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Abstract
Forest structure comprises numerous quantifiable biometric components and characteris-

tics, which include tree geometry and stand architecture. These structural components are

important in the understanding of the past and future trajectories of these biomes. Tropical

forests are often considered the most structurally complex and yet least understood of for-

ested ecosystems. New technologies have provided novel avenues for quantifying biomet-

ric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar).

This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial

platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system

in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at

La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these

locations we collected field measured biometric attributes using a variable plot design. We

also collected TLS data from the center of each plot. Using this data we developed relative

vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast

Fourier Transform (FFT), number of layers and plant area index to develop statistical rela-

tionships with field data. We developed statistical models using a series of multiple linear

regressions, all of which converged on significant relationships with the strongest relation-

ship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density

was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28

n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75,

p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indi-

cating the potential relevance of multiple features in canopy profiles and geometry that are

related to field-measured structure. Models for biomass estimation included structural can-

opy variables in addition to height metrics. Our work indicates that vegetation profiles from

TLS data can provide useful information on forest structure.

PLOS ONE | DOI:10.1371/journal.pone.0154115 April 28, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Palace M, Sullivan FB, Ducey M, Herrick C
(2016) Estimating Tropical Forest Structure Using a
Terrestrial Lidar. PLoS ONE 11(4): e0154115.
doi:10.1371/journal.pone.0154115

Editor: RunGuo Zang, Chinese Academy of Forestry,
CHINA

Received: January 7, 2016

Accepted: April 8, 2016

Published: April 28, 2016

Copyright: © 2016 Palace et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are all contained
within the paper, additional raw data (not part of the
minimal underlying dataset) is available by contacting
the author due to the immense storage volume.

Funding: This research was supported by National
Aeronautics and Space Administration (NASA) New
Investigators in Earth Science (NNX10AQ82G),
National Aeronautics and Space Administration
(NASA) Terrestrial Ecology (NNX08AL29G), National
Aeronautics and Space Administration (NASA) IDS
(NNX14AD31G) and United States Agency for
International Development (USAID)
(12DG11132762416).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0154115&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Forest structure is a reflection of the principles of forest growth and disturbance, influenced by
the spatial and temporal variability of resource availability, disturbance rates, and management
[1–4]. The three dimensional architecture of a forest is a direct indication of ecosystem func-
tion, carbon and nutrient cycling, disturbance regimes, and the coupling between forests and
regional and global climate [5]. Tropical forests have additional complexity in regard to species
diversity and are thought to be among the most structurally complex of all forested ecosystems
[6]. Tropical forest structure characterization is important in understanding ecological and
earth system processes, knowledge of which proves vital in efforts to mitigate climate change
through the reduction of greenhouse gases emissions. The ability to quantify forest structure
beyond standing biomass is critical to efforts such as Reducing Emissions from Deforestation
and Forest Degradation (REDD+), which depends on characterization of forest structure to
provide insight into the previous carbon dynamics and the potential future storage capabilities
of a forest [7–10]. Ground-based measurements allow for accurate mapping of vegetation
structure, but only on very limited spatial and temporal scales, and with high costs and
unknown biases [11].

The spatial variability of forest structure at the landscape scale is difficult to capture without
remote sensing methods because proper evaluation of variability across the landscape would
require extensive field campaigns, which can be cost prohibitive. To extract information related
to changes in forest structure, measurements on the ground must be associated with those
inferred from airborne and space-based remote sensing data [12–13]. Research and field sites
that have both extensive field-based biometric data as well as remote sensing data are vital in
estimating forest biometric properties. New technologies, such as LIght Detection And Ranging
(lidar), offer the possibility of reducing inventory costs and increasing accuracy [14]. Lidar
remote sensing has been used to estimate the horizontal and vertical heterogeneity in forest
structure [15–19] and can be deployed from space, aircraft, and on the ground. Previous stud-
ies have demonstrated that airborne lidar-derived canopy vegetation profiles compare well
with ground-based profiles [20–21]. Canopy vegetation profile metrics have been shown to be
useful in predicting biomass and other structural forest properties [8, 17, 22–32]. A majority of
effort has been to use discrete airborne lidar, yet ground-based lidar deployment may provide
additional insight and is currently being deployed in many forested settings [33–37].

Ground-based imaging lidar systems often gather a detailed, three-dimensional digital
model of forest stands and individual trees from an understory perspective [38]. These systems
can be deployed quickly in multiple locations and gather information often faster than those
collected by field crews and measure unique attributes often complementing field-based sur-
veys [39–40]. In particular, ground-based lidar may be useful for reducing uncertainty associ-
ated with the generalized allometric equations used to convert standard tree measurements to
biomass or carbon; error in allometrics is a key source of uncertainty in large-scale inventories,
and does not decline with increased sampling intensity or number of plots [11, 41]. Terrestrial
laser scanners were originally designed for precision surveying applications; applications to for-
est ecosystem measurement are just emerging [42]. Algorithms to estimate aboveground forest
biomass, its components (foliage, stemwood, and branchwood), and their three-dimensional
distribution are in their infancy but show great promise [43–45].

In this study, we focused on the utility of canopy profiles derived from TLS data for develop-
ing relationships to field data, similar to approaches that use airborne lidar scanners. Method-
ology for the calculation of RVPs is described in detail. We evaluated statistical relationships
between TLS canopy profiles and associated metrics with field-measured biometric properties
for twenty plots within La Selva Biological Station, Costa Rica. We used multivariate linear
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regression with stepwise variable selection to develop models of forest biometric properties
from a suite of canopy profile metrics.

Methods

Study site and data sets
La Selva. We conducted our research at the La Selva Biological Station (10° 26’ N, 83° 59’

W), operated by the Organization for Tropical Studies and located in the Atlantic lowlands of
Costa Rica [46]. We determined the location of twenty plots that were randomly selected to
measure field-based biometric properties and collect ground-based terrestrial lidar scans. We
selected our plot locations using a set of a priori constraints based on GIS data layers (trails
existing studies, water bodies, vegetation type) provided by the La Selva (http://www.ots.ac.cr).
Criteria for our plot selection included ease of access, with sites being chosen that were within
100 m and greater than 30 m of established trails. Sites were selected within 50 m from rivers
and water bodies to minimize the influence of local topography and additional effort required
when measuring forested plots in wetlands. There are also a great deal of permanent plots at La
Selva, so to avoid disturbing ongoing long term research, we selected plots that they were at
least 25 m away from established study areas. Locations of random plots did not require spe-
cific permission by the reserve, nor did our field research involve any endangered or protected
species. Field plots were located using a Garmin 76CSx GPS.

Field biometric measurements. For each of the twenty plots we measured stand and tree
attributes using a variable plot design. Trees were counted using a Spiegel-relaskop using a
basal area factor (BAF) of 4 m2 ha-1 at the plot center and at four satellite plots spaced 30 m
from the plot center on each of the cardinal directions [47]. We chose this sampling method
because the variable plot radius design allows for a stratified sampling of trees that are more
likely to contribute to the canopy above a specific point. For sampled trees, we measured diam-
eter at breast height (dbh) using a diameter tape, total height, and height to the base of the live
crown for all trees using a Vertex hypsometer (Haglof Inc.). Buttressed trees that proved diffi-
cult in the measurement of dbh at the usual height (1.37 m) were measured directly above the
buttresses optically using the Spiegel-relaskop at a known distance from the tree [48]. This
method has been found to be more efficient and just as accurate in estimating DBH [48].

We conducted our field measurements in January 2012. We sampled plots located in old
growth, abandoned pasture (approximately 70 years), and logged and secondary forest types.
Basal area (area of the cross section of trees at breast height per total area) was measured on all
20 plots and four additional plots for each of the twenty primary plots for a total of 80 satellite
plots. These 80 satellite plots also used the same variable size plot design. Our stratified sam-
pling design yielded trees of all dbh sizes classes, thus providing a good indication of canopy
contribution for comparison with lidar data. The quadratic stand diameter (QSD) was also cal-
culated from plot-level summary data. This is determined from the equation from [49]:

QSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BA
N

� �
� 4

p

� �s

with BA–Basal area, and N–number of stems. Total estimated biomass for each tree was calcu-
lated using two different sets of allometric equations [50–51]. Average stand properties were
calculated following adjustment of individual trees for their sampling frequency [49]. All esti-
mates were calculated on a per-hectare basis and weighted according to our stratified sampling
design, i.e., basal area [52]. Sampling trees with probability proportional to basal area allows
for the mean height of the measured trees to provide an unbiased estimate of Lorey’s height,
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which is a plot-level basal area weighted mean height. Plot locations and measured biometric
properties were presented in [19].

Terrestrial Laser Scanner (TLS). We used a FARO Focus 3D for our TLS scans, with a
narrow beam width (~5mm at 50m range). The TLS returns approximately 40 million points
per plot. Scans were conducted in the center of our field measured plots. Examples of terrestrial
lidar scans are presented in Fig 1. This instrument weighs 5.2 kg, and is deployed on a light-
weight carbon fiber tripod. It is self-contained and transported in a weatherproof field case,

Fig 1. Terrestrial based lidar (TLS) scans of tropical forest on a hillslope at La Selva Biological Reserve, Costa Rica. Top-Color indicates distance
from scanner, while saturation indicates laser reflectivity. Distortion of canopy elements near the top of the image is due to cylindrical reprojection of a
hemispherical scan. Note that the image here is a 100x downsampling of the original scan, which includes over 40 million (x,y,z) coordinates. Bottom-Higher
resolution TLS image focusing on the understory, white indicates closer objects, black indicates more distant returns.

doi:10.1371/journal.pone.0154115.g001
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and capable of operating on a single internal rechargeable battery to conduct multiple scans
over a full field day. Data is collected on a Secure Digital card (SD), allowing for an entire day
of field data to be stored.

Scans were recorded in the center of our field-plots. When single-scan TLS is employed to
recover the size, characteristics, and position of individual tree stems, occlusion by other vege-
tation can present significant challenges, leading to non-detection bias ([53–54] for corrective
techniques). However, in this study, the focus is on the recovery of bulk canopy attributes, and
we employ a statistical approach based on a modified MacArthur and Horn estimator [55],
that specifically accounts for occlusion, described in section 2.2.1 Relative vegetation profiles.

Processing
Relative vegetation profiles. To construct vertical profiles of plant surface area from TLS

scans, we adopted a quasi-likelihood approach, following [56]. The approach builds on the
connection between the MacArthur-Horn estimator [55] and the family of statistical tech-
niques known as survival analysis [57].

Consider a volume element defined in 3-dimensional space, penetrated by n TLS probes.
Let βi denote the angle of elevation of the ith probe above the horizontal plane. We model the
distribution of plant surfaces using a set ofm discrete classes; denote the inclination of the jth

class relative to the horizontal as αj, and its density (m
2/m3 of projected surface area) as ρj. We

assume either that the distribution of surface angles is radially symmetrical, or that the distri-
bution of probes is; the latter assumption is appropriate for tripod-mounted TLS with volume
elements centered over the tripod position. Then the apparent density of surfaces, normal to a
probe with angle βi, is

Fbi
¼

X
j

gaj ;birj

where (following [58])

gaj;bi ¼ cosaj sinbi aj � bi

gaj;bi ¼
2

p
sin aj cosbi sin y0 þ 1� y0

90

� �
cosaj sinbi aj � bi

and

y0 ¼ cos�1ðcot aj tanbiÞ

Now, let li be the length of the ith probe within the volume element (originating at the TLS
unit, or on a boundary surface of the volume element; and terminating either on contact with a
surface, or by exiting the volume element). Let di = 0 indicate that the ith probe contacted a sur-
face, and di = 1 indicate that it exited the volume element without contact. Then, treating the n
probes as independent observations, following the general model of [56] the log-likelihood of
the observed data can be written as

lnL ¼
Xn

i¼1

�liFbi
þ ðl � diÞ lnðFbi

Þ

We used cylindrical volume elements 1 m thick, and 20 m radius, centered on the tripod
position and ranging from the ground surface to the maximum observed tree height. Within
each volume element, the plant surface density was estimated by maximizing the likelihood
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equation, subject to the constraint that ρj�0 for all classes, using m = 9 angle classes (centered
on 5, 15, 25, . . ., 85 degrees from the horizontal). The horizontal projection of the surfaces
within each angle class was then summed to yield the vertical distribution of horizontally-pro-
jected plant surfaces.

Parameters from RVPs. From RVPs, we calculated a series of metrics for developing sta-
tistical relationships between lidar data and field-based vegetation structural components
(Table 1), which we used previously in a study comparing canopy profiles developed from air-
borne lidar [19]. The metrics we used for our analysis include a profile layer count, peak max-
ima (i.e. height above ground of the largest maximum), highest maxima (i.e. height above
ground of the highest maximum), profile median height, and a ratio of median height to maxi-
mum height of each profile. In addition, we calculated entropy [19, 59], and lidar coherence of
Fourier transforms, using Fast Fourier Transforms (FFT) at frequencies of 0.087 rad m-1, 0.15
rad m-1, 0.31 rad m-1, 0.46 rad m-1, 0.67 rad m-1, and 1.04 rad m-1 [60], which have been
shown to be correlated with biomass when using airborne lidar data. These frequencies corre-
spond to so-called vertical wavelengths of 73, 42, 20, 14, 9, and 6m, respectively. FFT parame-
ters do not include phase.

Theoretical stands, synthetic forests and vegetation profiles. Tree height, crown geome-
try, light dynamics, and canopy foliage have been linked to tree trunk diameters through allo-
metric equations [59, 61–65]. Through the comparison of tree trunk diameter groups, specific
insight may be gleaned in regard to growth and disturbance dynamics [1, 66]. Ratios compar-
ing successive diameter classes tend to be consistent for a forest that is considered to be at or
near a steady state [67–68]. These ratios are often termed q-ratios because of the "quotient of
diminution" or rate of change between diameter classes [68–69]. A constant q-ratio is also
expressed as an exponential diameter distribution [11, 67, 68, 70]. It was determined that q var-
ied within stands [69], despite much literature focusing on a constant q in mixed age states or
exponential distribution. The Weibull distribution includes the constant-q as a special case
when the shape parameter is set to one [71].

Previously, we developed synthetic forest algorithm that uses geometric series to generate
forest stands [19, 72]. Our model uses allometric equations that relate crown size to dbh [12,
73]. Using a random tree trunk size pulled from aWeibull distribution, we place the tree on the
landscape (horizontal location). For each tree placed on the landscape, we generate an ellipsoid
in three dimensional space based on these parameters (dbh and crown geometry) to develop a

Table 1. Description of lidar-derived vertical profile metrics.

Variable Description

Mean Synthetic DBH mean dbh of modeled trees in synthetic forest

Synthetic Shape shape parameter of the best fit Weibull distribution

Coh_0.087 lidar coherence at a frequency of 0.087 rad/m (73 m vertical wavelength)

Coh_0.15 lidar coherence at a frequency of 0.15 rad/m (42 m vertical wavelength)

Coh_0.31 lidar coherence at a frequency of 0.31rad/m (20 m vertical wavelength)

Coh_0.46 lidar coherence at a frequency of 0.46 rad/m (14 m vertical wavelength)

Coh_0.67 lidar coherence at a frequency of 0.67 rad/m (9 m vertical wavelength)

Coh_1.04 lidar coherence at a frequency of 1.04 rad/m (6 m vertical wavelength)

Entropy forest height diversity within 1 m bins

PAI estimated plant area index

Layer Count number of local maximums in vertical profile

Highest Maxima elevation of the highest local maximum

Layer Diff elevation difference between highest maxima and lowest maxima

doi:10.1371/journal.pone.0154115.t001
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forest canopy. If there is too much overlap, i.e. crown shying or light competition, we deter-
mine another random horizontal location for the tree and repeat the check on crown overlap.
Crown overlap of less than half of the horizontal radius of any crown was used in our model
and results in field-based measurements of gap values [72, 74]. Parameters used in our syn-
thetic forest model are found in Table 2. Our method for developing a vegetation profile based
on theoretical stand information is still novel and is explored in [19, 21], and utilized for stand
metrics in [72]. We note that other scientific disciplines have used theoretical models of physi-
cally based systems to interpret observed phenomena, such as exoplanet ring systems [75–76].

Three-dimensional synthetic forest canopies were aggregated to represent vertical profiles
derived fromWeibull attributes (Fig 2). We generated thousands of synthetic forests and their
resulting vertical profiles. Once normalized the relative vegetation profiles were compared with
the lidar RVPs. A goodness-of-fit was used to determine which synthetic vegetation profiles
best matched a lidar RVP. The Weibull distribution parameters represented by the best fit syn-
thetic forest profile were then used in the development of multiple linear regressions along
with other parameters (entropy, PAI, FFT, etc.). We stress that these parameters were represen-
tative of theoretical forests and provided an additional means to characterize terrestrial lidar
information. Currently, our model is able to ingest spatial point data from field plots and
develop a three dimensional canopy. In our efforts to develop theoretical forests stands, we rely
on randomly pulling a tree diameter from a distribution and then randomly placing it across
the landscape, using crown overlap as the spacing mechanism. There are other approaches to
modeling efficient tree and crown spacing, such as spatial point processes, but we have opted
for a simpler approach for this model.

Statistics and Computational Coding
Our estimates of theoretical forests and the associated synthesized vegetation profile utilized
code developed in Python 2.7 (Python Software Foundation, Python version 2.7, www.python.
org). Multiple regression models using forward stepwise regression with Bayesian information
criteria (BIC) for variable inclusion in the model were developed using field-measured forest
structure and terrestrial lidar metrics [19, 77], including estimates of forest gappiness, canopy
layers, and comparisons with our theoretical forest vegetation profile. We also used the FFT
analysis for in our model development. Numerous other variables were calculated for this
study, such as percentile scores for the RVP, however we specifically chose variables to explore
that could be interpreted as biophysical attributes of the vegetation profile. Python 2.7 was
used to derive lidar metrics and for a least-squares analysis to compare theoretical profiles with
TLS derived profiles. We used JMP10 Pro (www.jmp.com) for regression model development.
Multiple regression analysis is specifically designed to accommodate correlated variables; there
is no requirement that the variables be orthogonal. We used Bayesian information criterion in

Table 2. Synthetic forest parameterization.

Parameter Value or Equation

area of simulation 1 km2

mean of the distribution (α) 8–150 cm (binned in 1 cm intervals)

shape parameter of distribution (β) 0.8–1.2

range of stem diameter distribution 0–500 cm

spacing between tree crowns 1/2 crown of existing trees

number of trees in distribution 200,000

crown geometry allometric equations Asner et al., 2002, Palace et al., 2003

doi:10.1371/journal.pone.0154115.t002
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our stepwise variable selection. This is a method to allow for variable inclusion, but not at the
expense of overfitting, by including a penalty term for the number of parameters in the model.
The use of stepwise should only select variables that add to building a more significant model
and parameters that are highly correlated may only have one of the variables included due to
the second correlated variable not contributing to the model’s performance.

Results

Field-based Measurements
Field-measured forest structural data for the twenty plots were presented in [19]. We note that
the forests examined in [19] and in this paper are high biomass and tall statured ranging in bio-
mass from 190.3 to 362.4 Mg ha-1 and average tree height from 10.12 to 39.20 m.

Lidar Metrics
Metrics derived from the RVPs generated from the terrestrial lidar point cloud data are pre-
sented in Table 3. Metrics are discussed here in the range of estimates, as well as the mean and
standard deviation. Metrics derived from synthetic profiles developed from our theoretical for-
est model for mean dbh ranged from 11.35 to 75.39 cm and the shape of the profile showed lit-
tle different with only plot BP8, not being a 0.8, but rather 0.9. We stress that these values are

Fig 2. Examples of synthetic forests, with areas representing 1 km2. Colors indicate height at top of the canopy. Shown here are forests and profiles with
mean diameters of 15 cm (left), 30 cm (middle) and 55 cm (right), with the shape parameter of the Weibull distribution varied from 0.8 to 1.2 in increments of
0.1.

doi:10.1371/journal.pone.0154115.g002
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not specifically comparable to field measured values, but provide a method to cull more infor-
mation from the RVP generated from the ground-based terrestrial lidar data.

Transformed RVPs were used for lidar metrics except the FFT analysis which used untrans-
formed data. This was done to follow the methodology used in [60] and then in [19]. Fourier
transforms for a coherence of 0.087 rad m-1 coherence (vertical wavelength of 73 m) ranged
from 0.54 to 0.90. At a frequency of 0.15 rad m-1 coherence (vertical wavelength of 42 m) ran-
ged from 0.14 to 0.74. Values ranged from 0.02 to 0.39 for a frequency of 0.46 rad m-1 coher-
ence (vertical wavelength of 14 m). Fourier amplitudes for a coherence of 0.67 rad m-1

coherence (vertical wavelength of 9 m) ranged from 0.05 to 0.37. Values ranged from 0.13 to
0.67 for a frequency of 0.31 rad m-1 coherence (vertical wavelength of 20 m). Amplitudes from
the Fourier transforms for a coherence of 1.04 rad m-1 (vertical wavelength of 6 m) ranged
from 0.03 to 0.31.

Entropy estimates from the lidar derived and transformed RVP ranged from 2.85 to 3.33,
with the higher value indicating both a canopy that has more depth and that is more complex
in layering. PAI ranged from 2.48 to 4.16 with the upper bound indicating more plant material
over a given plot in the trees and canopy, but with no differentiation between leaves, stems, or
branches. Gap fraction ranged from 0.02 to 0.08 with the higher value indicating a greater
change of canopy penetration of light and the possibility of either disturbances or multi-layered
nature of the forest. The number of estimated canopy layers ranged from 1 to 8, with the higher
value representing a more complex canopy with a number of different tree crowns at differing
heights. The height difference in the layers in meters ranged from 39 m to 49 m, with this met-
ric being an indication of canopy depth. If only one layer was estimated this was the depth of
that layer, and if multiple layers were found, this was the depth of all layers combined. Finally,
we found that the height of the highest layer ranged from 40 to 50 m, indicating a rather tall
statured forest.

Multiple Linear Regressions
We developed a multiple linear regression using forward stepwise variable selection with BIC
criteria for variable inclusion (Fig 3). A regression was developed for each of the field-measured
or derived forest structural properties (Table 2). Model results are presented in Table 4 and
present estimators of lidar metrics, adjusted r-squared values, significance of the model, and
root mean squared error (RMSE). Moderate to strong relationships between field-measured
traits and a suite of metrics derived from the vegetation profiles we developed using lidar data
(lidar metrics) were found with all models converging on a statistically significant model to
estimate specific forest structural attributes.

We found a significant relationship between basal area and lidar metrics (r2 = 0.75,
p< 0.001, RMSE = 3.76 m2 ha-1). There was a significant, strong relationship between metrics
and both of the biomass estimates with both models having the same r-squared value and
lower RMSE for biomass 1 (biomass1: r2 = 0.72, p< 0.01, RMSE = 27.56 Mg ha-1; biomass2:
r2 = 0.72, p< 0.01, RMSE = 37.51 Mg ha-1). We found a relationship between three parameters
(FFT coherence (0.087), synthetic shape, and synthetic dbh) and tree density (r2 = 0.50,
p< 0.01, RMSE = 153.28 trees ha-1). We also found that models developed to estimate Lorey’s
height and maximum height were both significantly related to several lidar metrics. Lorey’s
height and maximum height shared four variables in the final model, with each model having
an additional metric included (Lorey’s height: r2 = 0.88, p< 0.001, RMSE = 2.18 m; max height:
r2 = 0.71, p< 0.001, RMSE = 4.51 m). Mean crown base height was our least strong model, but
still significant. Relationships were found between the mean crown base height and two lidar
metrics (FFT coherence (0.087) and PAI (r2 = 0.45, p< 0.01 RMSE = 3.91 m). The strongest
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significant relationship was found for mean crown depth (r2 = 0.88, p< 0.001, RMSE = 1.04
m). Lidar metrics for quadratic stand diameter and mean dbh were found to develop significant
relationships (r2 = 0.70, p< 0.001, RMSE = 7.29 cm; r2 = 0.49, p< 0.01, RMSE = 5.45 m2).

Discussion
In this study, we collapsed the three-dimensional point cloud from a TLS into a two-dimen-
sional canopy profile. We were able to predict many forest structural attributes, thus confirm-
ing the usefulness of a TLS for forest inventory (Fig 3). Our work indicates that a terrestrial
lidar sensor can provide useful information on forest structure [19] and comparison can be
readily made between different sensors, in this case TLS, and field-measurements as shown in
[21]. Still, the reduction to a two-dimensional data source loses a great deal of spatial informa-
tion that might be useful for discerning additional forest structure, particularly in the under-
story. TLS data can be reanalyzed with new algorithms and statistical analysis and can prove
useful to examine new avenues of scientific questioning. This provides a unique opportunity to

Fig 3. Observed verses predicted forest biometric properties based onmultiple linear regression models using stepwise variable selection.

doi:10.1371/journal.pone.0154115.g003
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provide a snapshot of a forest inventory plot, allowing for reexamination, analysis, and check
on recorded information.

The three dimensional canopy can be integrated and expressed in two dimensions using a
vegetation profile, which is a model of the distribution of vegetation as a function of height. We
found that metrics derived from these profiles provide insight into biometric properties, rang-
ing from biomass to density of trees. We were able to develop significant relationships between
these profile metrics and forest structural attributes. There were numerous variables that could
be used for the development of multiple regression models, but for this analysis we chose to
examine information derived from our theoretical stand model and lidar profile parameters
not typically used in forest biometric studies.

The variable radius plot design with a stratified sampling approach that we used in this
study proved advantageous both for developing relationships between TLS data and biometric
properties, and for conducting field measurements. We stress that the variable radius plot
design provides a rapid and rigorous assessment of the forest structure. This is because it does
not over sample smaller trees, allows for the inclusion of trees that contribute to canopy struc-
ture, and provides estimates of basal area and its related properties, such as Lorey’s height,
which are often used in remote sensing efforts. This approach made field work efficient and
effective, evidenced by rapid field data collection (approx. 1 hour per plot). The TLS took

Table 4. Forest biometric properties and estimators from lidar metrics.

Basal
Area

Biomass1 Biomass2 Density Lorey's
height

Max
height

Mean Crown
Base Height

Mean
Crown
Depth

Mean
DBH

Mean
height

QSD

Intercept 97.14 767.07 1555.18 2985.36 -201.95 65.42 53.78 -151.13 35.91 56.14 37.87
synth_actual - 1.09 1.27 -6.26 0.08 0.14 - - 0.26 - 0.28

synth_shape -108.21 -612.95 - -3264.19 - - - -42.26 - - -

ft_73m_0.087 30.04 407.18 - - - -53.38 -35.11 19.68 - -52.14 -

ft_42m_0.15 -31.62 -393.79 -672.96 775.82 - - - - -65.37 - -64.60
ft_14m_0.46 21.56 201.34 414.57 - 14.89 20.88 - - - - -

ft_9m_0.67 24.08 - - - - -18.72 - - - - -

ft_20m_0.31 28.89 134.98 - - 28.03 - - 30.33 - - -

ft_6m_1.04 -57.29 -345.63 -612.87 - - - - -39.55 - - -

entropy - - -366.77 - 22.78 - - - - - -

PAI - -46.32 -48.12 - 27.96 - -3.68 31.33 - - -

gapfrac - - - -3564.75 784.78 165.24 - 94.51 409.54 133.68 407.50

max_layer - - 17.16 - - - - -1.33 - - -

layer_diff - - - - 3.35 - - 6.07 - - -

layer_count - - -20.76 - - - - - - - -

highmax - - 9.90 - -2.87 - - -518 - - -

r2 0.75 0.72 0.72 0.50 0.88 0.71 0.45 0.88 0.66 0.49 0.70

p-value <0.001 <0.01 <0.01 <0.01 <0.001 <0.001 <0.01 <0.001 <0.001 <0.01 <0.001

RMSE 3.76 27.56 37.51 153.28 2.18 4.51 3.91 1.04 7.85 5.45 7.29

p<0.001

p<0.01

p<0.05

p>0.05

r2 values presented are adjusted r2 values because of inclusion of additional variables.

doi:10.1371/journal.pone.0154115.t004
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fifteen minutes to collect, with new instruments providing high resolution and faster collection
times. We suggest that the TLS is a highly useful and robust technique for quantifying forest
structure, specifically in a tropical forest, where field effort is often high. We also note the use-
fulness of a TLS in conjunction with field plot measurements.

Field-based measurements were presented in [19] and are on par with those found from
other studies at La Selva [60, 78–80]. In addition, our measured canopy height was consistent
with that found in [28]. We found that many of the geometric canopy properties have not been
measured in the field at La Selva, but were comparable to results from tropical forests in Ama-
zonia and the pan-tropical regions [12, 63, 64, 73]. We stress that measurements other than
just height are important in the understanding of forest dynamics and should be included in
inventory efforts [19, 78, 80]. We note that the forests examined in [19] and in this paper are
higher biomass tropical forests with less range in biomass than some other studies. The limited
range in both height and biomass complicated our efforts, but nevertheless we were able to
develop significant statistical models. We suggest that our approach could be used to improve
and refine biomass estimation for REDD+ efforts.

Theoretical forest stands and synthetic vegetation profile
The synthetic vegetation profile allowed for theoretical stand distributions to be compared
with vegetation profiles developed from discrete return lidar data. This was specifically used to
retrieve additional information about stand size class distributions from the lidar profile. In
essence, the synthetic forest algorithm develops numerous vegetation profiles based on two
parameters from a theoretical model. The two parameters (shape and mean of a forest dbh dis-
tribution) drive the modeled stand conditions, and therefore the thickness of the vegetation
profile and the overall height. This is because dbh and height of vegetation are related, but
other forest structural properties are more complex than just maximum height. The distribu-
tion of trees in various dbh classes represented by the Weibull distribution used in our syn-
thetic forest model represent the canopy structure and vegetation profile of hypothetical
forests.

Many different parameters derived from lidar vegetation profiles provided information
toward estimating the mean canopy depth of a stand. The shape of the diameter distribution of
the synthetic forest (synth_shape) provided information on the tree trunk size ratios between
binned classes. In this study, we represented stand diameter distribution as a Weibull distribu-
tion. The shape parameter, therefore, offered an indication of the proportion of large to small
trees. A lower number value for the shape of the synthetic profile indicates a forest with a
greater proportion of larger to smaller trees, though the smaller trees may still outnumber the
larger trees. This indicates a more complex forest stand structure consisting of a mix of larger
and smaller trees, similar to primary forest with high stand density, which would have a com-
plex and tall canopy. The resulting shape of the vegetation profile from lower synth-shape val-
ues is a narrower vertical distribution within canopy, with the profile maximum occurring at
higher or lower canopy heights based on the mean dbh (synth_actual). We note that the shape
of the best-fit synthetic profile was only different for one plot (BP8), and this variable may have
been included in models because it captured the influence of that one plot in the regression
model. The BP8 plot was located in an abandoned plantation. This plantation was abandoned
over 70 years ago, and the biomass of the plot is on par with other old-growth plots in our
study, as well as other forest parameters. Still, a combination of these forest attributes may indi-
cate a different distribution of tree sizes reflected in the synth_shape in our theoretical forest. It
is encouraging that our regression can adequately estimate stand density and other forest struc-
tural properties in forests that have large biomass values and forest metrics similar to old-
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growth forests. The alteration of the proportion of tree stand size classes may indicate a distur-
bance [66]. Other regressions that utilized the shape parameter for the synthetic profile are the
basal area, biomass2, and mean crown depth. The results of this study with regard to theoretical
forest stand profiles warrant further investigation of the use of this approach for interpretation
of forest disturbance and past human activity. We suggest the use of this model comparison
approach to aid in the possible interpretation of forest disturbance and past human activity.

Fast Fourier Transforms and other Canopy Profile Metrics
Magnitudes of coherence of Fast Fourier Transforms of canopy height profiles provide insight
into the canopy structure [19, 81]. The frequencies used in this study correspond to wave-
lengths that are structurally significant in La Selva and have been shown to be particularly use-
ful for estimating biomass using airborne lidar and radar [60]. For example, mean canopy
depth at La Selva averages around 7 m and mean canopy height averages around 22 m [19].
The coherence of the frequencies corresponding to these wavelengths were significant in our
analysis, as has been shown in previous studies [19, 60, 81]. This can provide some indication
of the structurally significant features that are present in the canopy height profile. In terms of
biomass estimation, characterizing the structure of the canopy by coherence of frequencies cor-
responding to features like depth and canopy height can serve as an analog for the amount of
canopy material present. In previous studies, lidar coherence was calculated using canopy pro-
files derived from airborne lidar data. It is notable that in this study we achieved similar results
using terrestrial-based lidar systems, which implies that structural features present in canopy
profiles can be observed using above or below canopy sensors. Our analyses included frequen-
cies corresponding to vertical wavelengths of 73, 42, 20, 14, 9, and 6m, respectively. These echo
strong forest height signals of approximately mean crown depth and mean tree height in our
study.

Merits of Multiple Linear Regressions
We found that the TLS provides good estimates of canopy properties when modeled using
multiple linear regression of metrics derived from canopy profiles. The best performing model
developed in this study was for mean crown depth (r2 = 0.88, p< 0.001, RMSE = 1.04 m). This
model also includes the most variables in the construction of all of our multiple regressions.
Although regression models containing many parameters are thought to be problematic due to
overfitting, we stress that with BIC variable selection, this was not the case. BIC variable selec-
tion favors the exclusion of unnecessary variables from models. Model performance provided
insight into the complexity of forest structure as measured using terrestrial lidar scans, and also
hinted at how canopies are organized in forested ecosystems.

The regression model developed to estimate stand density (number per hectare) only
include two lidar metrics, shape of the synthetic profile diameter distribution (synth_shape)
and FFT coherence (0.087). The model also had a significant, but rather low r2 value compared
to other models (r2 = 0.50, p< 0.01, RMSE = 153.28 n ha-1). The coherence at a frequency of
0.087 rad/m, corresponding to a vertical wavelength of 73 meters, was positively related to
stand density. A taller forest in a primary forest often has more stems because the complex gal-
lery forest allows for smaller trees to begin growing underneath in a multi-aged and tiered for-
est and canopy when compared to an even-aged forest of similar average height.

Our regression model to estimate biomass (Mg ha-1) performed very well (biomass1: r2 =
0.72, p< 0.01, RMSE = 27.56 Mg ha-1; biomass2: r2 = 0.72, p< 0.01, RMSE = 37.51 Mg ha-1).
Fast Fourier Transform variables all were included except for coherence (0.31) for Biomass2
and the additional exclusion of coherence (0.087) for Biomass1. The inclusion of these
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variables indicates the importance of looking at FFTs in the estimation of biomass in tropical
forests using TLS. These variables represent the relative layering and complexity of the forest
canopy, with a mixed age stand exhibiting a more complex canopy and containing higher bio-
mass due to the optimal space packing of canopy architecture. Improvements in the disordered
packaging using ellipsoids have been explored and may be comparable to the crown geometric
space filling of tree canopies [82–83]. Supporting this is also the inclusion of entropy of the
RVP for the biomass1 model, which is indicative of the complexity of canopy vegetation distri-
bution. PAI and maximum layer height were included for both biomass estimates. Biomass1
also included a negative relation with layer count and a positive relation with maximum height.
The estimated dbh from the synthetically derived RVP was used in both regressions and bio-
mass2 also included a negative relation with the shape of the synthetic RVP.

Biomass is often the structural characteristic of forests that is of highest interest due to
REDD+ efforts, but this focus neglects additional forest structural information that can be used
to infer the past and future trajectory of forest stands. The estimation of such characteristics,
such as basal area, areal density, crown geometry, and size class distribution, are within reach
using either airborne or terrestrial lidar systems. We focus on biomass because it is easier to
estimate across a broad range of values, ranging from lower secondary estimates to higher full
stature forests. However, much of the focus of biomass estimation efforts has been in higher
biomass tropical forests, where remote sensing efforts can fall short due to instrument limita-
tions (e.g. saturation) or issues with linking plot level estimates with moderate scale remote
sensing image data. The estimation of biomass even within and across high biomass forests is
possible with lidar data, but requires quality field-data for statistical model development. Fur-
ther, lidar data are particularly amenable to biomass estimation in high biomass forests because
of the wealth of information about forest stands that can be retrieved from lidar-derived vege-
tation profiles, which we presented in this paper.

Conclusions
Our study examined the use of a TLS to estimate forest structure using vegetation profiles
derived from the three-dimensional point cloud. In this paper, we described in detail the
methodology for their calculation from TLS data. We developed a multitude of parameters
from the vegetation profiles that were used in the development of multiple linear regres-
sions. These parameters included entropy, PAI, number of layers, and those derived from
FFT frequency analysis. In addition, we used information from theoretical forests exhibiting
varying stand properties, primarily dbh size class distribution. This novel approach com-
pared theoretical stand profiles to lidar vegetation profiles using a least-squares fit to infer
stand characteristics using TLS data. We developed significant models for all the forest
structure parameters. Different models included a variety of parameters derived from vege-
tation profiles. The FFT analysis proved the most utilized of all parameters in the different
models of forest structure. The many attributes derived from vegetation profiles in our
study and their inclusion in regression models to predict forest biometric properties is indic-
ative of the complexity of tropical forest canopies. We suggest that it is important to utilize
these derived parameters from the vegetation profiles and not just singular one such as total
height, mean height or entropy. Though many of these forest structural attributes may be
biome and species specific, generalizations made across larger tropical regions will allow us
first to refine cruder biomass estimates, incorporate additional field-based measurements
for comparison, and allow for parsing of simplified biome based estimates of forest struc-
ture, allowing for new avenues of research relating remotely sensing image data to plot
specific understanding of biometric properties.
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