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Introduction
Copy number variants (CNVs) are defined as DNA structural 
variants that result in either gain or loss of a chromosomal 
region, which can cause abnormal biological functions in the 
cell. In cancer, somatic copy number aberrations are frequently 
observed.1 The amplification of oncogenes or the deletion of 
tumor suppressor genes identified in tumor cells can be used 
for understanding the progression of the disease and for pre-
dicting drug sensitivity. In the absence of a matched germline 
specimen, the identified alterations in a tumor sample can-
not be classified as somatic, only the copy number state dif-
fers from normal. In the past decade, traditional genome-wide 
CNV detection methods used single nucleotide polymorphism 
(SNP) array and array comparative genome hybridization 
(aCGH),2–5 both of which required high-density probes and 
large sample sizes to detect small variants (less than 100 bps). 
Recently, whole exome sequencing (WES) was developed to 
target exonic regions for sequencing. This technology is pri-
marily used for identifying single nucleotide variants and 
short indels but has been observed to be able to identify 
CNVs within the target regions as well. A recent study evalu-
ated the performance of four well-known WES-based CNV 

detection tools and showed that none of the exome-based 
CNV detection methods can perform well in all situations. 
The authors provided a comprehensive and objective compari-
son to assist researchers in choosing the most suitable tools of 
WES data for their research needs.6

In this study, we developed an algorithm RefCNV, 
which is the gene-based CNV detection for WES data. 
Instead of using a matched control, we use a collection of nor-
mal well-characterized controls as references to build a whole 
exome-based linear regression model to predict normal cover
ages using library sizes (total mapped reads) as a predictor 
and summarize the CNV predictions (deletion, normal, and 
amplification) at each exon within a gene to report gene-level 
CNVs. We compared CNVs of three genes (MET, EGFR, 
and ERBB2) predicted by RefCNV with digital polymerase 
chain reaction (dPCR) experimental data in 13 cancer cell 
lines in which CNVs of three genes has been well charac-
terized.7–14 We evaluated RefCNV performance in genome-
wide CNV change by comparing our results of 10 cell lines 
with publicly available SNP array-based CNV data in Can-
cer Cell Line Encyclopedia (CCLE).15 We then compared 
RefCNV performance in global gene-based CNV prediction 
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with three existing CNV prediction algorithms CONTRA,16 
cn.MOPS,17 and ExomeCNV18 using the same data sets. Our 
results show that RefCNV prediction is correlated well with 
CNV data measured by dPCR and has performance better 
than other three CNV estimation methods globally.

Materials and Methods
Cell culture and DNA extraction. The DNA sample 

of HapMap cell line NA12878 was purchased from Coriell 
Institute for Medical Research, and all tumor cell lines were 
purchased from American Type Culture Collection. Cells 
were cultured using vendor-recommended conditions. DNA 
from freshly frozen cell pellets was extracted using the All-
Prep DNA/RNA mini kit (Qiagen) according to the ven-
dor instruction manual. DNA samples were quantitated by 
Qubit (ThermoFisher).

Digital PCR. Digital PCR (dPCR) assays were per-
formed using a QX200 Droplet Digital PCR System (Bio-
Rad). dPCR reactions consisted of 2× dPCR Supermix for 
Probes (no dUTP) (Bio-Rad), 900  nM final concentration 
target gene forward primer, 900 nM final concentration target 
gene reverse primer, 250 nM target gene probe, 20× Taqman 
human RNase P (RPPH1) Copy Number Reference assay 
(Life Technologies; Cat#4403328), and 10 ng of the prepared 
DNA. Target gene primers and probes EGFR (forward 
primer sequence CAGTCGGCCTGAACATAA; reverse 
primer sequence CCTGAAATTATCACATCTCCATCA; 
probe sequence CCTTGGGATTACGCTCCCTCAAGG,  
FAM, Black Hole Quencher), ERBB (forward primer  
sequence CTCATCGCTCACAACCAAGT; reverse primer  
sequence GGTCTCCATTGTCTAGCACG; probe sequence 
ACCCAGCTCTTTGAGGACAACTATGC, FAM, Black-
Hole Quencher), and MET (forward primer sequence  
AGTGATGTGATCTTTCACCTGT; reverse primer sequence 
AATGAGCGTCCGGCATAAA; probe sequence TATC 
CAGACAGGTAGGAGACCCAGC, FAM, Black Hole 
Quencher) were purchased from Integrated DNA Tech-
nologies. Droplets were generated using a QX200 Droplet 
Generator (Bio-Rad) and then transferred to a 96-well PCR 
plate. The plate was heat sealed with a foil seal and placed 
on a C1000 Touch Thermal Cycler (Bio-Rad). Amplification 
was performed as follows: 95 °C 10 minutes; 40 cycles: 94 °C 
30  seconds, 60  °C 60  seconds; 98  °C 10 minutes; and 4  °C 
hold. Upon completion of amplification, droplets were ana-
lyzed on a QX200 Droplet Reader (Bio-Rad) using the CNV 
experiment setting. Copy number data for ERBB2, EGFR, 
and MET genes were analyzed using QuantaSoft software 
version 1.7.4.0917. Copy number was calculated as two times 
the ratio of positive target droplets to positive RPPH1 refer-
ence gene droplets within the same sample. Mean of the data 
points from replicates was used to represent copy number for 
a cell line.

Whole exome sequencing. A total of 500 ng of genomic 
DNA was sheared to 150–200 bp by Covaris E220 sonication 

(Covaris). After AMPure XP beads (Beckman Coulter) 
cleanup, the samples were checked for correct size distribution 
using 2100 Bioanalyzer system (Agilent). For manual library 
preparation, the fragmented genomic DNA samples were 
processed with end-repair, dA addition, ligation of sequenc-
ing adaptors, and two rounds of six cycles preamplification 
using SureSelect XT Target Enrichment System for Illumina 
Paired-End Sequencing library construction kit (Agilent). 
Next, 750 ng of amplified DNA was hybridized with a bioti-
nylated RNA bait set (SureSelectXT Human All Exon V5; 
Agilent) at 65 °C for 24 hours. The captured genomic DNA 
fragments were enriched by DynalMyOne Streptavidin T1 
beads (ThermoFisher) and amplified with barcoded index-
attached primers for 12  cycles. The AMPure XP-purified 
libraries were checked for size distribution (300–400 bp) using 
Agilent Bioanalyzer and quantified using Library Quantifica-
tion Kit (Kapa Biosystems). For robotic library preparation, 
the same conditions and procedures were applied by using Sci-
clone G3 NGS Work station (Perkin Elmer). A pooled library 
made by mixing two final libraries at equal molar ratio were 
clustered at 11 pM per flow cell lane using the Illumina cBot 
prior to sequencing on an Illumina HiSeq 2000 platform (Illu-
mina). Sequencing reactions were run using 2 × 100 paired-
end mode. Demultiplexed FASTQ files were generated with 
Casava v1.8.2 configureBclToFastq.pl (provided by Illumina) 
from the .bcl files. The multiple FASTQ files generated by 
this script were concatenated and primer trimmed using the 
ea-utilsfastq-mcf tool with the following options: “–l 30 –q 10 
–u –P 33” to remove Illumina PCR and sequencing primers 
from the sequences. The trimmed sequences were mapped to 
human genome hg19 reference sequence using the Burrows-
Wheeler Aligner v0.6.2 aln and sample mode in default set-
tings.19 The resulting SAM files were converted to BAM 
format, sorted, deduplicated, and indexed using samtools and 
Picard.19 We also applied samtools to calculate the coverage 
as the number of total reads mapped in each defined capture 
regions. In addition, we also applied the principle component 
analysis (PCA) to investigate the coverage distribution based 
on the matrix of number of coverages for all 221,749 capture 
regions from whole genome.

CNV detection method. For a given exon e, we fitted the 
linear regression model with the reference samples:

	 Yei = αe + βeXi + εei

In the model, Yei is the coverage of exon e and sample i. 
Xi is the total number of mapped reads in sample i and εei is 
the independent random error, which we assumed follows a 
normal distribution with mean 0 and variance parameter 
σ αe e

2 ⋅  and βe are intercept and slope parameters of the lin-
ear regression model for exon e. We assumed that all exons in 
the reference samples have two copies, and a linear relation-
ship exists between coverage and total mapped reads in each 
exon. In addition, the regions with consistent low coverages 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Gene-based copy number variants using whole exome sequencing

67Cancer Informatics 2016:15

(the mean coverages of all samples less than 30× from the same 
exon) were filtered. We used the leave-one-out cross-validation 
(LOOCV) procedure to construct the expected residual cover
age distribution of samples with normal copies for all exons; 
that is to say, we treated each reference sample as a new case at 
a cross-validation fold and then estimated the regression model 
for each exon from the remaining samples and computed the 
residual from the estimated regression model and the left out 
sample. The standardized prediction residual is
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where yei is the observed coverage for sample i in exon e and 
ye i( )  is the predicted coverage for exon e and for sample i using 
the regression fit when i is left out.20 SE(xi) is the standard 
error of the predicted value given the total mapped reads for 
sample i, (xi) and σe(i) is the residual standard error when the 
i sample is left out. The standard error of the predict value is 
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where σ X
2  is the variance of X. To convert the standardized 

residual results from exon based into gene based, we took the 
median of the standardized residuals (MSRs) from all exons 
within a single gene for each subject. Since we assumed all 
genes in the reference samples have the same copy number 
status, we combined all the genes and computed the empirical 
distribution of the MSRs. From the empirical distribution, we 
calculated the 2.5% and 97.5% quantiles of the MSRs (MSR2.5% 
and MSR97.5%) across the whole genome. The quantiles were 
used as a threshold for CNV prediction of deletion, normal 
copy, and amplification if the new predicted MSR (MSRnew) 
is less than MSR2.5%, between MSR2.5% and MSR97.5%, and 
greater than MSR97.5%, respectively.

Number of references. We examined the effect of the 
number of reference samples on the stability of the CNV esti-
mates. For seven robotic reference samples, we tested RefCNV 
using subsamples between the size of three to six references 
and calculated the MSRs of genes EGFR, ERBB2, and MET 
and then compared with the results of dPCR from 13 cell 
lines using Spearman’s correlation.

Results
Coverage distributions, scaling factors, and slope 

between two library preparation methods. To build a whole 
exome-based linear regression model as reference, the 
NA12878 hapmap sample was chosen because it is a reference 
genome in Genome in a Bottle Consortium and has been well 
characterized for structural variants.21 A total of 18 replicates 

of WES were performed by two different library preparation 
methods: manual or robotic (nine samples for each method). 
As shown in Figure 1, the scatter plot of the first two principal 
components of all 18 references of NA12878 computed on the 
coverage distribution and three distinct clusters were found. 
The coverage distributions were different between two library 
preparation methods of robotic and manual. In addition, two 
robotic samples were clustered together on the bottom with a 
unique coverage pattern because these two samples were run 
on a different sequencing machine from all the other samples. 
For CNV detection using this read depth-based method, it is 
important to choose the references with the same library prep-
aration method and run on the same sequencing machine.

For constructing the distribution of MSRs for all genes 
with more than two exons from whole genome, we sepa-
rately fitted the linear regression model in each exon from 
seven samples prepared by robotic method (we removed two 
samples that ran on different sequencing machines) and nine 
samples prepared by manual method. Among all the 215,676 
exons, 212,644 exons (∼98.6%) are less than 500 bps. For those 
exon regions less than 500 bp, Supplementary Figure 1 shows 
the scatter plots of βe, the estimated slope from the regres-
sion model of coverage regressed on the total mapped reads in 
each exon and scaling factors SE(xi), standard deviation of all 
residuals in each regression model between two library prepara-
tion methods. The estimated slopes of manual references were 
slightly larger than robotic samples, and there is no specific pat-
tern of scaling factors between library preparation methods.

Constructing MSRs and selecting the thresholds for 
CNV detection method. For each exon, the standardized 
residuals of each replicate were predicted by the LOOCV 
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Figure 1. Scatter plot of first two principal components (PCs) from PCA 
of all replicated reference NA12878 prepared by two library preparation 
methods (red: robotic; black: manual).
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method and separately analyzed by library preparation methods 
(manual and robotic). The MSRs were calculated by taking the 
median of all standardized residuals from all capture regions 
covered by a single gene. For gene-based results, we only select 
genes that have more than two exons (80.1% genes have more 
than two exons from whole genome in our data sets). The 
MSRs of all manual and robotic replicates are summarized in 
Supplementary Figures 2 and 3. Our proposed method shows 
expected normal coverage distribution and considers coverage 
variability between controls. Under the assumption that all 
genes have a copy number status of 2, we used 2.5% and 97.5% 
of all MSRs as thresholds for deletion (equal or less than one 
copy) and amplification (more than two copies) as predicting a 
new sample by setting the type I error rate α = 0.05 for CNV 
detection method. In summary, the 2.5% and 97.5% quantile 
MSRs are −1.93 and 2.06 for manual replicates and −1.34 and 
3.38 for robotic replicates, respectively.

RefCNV prediction vs digital PCR experimental 
results. Copy number variation of MET, EGFR, and ERBB2 
genes has been reported previously in most of these cell lines, 
such as MET amplification in cell lines C-32, Hs746T, NCI-
H1993, and SNU-5; EGFR amplification in cell lines A-431 
and BT-20; and ERBB2 amplification in cell lines BT-474, 
MDA-MB-361, and MDA-MB-453.7–14 Table  1  shows the 
dPCR measured copy number results of MET, EGFR, and 
ERBB2 in 13 cell lines and CNV estimated by RefCNV using 
seven references replicates of NA12878 prepared by robotic 
method (two replicates sequenced on a different machines 
were excluded, Fig. 1). All of the cell lines reported previously 
were consistent between our CNV predictions of amplifica-
tion and dPCR results from 13 cell lines. In summary, our 
predicted MSRs and dPCR from the cell line data were highly 
correlated (scatter plot in Fig. 2). The Spearman’s correlation 
values between MSRs and dPCR are 0.961, 0.862, and 0.92 
for genes EGFR, MET, and ERBB2, respectively. We also 
successfully estimated CNVs for the case of one copy deletion 
and two cases of one copy gain in the cell line Daoy, the dPCR 
values of genes MET, EGFR, and ERBB2 are 2.97, 3.12, and 
1.15, respectively.

Genome-wide copy number association with DNA copy 
number reported by CCLE. We then performed a genome-wide 

comparison between RefCNV-estimated MSR values and copy 
number values measured by SNP array in 10 cancer cell lines 
from the CCLE.15 A total of 15,613 genes with both available 
CNV data from both RefCNV and CCLE were used for this 
analysis. Since RefCNV cannot directly estimate the exact copy 
number, we used Spearman’s correlation to test the gene copy 
number association between MSR values and copy number 
values reported by CCLE. The average Spearman’s correlation 
among 10 cell lines from whole genome is 0.82. Supplementary 
Figure 4  shows the scatter plot of our MSR values and copy 
numbers from CCLE separated by cell line.

We then performed the same genome-wide correlation 
with CCLE data using gene-based CNV estimations from 
three other methods CONTRA, ExomeCNV, and cn.MOPS. 
The average Spearman’s correlation values among 10 cancer cell 
lines from whole genome were 0.67, 0.57, and 0.39 using CON-
TRA, ExomeCNV, and cn.MOPS, respectively. There were only 
11,127 genes (57.1% from whole genome) reported by CON-
TRA because P value threshold 0.05 was used for selecting the 
significantly changed regions in CONTRA; however, the missing 
rate is still high (77%) among 11,127 overlap genes. In addition, 
we also set up P value threshold 1 in CONTRA to keep all CNV 
predictions, and the average Spearman’s correlation increased 
from 0.67 to 0.71. Both ExomeCNV and cn.MOPS kept more 
than 99% genes in gene-based CNV prediction but gave lower 
performance as compared with data in CCLE. Supplementary 
Figures 5–7 show the scatter plot of copy number predictions 
of CONTRA, ExomeCNV, and cn.MOPS and copy number 
predictions of CCLE separated by cancer cell line.

Correlation between MSRs and copy number mea-
sured by dPCR using difference number of reference sets. 
Figure 3 shows the Spearman’s correlation between predicted 
MSRs using all subsamples of size three to six robotic refer
ences and the dPCR results of genes EGFR, ERBB2, and 
MET in 13 cell lines. We found that RefCNV can achieve 
more accurate (small variation) CNV estimations as increas-
ing the number of references.

Discussion
With the reduced cost of new sequencing technologies, WES 
has become more affordable and replaced other traditional 
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array-based approaches such as SNP array or aCGH for CNV 
analysis. In this study, we developed an algorithm RefCNV 
to estimate gene-based CNV using WES data from a set of 
normal reference controls. By assuming the linear relationship 
between library size and coverage in each exon, we used the 
number of mapped reads as a predictor to estimate the coverage 
in each exon with a linear regression model, and the MSRs were 
applied to summarize the results from exons into gene-based 
estimates. First, we fit the linear regression model of coverage 
regressed on the library sizes from replicated controls. Second, 
the standardized residuals of all exons from each replicate were 
calculated by the prediction of coverages using the LOOCV 
procedure. Third, we summarized the results from exon-based 
into gene-based by taking the median of the standardized 
residuals from all exons covered by a gene to construct the 
expected normal coverage distribution. Finally, the prediction 
of gene-based CNVs is as follows: deletion, normal (diploid), 
and gain were identified by 2.5% and 97.5% (α = 0.05) quantile 
of all MSRs from the LOOCV procedure from controls using 
the same library preparation and sequencing method.

Table 1. Copy number variation predicted by RefCNV and 
corresponding dPCR results.

Cell line MET EGFR ERBB2

CNVs dPCR CNVs dPCR CNVs dPCR

A-431 D 1.45 A 11.1 N 2.02

BT-20 N 2.38 A 12.7 D 1.68

BT-474 N 1.28 A 0.439 A 14.30

C-32 A 6.08 N 0.212 N 2.25

Daoy A 2.97 A 3.12 D 1.15

HOP-92 A 1.89 A 1.95 N 1.25

Hs746T A 16.50 N 1.50 N 1.32

MDA-MB-231 N 2.14 N 2.41 A 2.58

MDA-MB-361 D 1.28 N 2.04 A 10.90

MDA-MB-453 D 2.05 N 2.04 A 5.60

NCI-H1993 A 22.30 N 2.17 N 1.60

SK-BR3 A 5.51 A 3.52 A 17.10

SNU-5 A 22.60 A 5.63 A 3.98

Abbreviations: CNVs, CNV called by RefCNV; N, normal (diploid); D, deletion 
(less than two copies); A, amplification (more than two copies); dPCR, digital PCR.
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In this study, we showed RefCNV has the following 
novelties and advantages. (1) It does not require matched 
controls. Instead, RefCNV requires a set of normal reference 
data set, which can model the technical variability in coverage 
between samples to construct the normal coverage distribu-
tion. (2) We demonstrated that RefCNV prediction became 
more stable (less variation) as the number of reference sam-
ples was increased (more than six reference samples). There 
are still some limitations to our approach. RefCNV considers 
only genes with more than two exons, which retains 80.1% 
genes from the whole genome, but we kept more genes than 
CONTRA (57.1%) by setting P value threshold 0.05 and we 
show better performance in genome-wide association than 
ExomeCNV and cn.MOPS as compared with copy number 
value estimated by CCLE. Also, RefCNV cannot estimate the 
exact number of copies for CNVs. We have observed that a 
value of 5 for the MSR scale maps to one DNA copy and 
provides a guide for the interpretation of the MSR values in 
practice. In addition, RefCNV assumed that all genes in the 
reference samples are diploid, which may be wrong for few 
sites; however, Parikh et al, developed a method to define a set 
of true structural variants of insertions and deletions within 
NA12878,22 which can be incorporated in our proposed algo-
rithm to reduce the false-positive rate for CNV detection 
method. The knowledge of known CNVs in the reference set 
can be used to mask those regions and avoid false calls. We 
have also identified some key factors that are required when 
creating a reference set for calling CNVs with WES. Samples 
in the reference set should be processed and sequenced in the 
same way as the new samples.

We observed that a few of RefCNV calls were discordant 
from copy number measured by dPCR in Table 1. Especially, 
copy number of three genes measured by dPCR in HOP-92 
(A vs 1.89 for MET, A vs 1.95 for EGFR, and N vs 1.25 for 
ERBB2) tended to be lower than RefCNV calls. Similar results 
were observed for MET and EGFR in BT-474. We examined 
the copy number of RNaseP (RPPH1) gene reported by four 
methods and found that the RPPH1 is significantly amplified 
in HOP-92 (5.18 by cnMOPS, 4.17 by exomeCNV, CON-
TRA failed to call this gene, and RefCNV did not call as less 
3 exons in this gene) and BT-474 (4.1 by cnMOPS, 4.2 by 
exomeCNV, CONTRA failed to call this gene, RefCNV did 
not call as less 3 exons in this gene), while the copy num-
ber is normal in other cell lines. Because the copy number 
of RPPH1 is used to normalize in dPCR measurement, the 
RPPH1 amplification causes underestimation of copy number 
by dPCR method.

We have implemented our algorithm in an R script 
RefCNV, which is available at GitHub from https://github.
com/lunching/RefCNV. The program can take output of cov-
erage generated by bedtools23 (http://bedtools.readthedocs.
org/en/latest/) as input. We provided background information 
and tutorial to facilitate researchers when using our algorithm 
to predict gene-based CNV estimates.

To summarize, RefCNV allowed the identification of 
gene-based CNVs and paved the way for selecting replicated 
controls for CNV study. The RefCNV algorithm is empirically  
based and allows for local adjustment for differences in 
sequence read coverage across genomic regions. The method 
is based on establishing a set of normal reference controls, and 
we indicated an important issue to consider when assembling 
a reference set, which can be a complementary tool to existing 
methods for CNV prediction.
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Supplementary Materials
Supplementary Figure 1. Scatter plot of β (the estimated 

slope from the regression model of coverage regressed on the 
total mapped reads in each exon) and scaling factors (standard 
deviation of all residuals in each regression model) between 
two sample preparation methods (robotic and manual).

Supplementary Figure 2. Median standardized residuals of 
all genes from replicates with manual preparation method.

Supplementary Figure 3. Median standardized residuals 
of all genes from replicates with robotic preparation method.

Supplementary Figure 4. Scatter plot and Spearman’s 
correlation of MSRs values and copy numbers reported by 
CCLE of 10 cancer cell lines. CNV estimates by RefCNV: red 
(deletion), black (normal) and blue (amplification).

Supplementary Figure 5. Scatter plot and Spearman’s 
correlation of copy number values of CONTRA and copy 
numbers reported by CCLE of 10 cancer cell lines.

Supplementary Figure 6. Scatter plot and Spearman’s 
correlation of copy number values of ExomeCNV and copy 
numbers reported by CCLE of 10 cancer cell lines.

Supplementary Figure 7. Scatter plot and Spearman’s 
correlation of copy number values of cn.MOPS and copy 
numbers reported by CCLE of 10 cancer cell lines.
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