., 366 ± 22), 

while 1117 identities were assigned in each of the 14 GC×GC-MS data sets with a standard 

deviation of 109 (i.e., 1117 ± 109). Additional data processing parameters are shown in 

Table S1, Supporting Information.

The chromatographic peaks with initial identifications by mass spectrum matching were 

further subjected to RI matching to remove potential false positive identifications. 

Metabolites that had a large RI deviation from database values were removed, while 

metabolites that had large RI variation among multiple database records or those that did not 

have RI values in the database were not removed.17 After RI matching, a total of 362 ± 19 

and 1095 ± 105 metabolites were kept in the GC-MS and GC×GC-MS data sets, 
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respectively. Some of these preserved metabolites were assigned to multiple 

chromatographic peaks as a result of either incomplete derivatization, the presence of 

isomers, or false-positive identifications. By excluding the redundant metabolite 

assignments, 302 ± 16 and 629 ± 44 unique metabolites were identified from the GC-MS 

and GC×GC-MS data sets, respectively.

Figure 2A shows that 201 metabolites were fully aligned in the GC-MS data set and 378 

metabolites were fully aligned in the GC×GC-MS data set. Full alignment refers to 

metabolites that were detected and correctly aligned in every pooled QC sample (i.e., all 14 

pooled QC samples). A total of 340 and 981 metabolites were detected in ≥50% of the GC-

MS and GC×GC-MS QC samples, respectively. Overall, a larger number of metabolites 

were consistently detected from the pooled QC samples by GC×GC-MS compared to GC-

MS. Figure 2B shows the distribution of the relative standard deviation (RSD) of the 

retention times for the GC-MS data and the RSDs of the first dimension retention time (1tR) 

and the second dimension retention time (2tR) for the GC×GC-MS data. Compared to the 

GC×GC-MS data set, the GC-MS data set has a less variation in retention times. Figure 2C 

shows the distribution of the coefficient of variation (CV) of peak area of the fully aligned 

peaks. The GC-MS and GC×GC-MS data have similar distributions of peak area variations

3.2. Analysis of Human Serum Samples

By setting the chromatographic peak threshold to SNR ≥ 50, 490 ± 26 and 1571 ± 174 peaks 

were detected from metabolite extracts of the patient serum samples (n = 109) on the GC-

MS and GC×GC-MS platforms, respectively: 348 ± 16 unique metabolites were assigned to 

these chromatographic peaks detected from the GC-MS data, and 1099 ± 118 unique 

metabolites were assigned to these chromatographic peaks detected from the GC×GC-MS 

data. A total of 84 metabolites were fully aligned from the GC-MS data while 182 

metabolites were fully aligned from the GC×GC-MS data. These numbers are smaller than 

those acquired for the pooled QC samples shown in Figure 2A due to the increased 

biological variation among the patient samples compared to the homogeneous pooled QC 

samples as well as the much larger sample set. In order to detect metabolite biomarkers from 

the patient population with a high degree of confidence, metabolites present in less than 50% 

of samples in a sample group (control or diseased) were not considered for further analysis. 

Therefore, a total of 254 and 757 metabolites, respectively, were carried forward from the 

GC-MS and GC×GC-MS data for further analysis.

Figure S1 shows clustering results of the metabolite profiles of all human samples analyzed 

on GC-MS (Figure S1A, Supporting Information) and GC×GC-MS (Figure S1B, Supporting 

Information), using partial least-squares discriminant analysis (PLSDA). The patient 

samples and the control samples do not have significant difference in metabolite profile even 

though GC×GC-MS data show a small degree of separation between the control samples and 

the patient samples. The cross validation shows a poor predictive ability of the PLSDA 

models, with Q2 values of −0.05 for GC-MS data and 0.13 for GC×GC-MS data (Figures 

S1C and S1D, Supporting Information).

To study the abundance change of each metabolite between control and patient groups, a 

pairwise two-tailed t-test with the equal variance was used by setting the threshold of 
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probability to p ≤ 0.05, during which sample labels were permutated 1000 times. Tables S2 

and S3, Supporting Information, summarize the metabolites that were recognized as 

potential biomarkers from the GC-MS and GC×GC-MS data, respectively. Details of these 

metabolite biomarkers including identification, technical verification, association network 

analysis, pathway analysis, and biological discussion will be reported in a future paper.

4. DISCUSSION

4.1. Analysis of Pooled QC Samples

Figure 1 shows that the extra peak capacity of the second column of the GC×GC-MS system 

generally allowed for coeluting compounds in the GC-MS platform to be fully resolved. 

Furthermore, a number of low abundance chromatographic peaks were detected in the 

GC×GC-MS data even though these peaks do not overlap with any other chromatographic 

peaks. This demonstrates the improved SNR of the GC×GC-MS system, which is beneficial 

to the analysis of complex samples that have large concentration differences. This increased 

SNR is despite the fact that the GC×GC-MS analyses utilized a split ratio of 30:1 while the 

GC-MS analyses were splitless injections. Such increased SNR in GC×GC-MS is accredited 

to the focusing of the first dimension column effluent in the modulator and then reinjection 

into the second column. The analysis time in the second column is relatively fast, resulting 

in minimal band broadening as a function of time.

Table 1 shows that the number of chromatographic peaks detected (Nd) and the number of 

chromatographic peaks annotated (Na) had an inverse relationship to the SNR threshold 

setting. However, the ratio of Na/Nd increased with the increase of SNR threshold, indicating 

that a significant number of low abundance metabolites do not generate high quality mass 

spectra for metabolite identification in both the GC-MS and GC×GC-MS data. At SNR ≥ 

50, the GC×GC-MS platform detected about 3 times the number of chromatographic peaks 

and identified 3 times the number of metabolites via mass spectral matching compared to the 

GC-MS platform. With increasing SNR threshold, the difference between the number of 

detected chromatographic peaks and the number of identified metabolites decreased, 

showing that more intense chromatographic peaks generally produce higher quality mass 

spectra for metabolite identification, as expected. Due to the nearly identical column and 

instrument conditions used in the GC-MS and the first dimension of the GC×GC-MS 

analyses, the increased number of detected chromatographic peaks can be attributed to the 

increased selectivity provided by the addition of the second column in the GC×GC-MS 

system.

By design, all metabolites detected in a given pooled QC sample should, in theory, be 

detected in all other pooled QC samples with identical values (retention time and peak area). 

However, in reality, this will generally not be the case due to technical and analytical 

variations such as unavoidable variations in sample processing/handling (both manual and 

automated), the environment (both macro- and micro-), instrumental variation, etc. Figure 

2A shows that 340 and 981 metabolites were detected in more than 50% of the pooled QC 

samples by GC-MS and GC×GC-MS, and 201 and 378 metabolites were detected in all 14 

pooled QC samples by GC-MS and GC×GC-MS, respectively. Figure 2B shows that all 

metabolites in the GC-MS data have an RSD ≤ 0.5% in their retention times, while 92% of 
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metabolites in the GC×GC-MS data have an RSD ≤ 0.5% in 1tR and 2tR. Compared to the 

GC-MS data, the larger RSD seen in the 1tR of the GC×GC-MS data set is partially due to 

the modulation period PM = 2.5 s, during which the eluent from the first dimension column 

was collected and subjected to the second dimension GC for further separation. Thus, the 

first dimension retention time 1tR of GC×GC-MS changes in steps of 2.5 s, while the 

retention time for GC-MS analyses is continuous. The large RSD in 2tR of the GC×GC-MS 

spectra is caused by the short column length (i.e., 1 m). We did not observe significant 

difference on the peak area variations between the GC-MS and GC×GC-MS data. After 

removal of the chromatographic peaks generated by column bleeding, the distributions of the 

coefficient of variation (CV) of peak areas of the fully aligned GC-MS and GC×GC-MS 

data are similar (Figure 2C).

Both the retention time and peak area variations were caused by the instrumental variation as 

well as unavoidable inaccuracies in spectral deconvolution algorithms used for peak 

detection. To address these technical variations in metabolite marker discovery, MetPP6 used 

the DISCO16 algorithm for cross sample peak list alignment to identify the chromatographic 

peaks generated by the same metabolite from different samples. Next, contrast normalization 

was used to minimize the peak area variation between samples. Figure 2C shows that the 

contrast normalization method can reduce the cross-sample peak area variation for both the 

GC-MS and GC×GC-MS data sets. Contrast normalization is a nonlinear normalization 

procedure using smooth curves aimed for normalizing peak intensities, by fitting a smooth 

curve in scatter plots with the peak intensity differences on the y-axis and the intensity 

means on the x-axis after log transformation of the intensities.18

While data analysis methods can minimize technical variation after spectrum deconvolution, 

it is critical to continue developing more accurate spectral deconvolution methods for 

analysis of both GC-MS and GC×GC-MS data. From our experience, the existing software 

package, while good, has limitations in accuracy when quantifying low abundance 

chromatographic peaks and can generate multiple peak entries for one metabolite. The 

current spectral deconvolution methods can be improved in many ways, including finding 

the best configuration for peak merging,19 developing data-dependent chromatographic peak 

models for peak fitting,20 etc.

4.2. Analysis of Human Serum Samples

After contrast normalization, a total of 23 metabolites were detected with statistically 

different abundance levels between the two sample groups in the GC-MS data set (Table S2, 

Supporting Information), while 34 metabolites in the GC×GC-MS data set (Table S3, 

Supporting Information) had statistically significant differences in abundance between the 

two groups. Nine differentially expressed metabolites were detected in both the GC-MS and 

GC×GC-MS data sets (see metabolites 1–9 in Tables S1 and S2, respectively). All nine of 

these metabolites had the same direction of change (up- or down-regulated in the patient 

group) and similar magnitude of fold-change between the control and patient sample groups, 

demonstrating the robustness of using GC-MS and GC×GC-MS for disease biomarker 

discovery. For example, Figure S2, Supporting Information, shows abundance changes of the 
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metabolite 5 between the control and the patient samples; there is a 1.18 fold change with p 
= 0.018 in the GC-MS data, and 1.17 fold change in the GC×GC-MS data with p = 0.022.

Of the remaining 14 metabolites that had differences in abundance levels in the GC-MS data 

set (Table S2, Supporting Information), 10 (rows 10–19) were in the final aligned GC×GC-

MS data set, though the differential expression of these were not determined to be 

statistically significant. This left four metabolites observed by GC-MS with different levels 

of abundance that were not detected in the GC×GC-MS data set. Two metabolites (rows 20 

and 21) were in the original aligned GC×GC-MS data set but were filtered out due to either 

large RSD in the pooled QC samples or large concentrations in the solvent blank samples. 

The last two metabolites (rows 22 and 23) were not in the aligned GC×GC-MS data set. It 

appears that these two peaks may be misidentifications, but it is unclear what the true 

identifications of the compounds are.

There were 34 metabolites in the GC×GC-MS data set that had significant expression 

between the two groups (Table S3, Supporting Information). As mentioned above, nine 

metabolites (rows 1–9) were in the GC-MS significantly differentially expressed data set, 

twelve (rows 10–22) were in the final aligned GC-MS data set but were not determined to be 

significantly differentially expressed, and two (rows 23 and 24) were in the original aligned 

GC-MS data set but were filtered out due to either large RSD in the pooled QC samples, or 

large concentrations in the solvent blank samples. The last ten metabolites (rows 25–34) 

were not accounted for in the GC-MS data set. Of these, five were found in some of the GC-

MS spectra, but coeluted with other peaks, leading to poor peak deconvolution, which was 

not the case in the GC×GC-MS spectra. Of the remaining five metabolites, four of them 

were detected in some of the GC-MS samples, but at extremely low SNR, and thus were not 

reliably detected by ChromaTOF.

Several factors contribute to the increased number of biomarkers discovered by GC×GC-MS 

opposed to GC-MS. Compared with the GC×GC-MS platform, the limited separating power 

of the GC-MS platform affects the accuracy of measuring the abundance of each metabolite 

and therefore can induce false positive discovery of metabolite biomarkers. For example, 

Figure 3 shows the DL-phenylalanine peak for both GC-MS and GC×GC-MS runs of the 

same sample. Both the GC-MS and GC×GC-MS data show that three other metabolites 

overlap with this metabolite in the retention time in the first dimension (Figure 3A and 3B). 

The three other metabolites were identified as L-threonic acid, L-cysteine, and creatine from 

both the GC-MS and GC×GC-MS data (Figure 3C). Even though different split modes were 

applied in GC-MS and GC×GC-MS, the peak area ratios of these metabolites RPA calculated 

from the GC-MS and GC×GC-MS data are expected to be consistent. This is true in cases of 

L-cysteine and creatine, whose peak area ratio between GC-MS and GC×GC-MS was 9.28 

and 8.35, respectively. However, the peak area of L-threonic acid was decreased and the peak 

area of DL-phenylalanine was increased during the deconvolution of GC-MS data, resulting in 

a significant increase of the peak area ratio of DL-phenylalanine (RPA = 31.1) and the 

decrease of peak area ratio of L-threonic acid (RPA = 4.01). Such peak area variation 

introduced during spectrum deconvolution resulted in phenylalanine being falsely detected 

as a potential biomarker from the GC-MS data.
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The GC-MS analysis used splitless injections, and the GC×GC-MS analysis used a split 

injection at a ratio of 30:1. The other GC-MS methods employed in this study was simply a 

mirror of the setup used for GC×GC-MS analysis. Furthermore, identical parameters, such 

as the SNR threshold, were used to process the GC-MS and GC×GC-MS. While this 

experimental design and consistent data analysis parameters make direct comparison 

possible, it is possible that the GC-MS data acquisition parameters can be improved upon. 

However, we believe that this will not substantially affect our main finding, that GC×GC-

MS outperformed GC-MS in the analysis of complex samples such as metabolite extracts 

from human sera due to increased separating power leading to increased accuracy in 

spectrum deconvolution which can benefit metabolite biomarker discovery.

5. CONCLUSIONS

It was anticipated that the GC×GC-MS platform would outperform the GC-MS platform in 

the analysis of complex samples such as metabolite extracts from human sera with a 

significantly increased number of detected metabolites. This was shown to be the case in the 

evaluation of serum samples derived from patients with a neurodegenerative disorder 

compared to age-, sex-, and gender-matched controls. Even though the most abundant 

metabolites in the pooled QC samples were detected on both the GC-MS and GC×GC-MS 

platforms, the GC×GC-MS platform detected more chromatographic peaks and identified 

metabolites. At a threshold of SNR ≥ 50, the GC×GC-MS platform detected 3 times the 

number of chromatographic peaks relative to the GC-MS platform, with more than 3 times 

the number of chromatographic peaks being identified. A total of 23 significantly 

differentially expressed metabolites were detected in the GC-MS data set while 34 

metabolites were detected in the GC×GC-MS data set. Among these two groups of 

metabolites, nine metabolites were detected in both the GC-MS and GC×GC-MS data sets 

with the same direction of abundance change and similar magnitude of fold-change between 

the control and patient sample groups, showing a certain degree of consistency using GC-

MS and GC×GC-MS for metabolite biomarker discovery. However, the limited resolving 

power of the GC-MS platform resulted in a large number of metabolites coeluting from the 

column, introducing a significant challenge for data analysis.

The performance of the GC-MS verse GC×GC-MS in this work showed that more 

metabolites were found with GC×GC-MS. The experimental conditions were optimized for 

GC×GC-MS analysis to achieve high metabolite coverage, and the GC-MS methods were 

simply a mirror of the setup used for GC×GC-MS analysis. The limited accuracy of 

spectrum deconvolution algorithms and coeluting metabolites in the GC-MS platform are the 

two major factors contributing to the false discovery of metabolite biomarkers. With the 

increased peak capacity and sensitivity, more metabolites were detected by GC×GC-MS 

platform. The metabolite biomarkers only detected in the GC×GC-MS data were either not 

robustly detected in the GC-MS samples or had large peak area variations because of 

chromatographic peak overlap. Overall, the GC×GC-MS platform outperformed the GC-MS 

platform for metabolite biomarker discovery because of its increased resolution, peak 

capacity, and sensitivity.

Winnike et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors gratefully acknowledge the support of the Duke MURDOCK Study and its generous participants and 
the Stone Fund for financial support of sample recruitment. The MURDOCK Study is supported by a gift to Duke 
University from the David H. Murdock Institute for Business and Culture and grant 1UL1 RR024128-01 from the 
National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH 
Roadmap for Medical Research; its contents are solely the responsibility of the authors and do not necessarily 
represent the official view of NCRR or NIH.

REFERENCES

1. Gao P, Lu C, Zhang F, Sang P, Yang D, Li X, Kong H, Yin P, Tian J, Lu X, Lu A, Xu G. Integrated 
GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis. Analyst. 2008; 
133:1214–1220. [PubMed: 18709197] 

2. Klavins K, Drexler H, Hann S, Koellensperger G. Quantitative metabolite profiling utilizing parallel 
column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography 
separations combined with tandem mass spectrometry. Anal. Chem. 2014; 86:4145–4150. [PubMed: 
24678888] 

3. Arbona V, Iglesias DJ, Talon M, Gomez-Cadenas A. Plant phenotype demarcation using nontargeted 
LC-MS and GC-MS metabolite profiling. J. Agric. Food Chem. 2009; 57:7338–7347. [PubMed: 
19639992] 

4. Zhang J, Wei S, Liu L, Gowda GAN, Bonney P, Stewart J, Knapp DW, Raftery D. NMR-based 
metabolomics study of canine bladder cancer. Biochim. Biophys. Acta, Mol. Basis Dis. 2012; 
1822:1807–1814.

5. Bingol K, Bruschweiler R. Multidimensional Approaches to NMR-Based Metabolomics. Anal. 
Chem. 2014; 86:47–57. [PubMed: 24195689] 

6. Wei X, Shi X, Koo I, Kim S, Schmidt RH, Arteel GE, Watson WH, McClain C, Zhang X. MetPP: A 
computational platform for comprehensive two-dimensional gas chromatography time-of-flight 
mass spectrometry-based metabolomics. Bioinformatics. 2013; 29:1786–1792. [PubMed: 
23665844] 

7. Castillo S, Mattila I, Miettinen J, Oresic M, Hyotylainen T. Data analysis tool for comprehensive 
two-dimensional gas chromatography/ time-of-flight mass spectrometry. Anal. Chem. 2011; 
83:3058–3067. [PubMed: 21434611] 

8. Hoggard JC, Synovec RE. Automated resolution of nontarget analyte signals in GC × GC-TOFMS 
data using parallel factor analysis. Anal. Chem. 2008; 80:6677–6688. [PubMed: 18672889] 

9. Schmidt RH, Jokinen JD, Massey VL, Falkner KC, Shi X, Yin XM, Zhang X, Beier JI, Arteel GE. 
Olanzapine activates hepatic mammalian target of rapamycin: New mechanistic insight into 
metabolic dysregulation with atypical antipsychotic drugs. J. Pharmacol. Exp. Ther. 2013; 347:126–
135. [PubMed: 23926289] 

10. Shi X, Wei X, Koo I, Schmidt RH, Yin X, Vaughn A, Kim SH, McClain CJ, Arteel GE, Zhang X, 
Watson WH. Metabolomic analysis of the effects of chronic arsenic exposure in a mouse model of 
diet-induced fatty liver disease. J. Proteome Res. 2014; 13:547–554. [PubMed: 24328084] 

11. Wang YW, Chen QA, Norwood DL, McCaffrey J. Recent development in the applications of 
comprehensive two-dimensional gas chromatograph. J. Liq. Chromatogr. Relat. Technol. 2010; 
33:1082–1115.

12. Panic O, Gorecki T. Comprehensive two-dimensional gas chromatography (GC×GC) in 
environmental analysis and monitoring. Anal. Bioanal. Chem. 2006; 386:1013–1023. [PubMed: 
16862380] 

13. Dalluge J, Beens J, Brinkman UAT. Comprehensive two-dimensional gas chromatography: a 
powerful and versatile analytical tool. J. Chromatogr. A. 2003; 1000:69–108. [PubMed: 12877167] 

Winnike et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Seeley JV, Seeley SK. Multidimensional gas chromatography: Fundamental advances and new 
applications. Anal. Chem. 2013; 85:557–578. [PubMed: 23137217] 

15. Bhattacharya S, Dunham AA, Cornish MA, Christian VA, Ginsburg GS, Tenenbaum JD, Nahm 
ML, Miranda ML, Califf RM, Dolor RJ, Newby LK. The measurement to understand 
reclassification of disease of Cabarrus/Kannapolis (MURDOCK) study community registry and 
biorepository. Am. J. Transl. Res. 2012; 4:458–470. [PubMed: 23145214] 

16. Wang B, Fang A, Heim J, Bogdanov B, Pugh S, Libardoni M, Zhang X. DISCO: Distance and 
spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-
flight mass spectrometry-based metabolomics. Anal. Chem. 2010; 82:5069–5081. [PubMed: 
20476746] 

17. Zhang J, Fang AQ, Wang B, Kim SH, Bogdanov B, Zhou ZX, McClain C, Zhang X. iMatch: A 
retention index tool for analysis of gas chromatography-mass spectrometry data. J. Chromatogr. A. 
2011; 1218:6522–6530. [PubMed: 21813131] 

18. Astrand M. Contrast normalization of oligonucleotide arrays. J. Comput. Biol. 2003; 10:95–102. 
[PubMed: 12676053] 

19. Vivo-Truyols G. Bayesian approach for peak detection in twodimensional chromatography. Anal. 
Chem. 2012; 84:2622–2630. [PubMed: 22229801] 

20. Wei X, Shi X, Kim S, S K, Patrick JS, Binkley J, Kong M, McClain C, Zhang X. Data dependent 
chromatographic peak model-based spectrum deconvolution for analysis of LC-MS data. Anal. 
Chem. 2014; 86:2156–2165. [PubMed: 24533635] 

Winnike et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Separation results of metabolite extract from pooled QC sample on GC-MS and GC×GC-

MS, respectively. GC-MS (A) and GC×GC-MS (B) chromatograms are shown. The inset in 

each figure shows the same portion of the chromatogram in the two main figures, and the 

vertical bars in each figure insert represents the peak markers detected by ChromaTOF. A 

total of five chromatographic peaks were detected from this portion of the chromatogram by 

GC×GC-MS, while only three chromatographic peaks were detected by GC-MS.
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Figure 2. 
Variations of analyzing the 14 pooled QC samples on GC-MS and GC×GC-MS platforms. 

(A)Alignment results of the GC-MS and the GC×GC-MS data. (B) Distribution of the 

relative standard deviation (RSD) of the retention time (tR) for the GC-MS data, as well as 

the relative standard deviation of both the first dimension retention time (1tR) and the second 

dimension retention time (2tR) for the GC×GC-MS data. (C) Distributions of coefficient of 

variation (CV) of peak area before and after normalization.
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Figure 3. 
Sample spectrum deconvolution in analysis of GC-MS and GC×GC-MS data. A portion of 

the total ion current chromatogram of a biological sample analyzed on GC-MS (A) and 

GC×GC-MS (B) are shown. Part C lists the information on deconvoluted metabolite peaks 

from the GC-MS and the GC×GC-MS data shown in A and B. RPA defined as the ratio of 

peak area of a metabolite deconvoluted from the GC-MS data divided by that deconvoluted 

from the GC×GC-MS data.
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Table 1

Effect of Signal-to-Noise Ratio on the Spectrum Deconvolution and Metabolite Identification Using Mass 

Spectral Matching

platform SNR
no. of peaks
detected (Nd)

no. of peaks
annotated (Na)

ratio
(Na/Nd %)

GC-MS 5 968 411 42.5

10 967 426 44.0

20 748 404 54.0

50 505 341 67.5

100 363 293 80.7

200 245 219 89.4

500 148 143 96.6

1000 109 104 95.4

GC×GC-
MS

5 9595 1711 17.8

10 6737 1623 24.1

20 3362 1440 42.8

50 1517 1011 66.6

100 742 663 89.4

200 514 479 93.2

500 301 289 96.0

1000 156 145 92.9
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