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Abstract

This paper presents an index designed to predict music quality for individuals listening through 

hearing aids. The index is “intrusive”, that is, it compares the degraded signal being evaluated to a 

reference signal. The index is based on a model of the auditory periphery that includes the effects 

of hearing loss. Outputs from the auditory model are used to measure changes in the signal time-

frequency envelope modulation, temporal fine structure, and long-term spectrum caused by the 

hearing aid processing. The index is constructed by combining a term sensitive to noise and 

nonlinear distortion with a second term sensitive to changes in the long-term spectrum. The index 

is fitted to an existing database of music quality judgments made by listeners having normal or 

impaired hearing. The data comprise ratings for three music excerpts (classical orchestra, jazz trio, 

and jazz singer), each processed through 100 conditions representative of hearing-aid processing 

and listening situations. The overall accuracy of the index is high, with a correlation coefficient of 

0.970 when computed over all of the processing conditions and averaged over the combined 

groups of listeners having normal and impaired hearing.

Index Terms

Hearing aids; hearing loss; music quality measures; objective audio quality measures

I. Introduction

This paper presents an index designed to predict music quality for individuals listening 

through hearing aids. Hearing aids differ from the high-fidelity audio systems typically 

considered in sound reproduction due to the potentially poorer sound quality. Several 

characteristics related to music sound quality are associated with hearing-aid user 

satisfaction, including clarity, naturalness, and richness/fullness [1]. Hearing aids 

incorporate nonlinear processing, such as wide dynamic-range compression (WDRC) and 

noise suppression, which can generate unwanted distortion [2]. The hearing-aid transducers 

and acoustics, along with the amplification to compensate for the hearing loss, provide linear 

filtering of the signal that is much stronger than that found in a typical audio system. 

Furthermore, a hearing aid is used in a wide variety of listening situations, so the signal may 

also include large amounts of background noise. An additional concern is the listener’s 
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hearing loss and its impact on the audibility of the noise and distortion in the hearing aid 

output signal. A music quality index for hearing aids must therefore deal with the issues of 

background noise, nonlinear processing, large spectral changes, and quality judgments made 

by listeners with hearing loss.

The music index presented in this paper is based on the general approach developed by the 

authors to predict speech intelligibility [3] and speech quality [4] [5] for hearing aids. The 

new index uses a model of the auditory periphery that reproduces normal auditory function 

and which can be modified to reflect the major changes due to impaired hearing. The index 

is “intrusive”, that is, it compares the degraded signal being evaluated to a reference signal. 

Outputs from the auditory model for a hearing-aid signal are compared to the outputs for an 

unprocessed reference signal, and the music quality prediction is based on the measured 

differences in the signal envelope modulation, temporal fine structure, and long-term 

spectrum.

Even though the music index is based on the general structure of existing speech indices, a 

new index is needed because of the differences between music and speech. Compared to 

speech, music tends to place greater importance on low frequencies (below middle C), has a 

greater crest factor, a greater variation in signal intensity, and comprises a wider range of 

potential sounds produced by the musical instruments [6]. The envelope modulation 

spectrum of music also places a greater emphasis on low modulation frequencies (below 4 

Hz) in comparison to speech [7]. Thus it cannot be assumed that a speech quality index will 

be equally accurate for music, and using a speech quality index to predict music quality in 

hearing aids has produced disappointing results [8].

The music quality index developed in this paper is fit to the data of Arehart et al. [8], who 

conducted an extensive quality-rating experiment involving music subjected to 100 different 

signal processing conditions representative of hearing-aid use. Listeners having normal 

hearing (NH) and impaired hearing (HI) took part in the experiment. The stimuli were three 

music excerpts: a section from a classical symphony, a jazz trio, and an unaccompanied jazz 

singer. The results of the experiment showed that both groups of listeners gave similar 

ratings to most of the processing conditions, the ratings were more strongly affected by 

noise and nonlinear distortion than by linear filtering, and the music genre was significant.

Several other studies have also investigated the impact of hearing-aid processing on music 

quality. Dynamic-range compression is preferred by HI listeners over peak clipping for 

limiting the amplitude of high-level signals [9] [10]. Reduced amounts of WDRC are 

preferred by both listener groups over higher amounts [11] [12] [13], and slower 

compression time constants are preferred to faster compression by both groups [14]. 

Croghan et al. [7] investigated the effect of WDRC on rock and classical music selections 

for HI listeners. For classical music, commercial compression limiting was the least 

preferred and linear amplification was preferred over WDRC. For rock, linear amplification 

was again preferred to WDRC, but commercial compression limiting did not have a 

significant effect. Linear filter responses also affect music quality judgments. In an 

experiment in which three HI listeners rated the sound from hearing aids, Gabrielsson and 

Sjögren [15] found that the most important factors were “sharpness / hardness-softness,” 
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“clearness / distinctness,” “feeling of space,” and “disturbing sounds.” Reduced bandwidth 

of music stimuli leads to lower quality ratings for both NH and HI listeners [8] [16] [17], as 

does changes in spectral slope and the presence of spectral peaks [8].

The impact on music quality caused by processing algorithms has led to the development of 

indices to predict how music quality is affected by signal processing. An accurate quality 

index can be an effective tool in designing better hearing aids and music systems, and can 

aid in identifying which aspects of the human auditory system play a role in forming music 

quality judgments. The interest in music quality models thus extends beyond hearing aids, 

and includes telecommunications and sound-reproduction systems.

The perceived evaluation of audio quality (PEAQ) standard [18] uses an auditory model that 

includes auditory filters and spectral and temporal masking. The auditory model does not 

incorporate hearing loss. The index, in its basic version, measures eleven signal 

characteristics in comparison with a reference signal, and these signal features are combined 

to give the quality value. The index was developed for evaluating high-quality digital 

coding/decoding (codec) systems for NH listeners; the index predictions are designed for 

small amounts of distortion and are inaccurate for the larger amounts of distortion associated 

with low data-rate codecs [19] and would not be expected to be accurate for the wider range 

of signal degradations found in hearing aids.

The PEMO-Q index [20] [21] uses an auditory model that includes auditory filters and 

temporal masking. This index compares the envelope modulation of the degraded signal 

with that of the reference. A comparison using codec outputs [20] showed that PEMO-Q 

was more accurate than PEAQ for the music samples and high data-rate codecs considered. 

Like PEAQ, PEMO-Q has not been evaluated for the wider range of signal degradations that 

occur in hearing aids. And while the PEMO-Q index has been modified to accommodate 

hearing loss [22], there are no published results applying the modified index to music.

In a series of papers [12] [23] [24], a model of speech and music quality was developed 

comprising separate models for nonlinear distortion and linear filters; these two models were 

then combined to form the complete quality index. The model for nonlinear distortion [12] is 

based on computing the normalized cross-correlation between the degraded and reference 

signals in auditory frequency bands. This nonlinear model has been extended to include 

hearing loss [13], and was found to give a high degree of correlation between the model 

predictions and subject ratings for a jazz excerpt. The amount of distortion present in the 

experiments was relatively low, however, and the model has not been applied to signals 

degraded by additive noise. The linear model [23] is based on changes in the excitation 

pattern and in the slope of the excitation pattern across frequency. However, the linear model 

has not been extended to include hearing loss. The final quality index [24] uses a weighted 

sum of the nonlinear and linear model outputs.

Despite modifications to include hearing loss, none of the cited quality indices have dealt 

with the entire range of problems for music processed through a hearing aid: background 

noise, nonlinear processing, large spectral changes, and quality judgments made by hearing-

impaired listeners.
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II. Quality Rating Data

The music quality index was trained on the data reported by Arehart et al. [8], and additional 

detail on the experimental procedures and results are presented in that paper. The emphasis 

in that experiment was to explore the effects of hearing-aid signal processing on music 

quality judgments. Due to the large number of processing conditions included and the need 

to minimize listener fatigue, three music selections were used.

The participants in the experiment comprised 19 subjects in the NH group and 15 listeners in 

the HI group. Listeners in the HI group had mild to moderate sensorineural losses. The task 

of each listener was to rate the sound quality on a scale from 1 (poor sound quality) to 5 

(excellent sound quality) [25]. The ratings from each subject were then normalized to reset 

the highest observed score to 1 and the lowest observed score to 0. The rating normalization 

reduced the intersubject variability caused by different subjects adopting different internal 

anchors or using only part of the rating scale.

The three music excerpts were each approximately 7 s long. The stimuli were originally 

digitized at 44.1 kHz in stereo. The selections were converted to monophonic sound by 

summing the left and right channels and downsampled to 22.05 kHz to reproduce the 

bandwidth of a typical hearing aid [26]. The first music selection was an excerpt from a jazz 

trio (‘jazz”) comprising piano and string bass with a drum set in the background. This music 

segment was the same as used by Tan et al. [12] and related papers. The second segment was 

an extract from the second movement (Minuetto) of Franz-Joseph Haydn’s Symphony No. 

82 (“Haydn”), and featured a full orchestra comprising strings, winds, and brass. The third 

segment was an extract of an unaccompanied female jazz vocalist (“vocalise”) singing 

nonsense syllables (“scat singing”). The musical excerpts were chosen to highlight different 

instruments and to give a variety of musical styles.

The processing conditions used in the experiment were implemented using a simulated 

hearing aid programmed in MATLAB. The simulation reproduced the types of processing 

found in commercial hearing aids. The order of processing was additive noise, followed by 

nonlinear processing and then linear filters. The loudness of each of the processed signals 

for each of the three music segments was adjusted to match that of the corresponding 

unprocessed reference. The signals were presented to the NH listeners at a nominal level of 

72 dB SPL, and the stimuli were amplified for listeners in the HI group using the NAL-R 

prescriptive formula based on individual audiograms [27]. Stimuli were presented to the 

listeners monaurally using Sennheiser HD 25-1 headphones in a sound booth.

The music stimuli were processed through a total of 100 different conditions. The conditions 

were divided into three groups: 32 noise and nonlinear processing conditions, 32 linear 

filters, and 36 combined nonlinear and linear operations. The noise conditions comprised 

music in stationary speech-shaped noise and in multitalker babble. The nonlinear processing 

comprised symmetric peak clipping, amplitude quantization, WDRC, spectral subtraction 

noise suppression, and combinations of babble, WDRC, and spectral subtraction. The linear 

conditions comprised lowpass and highpass filters, spectral tilt, resonance peaks, and 

combinations of bandpass filters with resonance peaks. The combined processing conditions 
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comprised all possible combinations of six noise and nonlinear conditions with six linear 

conditions. For the complete enumeration of the processing, see Tables 1 – 3 in Arehart et al. 
[8].

III. Auditory Model

The initial processing stage of the audio quality index is a model of the auditory periphery, 

with the processed and reference signals each passed through the peripheral model. The 

outputs of the peripheral models are compared to produce the index. The auditory model is 

the same as used by the authors for predicting speech intelligibility [3] and speech quality 

[5], and a detailed description of the model is presented in Kates [28]. The model is 

summarized in this section, and the procedures used to compare the processed and reference 

signals are described in Section IV. Hearing loss is incorporated into the model, with 

approximately 80 percent of the loss ascribed to outer hair cell (OHC) damage and 20 

percent to inner hair cell (IHC) damage [29].

The auditory model is shown in the block diagram of Fig 1. The signal is resampled at 24 

kHz, and is then passed through the middle ear filter which reproduces the signal attenuation 

found at low and high frequencies [30] [31]. The signal then goes through a gammatone 

auditory filter bank [32] [33] [34]. Thirty-two frequency bands cover center frequencies 

from 80 to 8000 Hz. The default filter bandwidth for normal hearing is the equivalent 

rectangular bandwidth (ERB) measured by Moore and Glasberg [35], and the filter 

bandwidths are increased with increasing signal intensity and with increasing OHC damage 

[29].

The OHC function in the cochlear model provides fast-acting dynamic-range compression, 

with the compression in each frequency band controlled by the output from the control filter 

bank. The bandwidths of the control filters are wider than those of the auditory analysis 

filters [36] [37], so the model provides a mechanism for two-tone suppression, in which a 

tone outside the normal auditory filter passband can reduce the output intensity for a probe 

tone located within the passband. OHC damage shifts the auditory thresholds, reduces the 

compression ratios in each frequency band, and reduces the amount of two-tone suppression. 

In the case of maximum OHC damage the system is reduced to linear amplification, which is 

similar to the recruitment observed in hearing-impaired ears [38]. The 800-Hz lowpass filter 

is applied to the control signal to approximate the compression time delay observed in the 

cochlea [36]. The cochlear compression in the model is consistent with physiological 

measurements [39] and with psychophysical estimates of compression in the human ear [40] 

[41].

The signal alignment shown in Fig 2 finds the delay in each frequency band that maximizes 

the cross-correlation of the processed signal with the reference. The alignment thus removes 

the group delay associated with the hearing aid or other audio processing system being 

evaluated. The model of the IHC behavior that follows the alignment incorporates the rapid 

and short-term adaptation measured in neural firing patterns [42] [43]. The adaptation 

provides a high output at the onset of a sound and reduced output for steady-state stimuli. 

The final processing step is compensation for the auditory filter group delay, where 
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frequency-dependent delays are inserted to align the filter outputs. The added delays are 

based on the observation that adjustment for auditory filter delay appears to occur in the 

auditory pathway [44].

The model provides two outputs that are used in computing the quality index. One output is 

the envelope in each frequency band converted to dB above auditory threshold. Signals 

below threshold are replaced with 0 dB. The envelope outputs in dB SL correspond to firing 

rates in the auditory nerve [45] [46] averaged over the population of inner hair-cell synapses. 

The second output is the basilar membrane (BM) vibration signal in each frequency band. 

This signal is centered at the carrier frequency for the auditory filter, and is multiplied by the 

same amplitude modulation as used for the envelope. The auditory threshold for the 

vibration signal is represented as a low-level additive white noise. The BM vibration signal 

conveys information related to the temporal fine structure of the signal that is absent from 

the envelope.

IV. Quality Index Components

The music quality index presented in this paper compares the auditory model outputs for a 

processed (degraded) signal to the outputs for a reference signal. The approach used to 

construct the index is shown in Fig 2. This approach is similar to the one used by Kates and 

Arehart [4] [5] to successfully model speech quality data. An initial temporal alignment is 

provided to match the processed signal to the reference, and each signal is passed through 

the auditory model described in the Section III. The model outputs are then compared to 

produce the quality index.

The index comprises a term sensitive to noise and nonlinear distortion and a second term 

sensitive to long-term spectral changes. The noise and nonlinear term uses both the envelope 

and basilar-membrane vibration outputs shown in Fig 1, while the linear term uses the RMS 

average of the envelopes computed over the duration of the signals. These two terms are 

combined to produce the final quality index. Because hearing loss is directly incorporated 

into the auditory model, separate NH and HI indices are not needed. Instead, a single set of 

index parameters is derived to fit the combined NH and HI listener data.

A. Cepstral Correlation

The noise and nonlinear distortion term combines cepstral correlation and vibration 

correlation measurements. The cepstral correlation used in this paper is an extension of the 

cepstral correlation calculation used previously for modeling speech intelligibility and 

speech quality [3] [4] [5]. The previous cepstral correlation calculation used lowpass filtered 

envelope signals, while the version implemented for music quality uses the envelope signals 

passed through a modulation frequency filter bank [47].

The calculation procedure starts with the envelope outputs from the auditory model. The 

envelopes in each frequency band are first converted to dB re: auditory threshold. The silent 

intervals in the stimuli are pruned, and the resulting envelopes in each of the 32 auditory 

analysis bands are then smoothed using sliding 8-ms von Hann raised-cosine windows 

having a 50% overlap. The smoothed signals are then subsampled at 250 Hz.
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The cepstrum correlation computation is performed by fitting the smoothed envelope outputs 

across the 32 filter bands with a set of half-cosine basis functions. These basis functions are 

very similar to the principal components for the short-time spectra of speech [48] and have 

been used for accurate speech coding and machine recognition of both consonants [49] and 

vowels [50]. The basis functions are given by:

(1)

where j is the basis function number and k is the gammatone filter index for frequency bands 

0 though K-1 for K=32 . Functions j=2 through 6 are used in the analysis. Let ek(m) denote 

the sequence of smoothed sub-sampled envelope samples in frequency band k for the 

reference signal, and let dk(m) be the envelope samples for the degraded signal. The 

reference-signal cepstral sequence pj(m) and the degraded-signal sequence qj(m) are then 

given by:

(2)

where m is the segment index.

The auditory band envelope modulation comparison is shown in Fig 3. The short-time 

spectral shape blocks represent the fitting of the 32 auditory filter envelope outputs at each 

time slice with each of the five basis functions, which produces the five signals pj(m) and 

qj(m) labeled as the 0.5-cycle through 2.5-cycle outputs. The five smoothed basis-function 

signals are each passed through a modulation filterbank comprising eight filters covering 0 

to 125 Hz, implemented using 128-sample linear-phase finite impulse-response (FIR) filters 

at the 250-Hz sub-sampling rate. The leading and trailing filter transients are removed, 

giving filtered envelopes that overlap the input envelope sequences. The eight modulation 

filter bands are listed in Table I.

For each modulation filter output and basis function sequence, the time-frequency envelope 

pattern of the degraded signal being evaluated is compared to the envelope of the 

unprocessed reference signal using normalized cross-covariance, producing a value between 

0 and 1. Let uj,n(m) be the basis function signal pj(m) passed through modulation filter n, 

and let vj,n(m) be the basis function signal qj(m) passed through modulation filter n. The 

cross-covariance between the degraded and reference signals is then given by:

(3)

The results of Kates and Arehart [47] indicate that the four highest modulation frequencies 

convey the greatest amount of music quality information, so the cepstral correlation term is 
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the average of the cross-covariances for the four highest modulation frequency bands, 

covering 20 through 125 Hz. The cepstral correlation, averaged over basis functions 2–6 and 

modulation frequency bands 5–8, is then:

(4)

B. Vibration Correlation

The vibration correlation is the normalized cross-correlation of the BM vibration in each 

auditory band. The calculation is motivated by the work of Tan et al. [12] and Tan and 

Moore [13]. The BM vibration signal in each band is divided into 16-ms segments having a 

50-percent overlap, with each segment windowed using a von Hann window. The mean of 

the segments is removed, and each windowed segment of the degraded signal is cross-

correlated with the corresponding segment of the reference signal. The time delay between 

the signals is varied over a ±1 ms range to find the highest cross-correlation value. The 

cross-correlation is normalized by the reference and degraded signal magnitudes to give a 

value corresponding to the short-time coherence within the segment. The normalization 

removes much of the envelope fluctuation, so the BM vibration primarily measures changes 

in the signal temporal fine structure (TFS).

Let xk(n) be the BM vibration for the reference signal and and yk(n) for the degraded signal 

in frequency band k. The signals after being windowed and converted to zero-mean are 

given by x̂k(n) and ŷk(n) . The normalized cross-correlation for segment m in frequency 

band k is given by:

(5)

where the delay τ is chosen to yield the maximum value of the cross-correlation over the 

range of time lags from 1 to −1 ms.

Each normalized cross-correlation value is multiplied by a frequency-dependent weight 

w(m,k) that is set to 0 if the segment of the reference speech lies below auditory threshold 

and is set to the IHC synchronization index for segments above threshold. The 

synchronization index represents the degree to which the neural firing pattern reproduces the 

temporal fine structure of the signal, and it decreases at higher frequencies [51] [52]. The 

loss of synchronization is modeled as a fifth-order lowpass filter having a cutoff frequency 

of 3.5 kHz [53]. The weighted cross-covariances are averaged over the segments and 

frequency bands to give the BM vibration index:

(6)
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C. Noise and Nonlinear Distortion Term

The noise and nonlinear term of the quality index is a combination of the cepstral correlation 

and BM vibration terms. In previous work, a multiplicative combination was found to be 

most accurate for predicting speech quality [4] [5]. However, for music quality, a polynomial 

sum was found to be more accurate. A minimum mean-squared error (MMSE) fit of the 

model was made to the 32 conditions in the noise and nonlinear distortion quality data 

subset. The regression modeling used bootstrap aggregation (bagging) [54] to minimize the 

possibility of the model learning the specific dataset and to reduce the variance in the 

resultant model [55]. The bagging averaged the results from ten models, with each model 

based on approximately 63 percent of the data using random selection with replacement. 

The resultant noise and nonlinear model was found to be:

(7)

D. Spectral Shape

The linear term in the music quality index is based on measuring changes to the signal long-

term spectrum. The spectral modifications produced by linear filters all affect the long-term 

signal spectrum, but have only a small impact on the time-frequency envelope correlations 

and temporal fine structure changes used for the noise and nonlinear distortion term. The 

linear term is based on the linear model used by Kates and Arehart [4] [5] for speech quality, 

which was in turn motivated by the index developed by Moore and Tan [23].

The Moore and Tan [23] linear index uses differences in the estimated excitation patterns 

between the degraded and reference signals, and also uses the differences in the slopes of the 

excitation patterns. The excitation pattern is an internal representation of the auditory 

spectrum at the output of the cochlea. The linear term used in this paper starts with the root-

mean-squared (RMS) average envelope output in each auditory filter band. The averaged 

output in each frequency band is then compressed using the OHC compression rule. 

Following compression, the reference and degraded signal spectra are normalized to give 

RMS values of 1 when summed across the 32 auditory bands. The normalization of the 

spectra removes the signal intensity as a factor in the model (aside from auditory threshold), 

leaving only the spectral differences as factors.

Let X̂(k) be the normalized input spectrum magnitude in band k, and let Ŷ(k) be the 

normalized output spectrum magnitude. The difference in the spectra is given by:

(8)

A second form of spectral difference is normalized by the intensities in each frequency band:

(9)

The index uses the standard deviation of the spectral differences:
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(10)

where g1 is a scaling factor empirically set to 0.4 and the overbar denotes the average over 

the frequency bands. The index also uses the standard deviation of the normalized spectral 

differences:

(11)

where the scaling factor g2 is set to 0.04 . Both standard deviations have a minimum value of 

0, indicating no spectral modification, and the maximum value is limited to 1.

The linear term is a weighted sum of the spectrum and normalized spectrum standard 

deviations. The noise and nonlinear term has a maximum value of 1 for perfect signal 

fidelity, so to be consistent the linear model is adjusted to also start at 1 for no loss of quality 

and is reduced as the standard deviations of the spectrum and slope increase. The linear 

model is a MMSE linear regression fit to the 32 conditions in the linear filtered quality data 

subset. The linear model, after bootstrap aggregation, is given by:

(12)

E. Combined Index

The HAAQI index combines the noise and nonlinear term with the linear filtering term. In 

the previous index for speech quality [4] [5], a multiplicative combination was found to be 

the most accurate. However, for the music data, a polynomial combination yielded the 

greatest accuracy. The MMSE fit to the 36 conditions in the combined noise, distortion, and 

linear filtering data subset, after bootstrap aggregation, is given by:

(13)

F. Vibration-Only Index

The index developed by Moore, Tan, and colleagues [12] [13] [16] [23] also combines a 

nonlinear term with a linear term. The HAAQI nonlinear term has both envelope modulation 

and BM vibration components, with the greater emphasis on the envelope. The nonlinear 

term used by Moore et al., however, does not use envelope modulation. It relies on just the 

short-term cross-correlation of the signal in each frequency band at the output of a 

gammatone filter bank. A comparable calculation, in the context of the auditory model used 

for HAAQI, is to create an index having a nonlinear term based just on the BM vibration 

signal output by the auditory model. A version of the nonlinear term was therefore 

formulated using the vibration correlation of Eq (6), but with the 3.5-kHz lowpass filter 

removed to be consistent with the model of Tan et al. [12]. The optimum MMSE model 

using this approach, when fit to the nonlinear processing data, was given by the modified 

vibration correlation raised to the fifth power. The linear term given by Eq (12) was used for 
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consistency with HAAQI. The optimum vibration-only quality index, computed over all of 

the processing conditions and listeners and after bootstrap aggregation, was found to be just 

the nonlinear term, with zero weight given to the linear term.

V. Results

A. Index Components and Processing Subsets

As explained in the section above, the HAAQI index comprises a noise and nonlinear term 

and a linear term, with these two terms combined to form the final model. Each term in the 

index is fitted to quality ratings from the corresponding subset of the complete experiment. 

The accuracy of these individual terms is illustrated in the scatter plots of Figs 4 – 6.

The listener ratings are plotted against the index predictions in Fig 4 for the 32 noise and 

nonlinear processing conditions. Each point represents one processing condition (e.g. 

speech-shaped noise at a SNR of 10 dB), averaged over the three music excerpts and over all 

of the listeners. The x-axis coordinate is the QNonlin term given by Eq (7) averaged over the 

listeners in the combined NH and HI listener groups, with each group given equal weight. 

The y-axis coordinate is the quality rating for the processing condition averaged over the 

subjects, again with the NH and HI groups given equal weight. The diagonal line represents 

perfect prediction; for points lying under the line the model prediction is higher than the 

subject ratings, while for points above the line the prediction is lower.

The processing conditions listed in the legend refer to the noise and distortion processing 

implemented in the simulated hearing-aid described by Arehart et al. [8]. None is music 

without any modification, LTASS is music with additive stationary speech-shaped noise, 

Babble is music with additive multi-talker babble, Peak Clip is music subjected to 

symmetric instantaneous peak clipping, Quant is music quantized using a reduced number of 

bits, Comp is music processed through multi-channel WDRC, Comp+Babble is music 

processed through WDRC after babble has been added, SSub+Babble is music processed 

through spectral subtraction after babble has been added, and Comp+SS+Bab is music 

processed using WDRC and spectral subtraction in parallel after babble has been added.

The accuracy of the noise and nonlinear term is high, with a correlation coefficient of 0.962 . 

For most of the conditions, the model tends to slightly overestimate the quality compared to 

the subject ratings. One of the reasons for the model overestimation is that for signals having 

no noise or distortion, the model returns a perfect score of 1 while the listeners tend to give 

an average rating of approximately 0.9 . The exception to this behavior occurs for the 

conditions involving multi-talker babble, where the model predictions are slightly lower than 

the subject ratings. Thus the model penalizes babble more than the listeners do.

The listener ratings are plotted against the index predictions in Fig 5 for the 32 linear 

filtering conditions. Each point represents one processing condition (e.g. spectral tilt at 4.5 

dB/oct), averaged over the three music excerpts and over all of the listeners. The x-axis 

coordinate is the QLinear term given by Eq (12) averaged over the NH and HI listener groups, 

with each group given equal weight. The y-axis coordinate is the quality rating for the 
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processing condition averaged over the subjects, again with the NH and HI groups given 

equal weight.

The processing conditions listed in the legend refer to the linear filters described by Arehart 

et al. [8]. None is music without any modification, HP Filt is music passed through a 

highpass filter, LP Filt is music passed through a lowpass filter, BP Filt is music passed 

through a bandpass filter, Pos Tilt is music passed through a filter giving a positive spectral 

tilt, Neg Tilt is music passed through a filter giving a negative spectral tilt, One Peak is 

music passed through a filter providing a single spectral peak, Three Peaks is music passed 

through filters providing a set of three spectral peaks, and 3 Pks+LP Filt is music is music 

passed through the cascade of the three spectral peaks and the lowpass filter.

The accuracy of the linear term is high, with a correlation coefficient of 0.966 . The lowest 

listener quality rating for the linear filtering is approximately 0.44, which is for the 

narrowest bandpass filter condition: cutoff frequencies of 700 and 2000 Hz. In the 

experimental design, all 100 processing conditions were presented in random order for each 

genre of music, so the quality of the filtered music was judged alongside that of music 

subjected to noise and distortion. Thus, at least for the music excerpts and processing 

conditions used in this experiment, linear filtering has a much smaller impact on quality than 

noise or distortion.

The listener ratings are plotted against the index predictions in Fig 6 for the 36 combined 

filtering conditions. Each point represents one combined processing condition (e.g. speech-

shaped noise at a SNR of 10 dB combined with spectral tilt at 4.5 dB/oct), averaged over the 

three music excerpts and over all of the listeners. The x-axis coordinate is the Q term given 

by Eq (13) averaged over the NH and HI listener groups, with each group given equal 

weight. The y-axis coordinate is the quality rating for the processing condition averaged 

over the subjects, again with the NH and HI groups given equal weight.

The processing conditions listed in the legend refer to the combined processing conditions 

described by Arehart et al. [8]. The nonlinear processing is indicated in the legend, with each 

nonlinear condition combined with each of the six linear filters used to create this data 

subset. The noise and nonlinear conditions for the combined data are the same as the first six 

conditions listed in the legend for the noise and distortion data.

The accuracy of the complete model, when applied to the 36 combined conditions, is high, 

with a correlation coefficient of 0.959 . The quality ratings presented in the preceding two 

figures indicate that noise and distortion has a greater impact on quality than linear filtering. 

As a result, the ratings shown in Fig 6 tend to form clusters for each of the noise and 

nonlinear processing conditions. Within each cluster there is a smaller variation in quality as 

the linear filtering is changed.

B. Complete Index

The listener ratings are plotted against the index predictions in Fig 7 for the complete index 

of Eq (13) applied to all 100 noise and nonlinear, linear, and combined processing 

conditions. Results for the NH listener groups are indicated by the circles, and results for the 
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HI listener group are indicated by the squares. Each point represents one processing 

condition averaged over the three music excerpts and the listeners in the indicated hearing-

loss group. The overall accuracy of the index is high, with a correlation coefficient of 0.970 

when computed over all of the NH plus HI listeners. Fig 4 illustrated a tendency for the 

nonlinear term to underestimate the quality of the processing conditions involving babble. In 

Fig 7, the pattern of the points in the same vicinity indicates that the error in the babble 

ratings occurs primarily for the NH group while the predictions in babble for the HI listener 

group are more accurate.

The accuracy of the index predictions is broken down by hearing-loss group and music 

genre in Table II. For each entry, the correlation coefficient and RMS error were computed 

after averaging the quality ratings and index predictions over the subjects in each hearing-

loss group. The values thus represent the accuracy of predicting the ratings for an average 

listener over the 100 processing conditions. For all three genres of music, the index 

predictions for the HI listener group have a higher degree of correlation with the quality 

ratings than for the NH listener group, and the HI predictions have a lower RMS error than 

the NH predictions for the jazz and vocalise excerpts. For both the NH and HI listener 

groups, the index predictions are most accurate for the vocalise excerpt and least accurate for 

the Haydn selection.

The accuracy of HAAQI is compared to other indices in Table III. To facilitate comparison, 

the HAAQI entries repeat the bottom line of Table II for the set of three music excerpts. The 

next line shows the accuracy of fitting the terms used in the HASQI v2 speech quality index 

[5] to the music data. The nonlinear term of HASQI v2 is given by the broadband cepstral 

correlation squared times the BM vibration correlation. The linear term is a weighted 

combination of the spectral difference standard deviation with the spectral slope standard 

deviation, and the final index is the product of the nonlinear and linear terms. Thus 

compared to HAAQI, HASQI has different nonlinear and linear terms even though both 

indices are based on the same auditory model, and the final index is the product rather than 

sum of powers of the nonlinear and linear terms. The HASQI approach, fit to the music data 

and averaged over the subjects in each group, is indicated in the table as HASQI v2 Music 

Fit. The third line in the table is for the quality index described in Section IV.F. This index 

uses only the modified vibration correlation for the nonlinear term.

The implementation of PEAQ [18] [56] is the basic version using the MATLAB computer 

code from Kabal [57], which has been shown to agree very closely with the ITU standard 

[58]. The basic version of PEAQ constructs an auditory model using short-time FFTs of a 

signal sampled at 48 kHz and divided into 2048-sample (43 ms) overlapping segments. The 

auditory model only considers normal hearing. Eleven model output variables (MOV) are 

computed, and these are combined using a neural network to produce the final quality 

prediction. The PEAQ predictions using the basic version are indicated in Table III as PEAQ 

Neural Net, with the PEAQ predictions averaged over the NH subjects for the 100 

processing conditions.

It was noted by Creusere et al. [19] that PEAQ produces large errors for poor-quality signals. 

They found, however, that the accuracy could be substantially improved by computing a 
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minimum least-squares fit of a weighted sum of the eleven basic-version MOVs to the 

subject quality ratings. This approach, replacing the neural network used to combine the 

MOVs with an optimal weighted sum, was implemented and is shown in Table III as PEAQ 

Linear Fit. The MOVs were fit to the NH quality ratings for the 100 processing conditions 

using a minimum mean-squared error criterion with bootstrap aggregation, and were 

averaged over the NH subjects.

The entries in Table III show that building a music quality model using the HASQI v2 

components and procedure for combining the nonlinear and linear terms gives relatively 

poor performance. Thus applying this speech quality model to music leads to reduced 

accuracy. The vibration-only index is more accurate than trying to apply HASQI to the 

music data, but it also has reduced accuracy in comparison to HAAQI. The vibration 

correlation conveys a large amount of quality information, but performance is improved 

when the vibration correlation is combined with envelope modulation measurements.

The PEAQ neural network index does a very poor job on the data in this paper given the 

wide range of degradation conditions. The PEAQ output is a number between 0 (perfect 

reproduction) and -4 (worst quality). For many of the processing conditions in this paper 

PEAQ gave outputs near -4, and was therefore unable to distinguish between the various 

low-quality processing conditions. Using a weighted sum to fit the MOVs to the music 

quality data greatly improved the PEAQ performance for the NH listener group, although 

HAAQI is still more accurate.

VI. Discussion

Comparing the results of HAAQI to those of other published music quality indices is 

difficult due to differences in the stimuli, subject groups, and in the rating scales used in the 

development of the various indices. The PEAQ index has been tested primarily with music 

processed through digital coding / decoding (codec) systems, and only for NH listeners. 

Thiede [18] fit the PEAQ to quality ratings for codecs at data rates from 64 – 256 kb/s, so 

the PEAQ performance would be expected to be best over this quality range. Treurniet and 

Soulodre [59] evaluated PEAQ for codecs at 64 – 192 kb/s and found a correlation 

coefficient of 0.94 between the index predictions and NH subject ratings for a set of 57 

music sounds, while Creusere et al. [19] found a correlation coefficient of only 0.35 when 

the PEAQ basic implementation was applied to music samples processed through codecs at 

lower data rates from 64 down to 16 kb/s. HAAQI for NH listeners gives a correlation 

coefficient of 0.945 over the set of three music excerpts, which is comparable to the 

Treurniet and Soulodre [59] results for PEAQ, but the range of distortion conditions is much 

wider for HAAQI and the evaluation does not include codec data, making a direct 

comparison difficult.

A similar difficulty in comparing index results holds for the PEMO-Q index of Huber and 

Kollmeier [20]. They evaluated their index for a subset of the music sounds and codecs used 

in developing PEAQ, and found a correlation coefficient of 0.77 when the index was 

calculated using envelope correlations computed over the entire excerpt (PSM) and 0.90 

when a segmented calculation procedure (PSMt) was used. In both cases individual 
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nonlinear regression curves were used to fit the model outputs to each subject’s quality 

ratings. Harlander et al. [21], for a similar dataset, found correlation coefficients of 0.64 for 

PSM, 0.70 for PSMt, and 0.90 for PSMt using nonlinear regression to map the model output 

to the quality ratings. HAAQI gives a higher correlation coefficient for the NH listeners for 

the conditions used in this paper, but again there is a large disparity in processing conditions 

and a direct comparison is problematic.

Another index developed for NH listeners in the work of Moore and Tan [23], Tan et al. 
[12], and Moore et al. [24]. Their index comprises a linear term and a nonlinear term, and 

the two terms are combined to form the quality prediction. Both terms start with a 

gammatone filterbank. The linear term [23] is based on differences between the long-term 

excitation patterns and the slopes of the excitation patterns. The spectral modifications used 

to evaluate the linear index included varying amounts of spectral ripple and changes in the 

spectral slope, and a nonlinear regression fit to the subject quality ratings for the jazz excerpt 

produced a correlation coefficient of 0.955 . The comparable HAAQI linear term for all 

three excerpts produces a correlation coefficient of 0.965 when computed across the 

combined NH and HI listener groups.

The nonlinear term of HAAQI also performs well in comparison to the nonlinear term 

developed by Tan et al. [12]. They found a correlation coefficient of 0.98 for broadband 

distortions, and 0.95 when the distortion was confined to a narrow frequency band. For a 

mixture of laboratory distortion and cell phone receiver outputs, they found a correlation 

coefficient of 0.92 . The nonlinear term of HAAQI for all three excerpts produces a 

correlation coefficient of 0.962 when computed across the combined NH and HI listener 

groups. However, the distortion conditions considered by Tan et al. [12] for their nonlinear 

distortion experiment were not as extreme as the ones in this paper. For example, their 

maximum amount of peak clipping was 10 percent of the samples, while the strongest peak 

clipping in this paper was 70 percent of the samples.

The combined processing model of Moore et al. [24] uses a weighted sum of their linear and 

nonlinear terms. They tested a set of combined processing conditions, where spectral ripple 

and slope were varied along with clipping distortion, and found a correlation coefficient of 

0.95 . Measurements using cell phone receivers driven at low and high levels to provide 

spectral modification and nonlinear distortion resulted in a correlation coefficient of 0.90 . 

The comparable HAAQI linear term for all three excerpts produces a correlation coefficient 

of 0.959 when computed across the combined NH and HI listener groups.

Tan and Moore [13] have extended their modeling approach to listeners with impaired 

hearing, but only for the nonlinear processing term. They found a correlation coefficient of 

0.98 between their model and HI listener quality ratings of the jazz excerpt subjected to 

broadband peak clipping, and a correlation coefficient of 0.92 for jazz processed through a 

mixture of peak clipping and cell phone receiver responses. The HAAQI results for the jazz 

excerpt gave a correlation coefficient of 0.976 when computed over the set of 100 conditions 

for the HI listener group, so the HAAQI performance appears to be at least as good as that of 

Tan and Moore but encompasses a wider range of distortions.
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The approach used by Moore and colleagues relies on vibration correlation for the nonlinear 

term and does not use the envelope. The accuracy of this approach, when applied to the 

output of the auditory model for both NH and HI listeners, is indicated by the results in 

Table III for the vibration-only model. The accuracy for the HI group is essentially the same 

as for the NH group when the signals output by the auditory model are used. However, the 

accuracy of the index using just the vibration correlation for the nonlinear term is less than 

for HAAQI, which uses both vibration correlation and envelope modulation for the nonlinear 

term. There appears to be little advantage in using the vibration correlation alone, thus 

ignoring the changes in the signal envelope, when the more complete HAAQI model is 

available.

The results in this paper, along with the results in the studies cited above, suggest that music 

quality indices are sensitive to the range of noise and distortion conditions represented in the 

hearing-aid processing conditions. The indices are therefore valid only for the test conditions 

used in their creation, and it is not recommended that any index be extrapolated to 

conditions outside that range. The PEAQ index [18], for example, was trained on high-

quality codecs and the index was therefore optimized for small reductions in quality. When 

the range of signal degradations is wider, as occurs for low-data rate coding [19] or the 

conditions in this paper, a new mapping of the signal features to the subject ratings greatly 

improved the prediction accuracy. One should therefore be careful in applying indices 

developed for codecs to other processing conditions such as hearing aids, and HAAQI, 

which was developed for the filtering and distortion found in hearing aids, may not be as 

sensitive as other indices to the smaller degradations found in high data-rate codecs.

An additional concern in comparing indices is that the rating scale used in an experiment 

and the words chosen to indicate the different quality levels on the rating scale can influence 

the listener judgments [60]. Two identical sets of stimuli can lead to different sets of listener 

judgments if different rating scales are used in the experiments, and fitting the index outputs 

to the subject ratings will produce two different mapping functions for the different rating 

scales. Thus using a published index without adjusting the mapping from the index 

predictions to the quality ratings in a specific experiment can produce misleading 

performance comparisons since the published index is being penalized for having been 

trained on data produced using a different experimental protocol.

The music quality indices are also sensitive to the music samples used for the quality ratings. 

HAAQI was most accurate for the vocalise excerpt and least accurate for the Haydn, with 

the performance for the jazz excerpt similar to that of the average over the three excerpts. As 

shown by Arehart et al. [8], the Haydn excerpt has the greatest high-frequency energy and 

the vocalise the least, and all three music selections have less high-frequency energy than 

speech. These differences in the long-term spectra will affect the audibility of spectral 

modifications introduced by the filters and the audibility of nonlinear distortion products. 

The temporal modulations of the signals are also an important factor. The onsets of musical 

notes show considerable variation [61], and the duration of musical notes depends strongly 

on the musical selection. Arehart et al. [8] found that the 10:1 compression condition was 

not significantly different from the unprocessed reference signal for the vocalise, which 

provided a smooth transition from one note to the next, but was significant for the jazz, 
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which had greater high-frequency spectral content, a faster tempo, more detached notes, and 

a greater dynamic range. Thus the choice of music selection may influence the relative 

importance of the envelope modulation frequencies and the weighting and transformation of 

the signal features to the subject quality ratings.

The range of music selections used in designing an index could also have an impact on its 

accuracy. HAAQI used only three selections (classical orchestra, jazz, and vocalise), so it 

would be expected to be most accurate in predicting quality for similar types of music. 

PEAQ [18] used a larger number of musical examples including many solo instruments, but 

the model itself was trained on data that emphasized codecs and not hearing aids. The poor 

performance of PEAQ for the simulated hearing-aid processing used in this study suggests 

that the range of processing conditions considered may be more important than the number 

of musical selections. Neither index was trained on synthesized sounds or sounds that have a 

large of amount of inherent distortion (e.g. electric guitar), so additional experiments may be 

needed to validate the indices for musical genres such as rock that lie outside the training 

data.

A final consideration is the relative importance of changes to the TFS of the signal [12] [24] 

as opposed to the envelope [20]. Accurate quality indices have been constructed using either 

approach, and HAAQI combines both types of measurements. In the HAAQI nonlinear term 

given by Eq (7), the linear component depends on the vibration correlation, while the cubic 

component depends on the cepstral correlation. For small signal degradations (index values 

near 1), the cubic term dominates the calculation, which suggests that envelope changes are 

more important at high quality levels. For large degradations (index values near 0), the linear 

term dominates, which suggests that TFS changes are more important at low quality levels. 

However, for many forms of noise and distortion the changes in TFS and envelope 

modulation are highly correlated [62], so the relative importance of the two kinds of signal 

measurements may depend on the details of the auditory model and the specific signal 

features used in the index.

VII. Conclusion

This paper has presented an improved index for predicting music quality that is based on the 

characteristics of the impaired ear and the signal modifications produced by hearing aids. 

HAAQI is “intrusive” since it compares a degraded signal with a reference, with both signals 

passed through a model of the impaired periphery. The index is based on two terms, one of 

which responds to signal changes caused by noise and nonlinear distortion and the second of 

which responds to the effects of linear filtering. The final index value is a combination of the 

nonlinear and linear terms, with the nonlinear term making a greater contribution to the 

overall quality prediction.

The parameters of HAAQI have been fit to a wider range of signal degradations than 

typically used for evaluating music quality since the main application is intended to be 

hearing aids. The index has not been tested with music codecs, and it may not accurately 

predict the smaller changes in music quality associated with high data-rate coding 

algorithms. A related problem is digital music encoding and transmission, which may 
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introduce changes in the timebase over a musical segment, packet loss, and rapid timebase 

realignment following pauses in the signal. The signal alignment used in HAAQI operates 

across the entire signal and does not provide the short-term realignment that may be needed 

for evaluating digital music transmission. Small timing irregularities are not expected to 

substantially affect the cepstral correlation, vibration correlation, or long-term spectral 

change calculations, but the sensitivity of the new index to timing defects and the accuracy 

of its predictions for digital codecs and transmission systems needs to be determined.

Another consideration is differences in test and listening situations used in deriving the 

different music quality indices. HAAQI includes the effects of nonlinear hearing-aid 

processing and listening in noisy situations. The perceptual anchors that represent the worst 

processing conditions in HAAQI thus include greater amounts of signal degradation than 

those implicit in other indices. Identical stimuli will therefore lead to different quality 

predictions when different indices are used. A final potential limitation of the new index is 

that HAAQI was derived for subjects listening monaurally over headphones in a sound 

booth. The hearing aid was a computer simulation, and additional validation is needed to 

determine the accuracy of the index for real hearing aids. Further research is also needed to 

deal with the acoustic effects of the head and ear that occur in real-world hearing-aid use and 

the effects of binaural hearing-aid listening.
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Fig. 1. 
Block diagram of the auditory model used to extract the signals in each frequency band.
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Fig. 2. 
Block diagram showing the operations used to compare the processed and reference signals 

in constructing the music quality index.
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Fig. 3. 
Block diagram showing the cepstral correlation modulation filter procedure.
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Fig. 4. 
Quality predictions using the noise and nonlinear model for the noise and nonlinear 

distortion subset of the music data, averaged over the NH and HI listeners
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Fig. 5. 
Quality predictions using the linear model for the linear filtering subset of the music data, 

averaged over the NH and HI listeners.
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Fig. 6. 
Quality predictions using the combined nonlinear and linear models for the combined noise, 

nonlinear, and linear filtering subset of the music data, averaged over the NH and HI 

listeners.
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Fig. 7. 
Quality predictions using the complete model for the entire music data set. Results for the 

NH and HI listeners are plotted separately.
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TABLE I

Modulation filters used for the envelope analysis

Band Number Modulation Filter, Hz

1 0–4

2 4–8

3 8–12.5

4 12.5–20

5 20–32

6 32–50

7 50–80

8 80–125
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