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Abstract

In recent years, comprehensive learning particle swarm optimization (CLPSO) has attracted
the attention of many scholars for using in solving multimodal problems, as it is excellent in
preserving the particles’ diversity and thus preventing premature convergence. However,
CLPSO exhibits low solution accuracy. Aiming to address this issue, we proposed a novel
algorithm called LILPSO. First, this algorithm introduced a Lagrange interpolation method to
perform a local search for the global best point (gbest). Second, to gain a better exemplar,
one gbest, another two particle’s historical best points (pbest) are chosen to perform
Lagrange interpolation, then to gain a new exemplar, which replaces the CLPSO’s compari-
son method. The numerical experiments conducted on various functions demonstrate the
superiority of this algorithm, and the two methods are proven to be efficient for accelerating
the convergence without leading the particle to premature convergence.

1. Introduction

In 1995, Kennedy and Elberhart, inspired by the foraging behaviour of birds, proposed the par-
ticle swarm optimization (PSO) algorithm [1], which has attracted attention in the academic
circles and has demonstrated its superiority in solving practical problems. PSO is a type of evo-
lutionary algorithm, which is similar to the simulated annealing (SA) [2] algorithm. PSO starts
from a random solution, searches for the optimal solution in iterative manner, and then evalu-
ates the quality of the solution based on the fitness. PSO follows the current optimal value to
find the global optimum, so it is simpler than the genetic algorithm (GA) [3], without the need
for the “cross” and “mutation” operations. However, PSO suffers two problems: premature and
slow convergence at the late stage. In the past two decades, many researchers have focused on
addressing these problems by introducing some methods and concepts. A concept of inertia
weight was introduced and applied in the formula by Y.Shi and Eberhart, they set the weight
from 0.9 to 0.4 to provide a balance between exploitation and exploration [4][5]; On the basis
of that, later researchers developed adaptive inertia weight and coefficients [6][7]. To avoid the
premature convergence of the particle swarm, Riget ] and Vesterstrim Js proposed a concept of
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diversity: they set a lower bound of diversity to ensure the swarm has a good search ability [8].
A simulated annealing (SAPSO) idea was introduced to help a particle jump out of the local
[9]. A grey relational analysis was introduced for changing the parameters of PSO to help
improve the algorithm performance in [10]. A chaotic search idea to global search was pro-
posed in [11], which was improved by introducing the sequence quadratic program (SQP)
algorithm to accelerate convergence in [12]. The gradient search for accurate computation of
the global minimum was proposed in [13]. Meanwhile, Some researchers focus on structural
and heterogeneous factor, such as SIPSO [14], SFPSO [15] and LIPSO [16].

To solve the multimodal problems, J.J. Liang proposed the comprehensive learning particle
swarm optimizer (CLPSO) [17]. Later, Liang and Suganthan [18] proposed an adaptive CLPSO
with historical learning, for which the particles’ learning probabilities are adjusted adaptively.
On the basis of that finding, researchers realised that CLPSO’s search method was quite effi-
cient for finding the global optimum. However, CLPSO suffers a slow resolution. Aiming to
this point, some improved CLPSO was proposed. An orthogonal experimental design was
introduced in CLPSO to determine the best combination of learning from a particle’s personal
best position or its neighbourhood’s historical best position [19]. Zheng et al. [20] proposed
ACLPSO which adaptively sets the factors of the algorithm, i.e. the inertia weight and accelera-
tion coefficient. Nasir [21] proposed a DNLPSO which used a learning strategy, whereby all
other particles’ historical best information was used to update a particle’s velocity, as in
CLPSO. However, in contrast to CLPSO, the exemplar particle was selected from a neighbour-
hood. The neighbourhoods were made dynamically in nature, i.e, they are reformed after cer-
tain intervals. Xiang Yu [22] introduced a kind of perturbation in to the iterative forms of the
CLPSO. It determined the particles’ learning probabilities between it’s historical best values
and the dimensional bounds. Because there is a bound for the perturbation, it will speed up the
convergence. On the base of CLPSO, some multi-objective optimization problems can be
solved by using Pareto dominance concept [23][24][25].

In this research, we proposed a novel improved algorithm, called LILPSO, which was based
on CLPSO by introducing the Lagrange interpolation method. There are two main differences
between LILPSO and CLPSO. First, When this algorithm performs as CLPSO’s search method
for some times, it will introduce one Lagrange interpolation computation for each dimension
of the best point (gbest). This is a local search method, and it will help accelerating the conver-
gence. Second, CLPSO selects the better one of the other two particles’ historical optimum
(pbest) as the exemplar at the d" dimension. Compared with CLPSO, LILPSO selects three
points, which are the i particles’ historical optimum, another random particles’ historical
optimum and the global optimum (gbest), to perform the Lagrange interpolation, and then to
obtain a parabola, whose optimum is the exemplar we expected.

The remainder of this article is organized as follows: Section 2 provides related works regard-
ing PSO and CLPSO, and discusses the Lagrange interpolation theory. In Section 3, the proposed
LILPSO is discussed in sufficient detail. Section 4 provides the experimental results on different
functions to prove the superiority of LILPSO. Section 5 presents the paper’s conclusions.

2. Related Works
2.1 PSO algorithm

Assuming the optimization problem is

minf (x) = f(x, %+, x,)

st. x€[L,U] i=1,2,---n

i i
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If the particle is denoted as X; = (x;;, Xi, - - -, X;p), Then the best position it experienced (the best
fitness value) is P; = (p;1, Pio» - - *» Pip)- also denoted by py.s, The index of the best position experi-
enced in particle group represented by symbol g is denoted by Pg, or gj.s;. The speed of particle i

is denoted by V; = (v;, via, - - -, Vip), for each generation, its d" dimension iteration functions are:
Vit +1) = v, (t) + o1 (pi(t) — x,4(1)) + &1 (pgd(t) — x,4(1)) (1)
xalt 1) = x(6) + (4 1) 2)

Where, ¢; and ¢, are all positive constants, called learning factors; r; and r, are random numbers,
which are from 0 to 1; v;, is the -dimension speed of each particle. The first part of the right of
the equal sign in Eq 1 is caused by the particle previous velocity, is called “inertia” part. The sec-
ond part is “cognition” part, which illustrates that the particle thinks itself, as well as influences
the particle information itself of the next step. The third part is the “social” part, which illustrates
the information shared and mutual cooperation, as well as the influences on the swarm informa-
tion of the next step.

2.2 CLPSO algorithm
CLPSO iteration function is different from the standard PSO.
Vvt +1) = av,(t) + ¢, (pid(t), —x,4(t)) (3)

Xg(t+ 1) = x,(t) +v(t +1) (4)

o (
max_gen max

where, v =, — — @) Wmax = 0.9 and w,,;,, = 0.4. p;4(t)" is the exemplar of the

i particle in the d"™ dimension. If the i particle does not update its historical optimum (pbest)
continuously and over the gap m (usually m = 7), then a random number from 0 to 1 will be
generated; for each dimension, if this random number is less than pc(i)(Eq 5), then another two
particles’ historical optimum values will be compared, with the better one chosen for the exem-
plar in the @ dimension. If all the exemplars of a particle are its own pbest, then we will ran-
domly choose one dimension to learn from another particle’s pbest’s corresponding dimension.

exp(10x (i—1)/(N—1))—1
exp (10) — 1

peli) = 0.05 + 0.45 (5)

2.3 Lagrange interpolation

The theory of Lagrange interpolation is to use a polynomial to represent the relationship
between a number of things. For example, when observing a physical quantity, if we gain some
different values at different places, then a polynomial can be simulated by Lagrange interpola-
tion method. The aim of this method is mainly used for data fitting in engineering experiments.
It is a kind of curve smoothly fitting method.

Generally, if the fitness yo, y1- - -y, at n+1 points xo, x1- - -x,, of function y = f(x) are known,
then a polynomial y = P,(x) is considered, who occupies the n+1 points and whose number is
no less than n.

st.Pu(xk) =y k=0,1,2--n

If we want to estimate a point , & #£ x;, i = 0, 1, 2- - n, then the fitness of P,,({) can be the
approximate value of f(£) In this case, we obtain

flx) = Zn:yiPi(x) +error, (i=1,2,---n) (6)
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Where,error =L inii(),‘) o, (x), & is a parameter related with x, and ,,,1(x) = (x — x0)(x — x7)- - -
(x - xn)
3. The proposed methods

3.1 Local search with Lagrange interpolation (LSLI)

The main idea of CLPSO’s search method is to make the particle experience all the local optima
as much as possible. Hence, the Eq 3 of CLPSO cuts off the global optima part compared with
the Eq 1 of PSO. Moreover, after learning from the other particle’s historical optima, CLPSO
sets a gap value m to digest this information. It is no doubt that these procedure will slow the
particle swarm convergence, but will be in favor of multimodal function solution.

To accelerate the convergence, we decide to add a kind of local search into CLPSO. By far,
there are some kinds of efficient technique, i.e. sub-gradient [26][27][28], perturbation, muta-
tion or chaotic search with neighborhood [29][30][31][32][33][34][35]. The technique of sub-
gradient can find the convergence direction easily. However, for the discontinuous and non-
differentiable problems, the direction obtained will mislead the convergence. In addition, the
step size is hard to decide. The technique of perturbation with neighborhood is not influenced
by the form of the function. However, this method has no convergence direction, and usually
needs many additional function evaluations (FEs). Hence, we adapt the local search technique
of Lagrange interpolation to weaken these problems.

For the /" dimension of the gbest, we select three points to generate the information and per-
form Lagrange interpolation. One point is the gbest itself, another point and the last point are
the perturbations nearby the gbest. The perturbation value is denoted by delta, shown in Eq 7.

delta = rand * n x v(i,j) (7)

x,(j) = gbest (j);
x,(j) = gbest(j) + delta; (8)
x,(j) = gbest(j) — delta

Where, v(i, j) is the particle’s speed who has the best fitness for each iteration; 77 is a very small
coefficient. In this research, we set 77 = 0.5/N, N is the particle swarm size. In the j dimension
space, the three points can generate a parabola by the Lagrange interpolation method, and the
minimum point is desired. Eqs 9 and 10 is the Lagrange interpolation computation.

f(x)— (xfxl)(xfo) + (xfxo)(xfxz) + (xfxo)(xfxl) (9)

B O(xo _xl)(xo _x2) 1(x1 _xo)(x1 _xz) 2(x2 _xo)(xz _xl)

Where, y, = fitness(xy), y1 = fitness(xy), y, = fitness(x,). Let I = (xo — x1)(x1 — %) (x; — xy), after
calculating, we obtain a quadratic polynomial.

flx)=ax*+bx+c

a= [(x2 - 'xl)y() + (xo - xZ)yl + (xl - xo)yz]

~

Lo 2 2 2 2 2 e
b= _Y[(xz = %)y + (5 — )y + (% — X))

1
€= 1 [xlxz)’o (x, — x)) + XoXo )1 (xu — %) + X%, 5 (%, — %]
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Xo X1
X1 X1 X1
Xo Xo
X2 o0—o—90
X2 X2 Xo X1
X2 Xo X

(a)a>0 (b)a<0 (c)a=0
Fig 1. Forl + 0, the different cases of the solution.

doi:10.1371/journal.pone.0154191.g001

Fig 1 shows the different cases of the desired solution. When I # 0, which means the three
points are different, if a > 0, then two cases will happen: one is that the gbest is between x1
and x2, and another is that the gbest is on one side of x1 and x2. At this time, we will choose
the minimum point -b/2a as the solution, then compare it with the gbest. If a < 0, then we
will randomly generate a point near the smallest one by Eq 11. Where, X, X;ig and Xp,ax are
the resort points of x0, x1 and x2 according to their fitness separately. If a = 0, then the three
points form a line. If a = 0 and b = 0, this means y0 = y1 = y2, then we will randomly select a
position from the area, denoted as x3 (Eq 12). Where, W is the search center, and
because —0.5 < rand — 0.5 < 0.5, the random search radius is from 0 to half of the area. If
a=0and b! =0, then the solution will be chosen by Eq 11. When I = 0, which means v

(4, j) = 0, then the procedure will be terminated.

Xy = Xmjn + rand « Cy* (X i — X,,,4) + rand * C, % (X mjn — Xmax) (11)

X3 = M + (rand — 0.5)(x* max — X min ) (12)
The flowchart of Lagrange interpolation is shown in Fig 2.

Comparing with other local search techniques, Lagrange interpolation has three characteris-
tics. First, this method has a very fast convergence speed, especially for uni-modal functions.
For example, for the Sphere function computation, whose global optima is [0, 0]'°, supposing
that the gbest is [1, 1]'°, and the delta is 2. After one Lagrange interpolation computation, we
obtain the next gbest is [0, 0]'. Second, for each dimension Lagrange interpolation, it will cost
three additional FEs, and for D dimension problem, the additional FEs of the gbest will be 3*D.
Third, the behaviour of Lagrange interpolation is only a local search, it will not broken the
diversity of the whole particle swarm, hence it will remain the CLPSO’s search ability for
multi-modal functions.

3.2 Lagrange interpolation learning (LIL)

In CLPSO, if the i particle’s pbest does not update for a certain number of times, then another
two particles’ pbest will be chosen for comparison, and the better one will be the exemplar.
However, if the exemplar is still worse than the i particle’s pbest, then this particle will remain
stagnant until the next flag(i)>m, with a large probability. Hence, the best manner to improve
the search efficiency is to set the gbest as the exemplar. Nevertheless, the so-called gbest in the
computation is not the real gbest rather, it can be a best one of many local optima that the
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(2)
1
delta

I
d=1

X0=gbest(d),;y0=fitness(gbest)
X1=gbest(d)+delta;yl=fitness(gbest+delta)
X2=gbest(d)-delta;y2=fitness(gbest-delta)

i

’ f(x)=ax’ +bx+c

Y

|

~—

N
— /(\5 ~ Xy = Xy Hrand * Cy* (X = X,00) |
< a = >
d=d+1 T~ +rand * Cy * (X, — X
| 1

/ _— T~ x3 — ( max +xmm)

a:0 = 2
~ (rand —0.5)(X, . — X))

- (O _
X, =X, +rand * C % (x, —X,.0)

(T %
+rand* Cy ™ (X, = Xy )

i 4
— T~

! /y2 y3 < th(pbest )

_— T

//:151372 y3 <F it(gb;{fbﬁ Pbest;=x1,x2,x3 ‘

N i Y
{ gbest=x1,x2,x3 ‘

)]

y s
— dD =
R
B N
< End )

Fig 2. The flowchart of LSLI.

doi:10.1371/journal.pone.0154191.g002
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Y

v
f1=[rand1*N)
P28=[rand2*N]

v

Fit[pbest(f11))]
>Fit[pbest(f2")

(a) CLPSO

rand < Pec;

Y

v
f1{'=[rand1{*N)
12 id:i
f3{=Pgbest(d)

2
v d=d+1 v fi=i
d_ )
fi=i —x ! Ax“+bx+c

v

712403
LGP 3H=0—

Y N v N N
v < a0 >——<a=0,b=0 —»{ﬁd:Pgbest(d)

Srs
Y Y
r 4 | \ 4
Si=-b/2a fil=rs

] d<D
Bnd

(b) CLPSO-LIL

Fig 3. Selection of the exemplar dimensions for particle i. (a)CLPSO (b)CLPSO-LIL.

doi:10.1371/journal.pone.0154191.9003

program runs until now. If we set gbest as the exemplar directly, as in the traditional PSO, then
a premature convergence will occur.

To avoid both the particle’s stagnant nature and premature convergence, we ensure that
the exemplar’s information has two characteristics. First, the fitness of the exemplar is at least
better than the i particle’s pbest. Second, the information from the exemplar has a diversity
that cannot lead all the particles to prematurely fly into a same area. Hence, we decide to
select three points to generate the information mentioned above. One point is the i particle’s
pbest itself, another point is gbest, and the last point is the rand™ particle’s pbest, except for
the i"" particle. In the " dimension space, the three points can generate a parabola by the
Lagrange interpolation method, and the minimum point is desired. Fig 3 shows the difference
between CLPSO and LIL.

This search behaviour has three strengths: First, the exemplar is the minimum from
Lagrange interpolation with three points which are two pbests and one gbest, this process
ensures the learning direction is always flying to a theoretical point which is better than gbest.
Second, for most of the local search, additional time must be spent on computing the function
evaluations (FEs) to obtain some key information, whereas LIL does not require any additional
FEs. Third, after performing the LSLI mentioned in Section 3.1, we obtained a better gbest,
then the LIL can share this information to other particles as soon as possible.

PLOS ONE | DOI:10.1371/journal.pone.0154191  April 28,2016 7/19



@’PLOS ‘ ONE

LILPSO

3.3 Parametric settings

To a convenient computation, we plan to run LSLI for N times, which is equal to the particle
swarm size. However, To a fair comparison, noticing that there will be 3*D additional FEs for
each LSLI, and we hope the total FEs of all compared algorithms are equal, thus we short the
max iteration number (max_gen) to max_gen — 3 * D. The FEs cost in LSLI are 3*D*N, and
FEs cost on other part are (max_gen — 3 * D)*N, plus them, we get the total FEs max_gen * N,
which is the same with CLPSO.

When to run LSLI? we set a gap g, g = floor(maxDT/N), where, maxDT = max_gen — 3 * D.
Hence, when the particle swarm updates for g times by Eqs 3 and 4, LSLI will run for one time.
In CLPSO, the learning probability pc(i) is set as Eq 5. In this research, we chose a linear

probability form the Ref. [28] to increase the learning chance.

pe(i) = 0.05+ 0.45 % i/N (13)

To compare with OLPSO [36], in this algorithm, we chose both c1 and c2 to be 2, w0 = 0.9 and
w1l = 0.4. The setting of the bounds of the search space and the velocity of any particle affect
the search procedure; hence we chose the same velocity boundary setting as that used in most
of the algorithms.

Vmax =%(*max ~Xmin):  V'min = —V max

Where, o = 0.2. The flow chart of LILPSO is shown in Fig 4.

4. Numerical experiments

Seventeen functions are collected from [17][19][37][38][39], as presented in Table 1, where,
F1, F3, F4 and F5 are uni-modal functions; Rosenbrock (F2) is a multi-modal function that has
a narrow valley and hard to achieve the global optimum; F5 is a noisy function who has a dis-
crete problem; un-rotated multi-modal functions include F6 F11; F12 and F13 are rotated
multi-modal functions; F14 F16 are shifted rotated multimodal functions. The orthogonal
matrix M is generated according to [38].

Since some other algorithms, such as PSO-cf-local [36], UPSO [40], FIPS [41] and DMSPSO
[42], are proven to be less superior to CLPSO in reference [19]; hence, in this research, we just
need to compare LILCLPSO with CLPSO, ECLPSO, OLPSO and DNLPSO, whose iterative
forms are presented in Table 2. The parametric setting of ECLPSO is the same as that of
ECLPSO-4 in [22]. Because we do not know the exact orthogonal matrix for OLPSO, we intro-
duce the result directly from the reference [19]. For DNLPSO, we don’t know the exact topol-
ogy data, hence we introduce the result directly from the reference [26]. To proof the
performance of LSLI and LIL, we test two algorithms, called LILPSO1 and LILPSO2, where,
LILPSOL1 just adapt LSLI technique, and LILPSO2 adapt both LSLI and LIL technique.

For 10 D problems, the following parameters are used: particle number = 50, iteration num-
ber = 2000, and FEs = 100,000; for 30 D problems, the following parameters are used: particle
number = 40, iteration number = 5000, and FEs = 200,000; for 50 D problems, the following
parameters are used: particle number = 100, iteration number = 5000, and FEs = 500,000. For
each function, each algorithm runs for 25 times, and the solutions are analysed using the two-
tailed t-test, with the confidence level of 0.05, ‘+’, -” and ‘=" denote that LILPSO is better, worse
and equal to other algorithms statistically, respectively.

Tables 3-8 list the results tested in 10D, 30D and 50D, respectively, and Fig 5(a)-5(f) show
these algorithms’ convergence curves for some different functions.

For the uni-modal and low dimension problems, DNLPSO has the better performance rela-
tively. For the noisy function F5, LILPSO has the better performance. For uni-modal function
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Fig 4. The flowchart of LILPSO.
doi:10.1371/journal.pone.0154191.g004

PLOS ONE | DOI:10.1371/journal.pone.0154191  April 28,2016 9/19



@'PLOS ‘ ONE

LILPSO
Table 1. Details of benchmarks.
NO. Func.name Expression Box constraint optimum
F1 Sphere u -100, 50]D 0, 0D
P =3 [ ] [0, 0]
F2 Rosenbrock [-30, 30]D [0, 0]ID
zwo o =X+ = 1
F3 Ste n ‘ -100, 100]D 0, 0]D
: )= (x,+0.5)° [ ! [0, 0]
i=1
F4 Schwefel's P2.22 n n [-10, 10]D [0, O]D
= Z bl + H xil
i=1 i=1
F5 Noise Quadric i -1.28, 1.28]D 0, 0D
X) =»_ix! + random(0,1) [ ! [0, 0]
i=1
. . s . —_
F6 A generalized penalized f(x) = . (10sin*(ny, ) [-50, 50]D [0, O]D
+> ;= (1 +108in*(ny;.,)) + (v, — 1)°)
i=1
+Zu X;,10),
y,=1+4(x+1)/4, u(x;,a)
100(x, —a)*, if x,>a
= 0, if —a<x;<a
100(—x; —a)' if x;, < —a
F7 Another generalized penalized f(x) = (sin*(3nx,) + (X, — 1)*(1 + sin*(2xx,,) [-50, 50]D [0, 0]D
n-1 n
+) (% —1)°(1 +sin37x,)) /10 + > u(x;, 5)
i=1 i=1
F8 Ackley L, [-32, 32]D [0, 0]D
f(x) =20+ e — 20 xexp( —0.2 E;x,
1 n
—exp (n Zcos(qu))
i=1
F9 Rastrigin 0 -5, 5]D 0, 0]D
< f(x) = x? —10cos 2mx; + 10 =8, 81 .
i=1
F10 Griewank n [-600, 200]D [0, O]D
Z(x, 100)? n
fx) =1+ = 14000 HCOS(X’ mn)
F11 Schwefel -500, 500]D 420, 96]D
f(x) = 418.9829 — Zx, sin(y/]x]) [ ! [ ]
i=1
F12 Ackley-Rotated f12(y) = fa(y), y = Mx [-32, 32]D [0, O]D
F13 Rastrigin-Rotated f1a(y) = fo(y), y = Mx [-5, 5]D [0, 0D
F14 Griewank-Rotated f1a(y) = f10(y), y = Mx [-600, 200]D [0, 0O]D
F15 Ackley-Rotated-shifted fis(y) =f,(y) +fbias, y =M(X —0) [-32, 32]D 9]
F16 Rastrigin-Rotated-shifted () =f(y) +fbias, y=M(X —0) [-5, 5]D o)
F17 Griewank-Rotated-shifted f.(y) =f,(y) +fbias, y =M(X —0) [-600, 200]D %)
doi:10.1371/journal.pone.0154191.t001
April 28,2016 10/19
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Table 2. Iterative forms of each algorithms.
Algorithm

CLPSO [10]
ECLPSO [33]
OLPSO [38]
DNLPSO [31]
LILPSO

doi:10.1371/journal.pone.0154191.t002

Table 3. Results for D =10, N =50, FEs = 100,000.

Iterative forms

Vig(t + 1) = wvig(t) + ¢4 r1(pPia(t) = Xig(t))

Vig(t+1) = avy(t) + ¢, (pid(t) + W(‘waw 7pid(t)) *Xid(t))

Vig(t + 1) = wvig(t) + ¢4 r1(Pia(t) — Xia(t))

Vig(t + 1) = wvig(t) + ¢4 r1(0ig(t) — Xia(t)) + C2 r2(Pga(t) — Xia(t))

Vig(t + 1) = wvig(t) + ¢4 r1(pia(t) — Xia(t))

Function Algorithm
CLPSO ECLPSO DNLPSO LILPSO1 LILPSO2
F1 mean 4.94E-19 1.78E-30 5.71E-177 1.64E-58 1.11E-73
sd 2.19E-37 2.34E-60 1.11E-123 7.11E-116 6.27E-146
ttest + + - +
F2 mean 1.26E+00 1 1.86E-03 1.00E+00 3.28E-01
sd 1.79E+00 3.80E-09 2.64E-02 6.32E-10 1.71E-01
ttest + + - +
F3 mean 2.05E-18 1.03E-30 0.00E+00 0.00E+00 0.00E+00
sd 2.27E-36 9.88E-61 0.00E+00 0.00E+00 0.00E+00
ttest + + = =
F4 mean 1.50E-11 6.22E+00 1.96E-66 2.29E-13 1.50E-16
sd 3.73E-23 5.67E+01 3.31E-54 1.54E-27 1.61E-33
ttest + + - +
F5 mean 5.00E-03 2.30E-03 5.21E-01 4.50E-03 1.40E-03
sd 3.34E-06 1.74E-06 1.89E-01 3.40E-06 1.99E-07
ttest + + + +
F6 mean 2.20E-18 2.85E-29 4.71E-32 4.71E-32 4.71E-32
sd 4.46E-36 7.99E-57 0.00E+00 0.00E+00 0.00E+00
ttest + + = —
F7 mean 2.02E-16 1.41E-27 1.35E-32 2.45E-32 1.35E-32
sd 3.24E-32 5.91E-54 0.00E+00 1.44E-65 0.00E+00
ttest + B = —
F8 mean 1.94E-08 3.55E-15 3.26E-15 2.58E-11 1.84E-14
sd 1.49E-16 4.21E-30 1.83E-15 3.02E-22 6.84E-28
ttest + + = +
F15 mean 3.76E-02 2.31E+00 2.02E+01 6.27E-05 2.01E-08
sd 4.01E-04 2.83E+01 4.04E-01 4.38E-09 2.26E-16
ttest + + + +
F16 mean 6.11E+00 7.09E+01 7.57E+00 2.71E+00 2.67E+00
sd 7.02E+00 1.03E+02 4.70E+00 8.83E+00 6.65E+00
ttest + + + +
F17 mean 1.40E-01 1.84E+01 8.07E-03 1.52E-04 9.29E-02
sd 3.10E-03 2.53E+02 1.14E-01 2.01E-08 1.09E-02
ttest + + = -
doi:10.1371/journal.pone.0154191.t003
PLOS ONE | DOI:10.1371/journal.pone.0154191  April 28,2016 11/19



@'PLOS ‘ ONE

LILPSO
Table 4. Results for D =10, N = 50, FEs = 100,000.
Function Algorithm

CLPSO ECLPSO LILPSO1 LILPSO2
F9 mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
sd 0.00E+00 0.00E+00 0.00E+00 0.00E+00

ttest = = =
F10 mean 7.92E-05 3.16E-01 1.26E-04 5.00E-03
sd 4.09E-08 1.33E-02 6.90E-08 5.15E-05

ttest - + -
F11 mean 1.27E-04 1.78E+03 1.27E-04 1.27E-04
sd 6.34E-26 3.26E+04 0.00E+00 0.00E+00

ttest = + =
F12 mean 3.08E-02 3.66E+00 2.46E-06 2.87E-08
sd 1.38E-04 4.42E+01 2.33E-12 6.09E-16

ttest + + +
F13 mean 6.41E+00 6.15E+01 1.35E+00 6.95E+00
sd 4.49E+00 8.91E+01 2.16E+00 5.45E+01

ttest - + -
F14 mean 1.64E-01 1.06E+01 6.27E-05 5.34E-02
sd 6.20E-03 1.08E+02 4.38E-09 5.80E-03

ttest + + +

doi:10.1371/journal.pone.0154191.1004

F3, DNLPSO and LILPSO have the equal solutions. Because DNLPSO’s iterative form contains
the gbest part, it will have a fast convergence for uni-modal functions without a doubt. Besides,
the neighbourhoods topology behaviour plays a role of decreasing the search space actually.
However, for the high dimension problems, i.e. 50D, LILPSO has all the best solutions, which
illustrates the Lagrange interpolation technique has a fast convergence performance for com-
plex high dimension problems.

For the multi-modal problems, DNLPSO is less superior to LILPSO for almost all the func-
tions. Comparing OLPSO with LILPSO in 30D problems, for F2 and F8, LILPSO has the better
solutions; for F6, F7, F9, F10 and F11, LILPSO has the equal solutions with OLPSO statistically,
which illustrate that the Lagrange interpolation technique can help accelerating the pbest’s
convergence when performing a local search. For F12, F13 and F14, OLPSO is superior to
LILPSO, which illustrates that LSLI is restricted to rotated problems, although it is still better
than CLPSO.

Comparing LILPSO1 with LILPSO2, for the most problems, LILPSO2 is superior to
LILPSOI, which illustrates that LIL can help sharing the LSLI’s information to accelerate the
convergence. Meanwhile, unlike the gbest’s part of DNLPSO, LIL neither break the diversity of
the particle, nor lead the particle to premature. However, for the rotated functions such as F13,
F14, F16 and F17, the solutions of LILPSO1 are better than LILPSO2, which illustrates that LIL
is not suitable for solving the rotated problems either.

Comparing CLPSO with LILPSO, LILPSO has all the better solutions than CLPSO, which
illustrates that the Lagrange interpolation is a stable and efficient local search technique.

Comparing OLPSO with LILPSO, they both inherit the advantage of CLPSO in solving the
multi-modal problems, nevertheless, LILPSO is obviously superior to OLPSO in solving the
uni-modal problems. Moreover, OLPSO-L needs O(2'°¢* ° * Y D + ND) memory space to
store its algorithm related data structures, which means longer cost time for complex real
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Table 5. Results for D = 30, N = 40, FEs = 200,000.
Function Algorithm
CLPSO ECLPSO OLPSO-G OLPSO-L LILPSO1 LILPSO2
F1 mean 5.66E-15 1.32E-26 4.12E-54 1.11E-38 3.00E-66 4.19E-87
sd 1.33E-29 1.63E-51 6.34E-54 1.28E-38 4.31E-131 8.79E-173
ttest + + + + +
F2 mean 8.28E+00 1.00E+00 2.15E+01 1.26E+00 1.00E+00 1.00E+00
sd 3.57E+01 0.00E+00 2.99E+01 1.40E+00 2.39E-13 1.90E-05
ttest + = + + =
F4 mean 3.72E-09 7.41E+01 9.85E-30 7.67E-22 4.81E-13 4.86E-17
sd 2.12E-18 1.33E+02 1.01E-29 5.63E-22 8.61E-27 1.83E-33
ttest + + - - +
F5 mean 1.57E-02 6.40E-03 1.16E-02 1.64E-02 1.05E-02 8.10E-03
sd 1.31E-05 5.48E-06 4.10E-03 3.25E-03 1.65E-05 4.53E-06
ttest + = + + +
F6 mean 1.63E-15 6.81E-22 1.59E-32 1.57E-32 1.57E-32 1.57E-32
sd 1.05E-30 6.94E-42 1.03E-33 2.79E-48 0.00E+00 0.00E+00
ttest + + = = =
F7 mean 2.05E-12 5.83E-20 4.39E-04 1.57E-32 1.33E-31 1.35E-32
sd 3.59E-24 5.47E-38 2.20E-03 2.79E-48 1.90E-62 0.00E+00
ttest + + + = +
F8 mean 6.92E-07 2.20E-05 7.98E-15 4.14E-15 2.25E-11 2.84E-15
sd 1.21E-13 9.75E-09 2.03E-15 0.00E+00 5.35E-22 2.52E-30
ttest + + + + +
F9 mean 1.77E-15 1.91E+00 2.17E+02 0.00E+00 0.00E+00 0.00E+00
sd 0.00E+00 6.95E+01 1.07E+00 0.00E+00 0.00E+00 0.00E+00
ttest + + + = =
F10 mean 3.35E-10 1.88E+02 4.83E-03 0.00E+00 0.00E+00 0.00E+00
sd 4.02E-19 1.15E+03 8.63E-03 0.00E+00 0.00E+00 0.00E+00
ttest + + + = —
F11 mean 3.81E-04 6.58E+03 3.84E+02 3.81E-04 2.36E+01 3.81E-04
sd 3.41E-23 2.53E+05 2.17E+02 0.00E+00 2.80E+03 0.00E+00
ttest = + + - +
F12 mean 3.36E+00 1.83E+01 7.69E-15 4.28E-15 6.40E-03 2.60E-03
sd 5.73E-01 1.59E-01 1.78E-15 7.11E-16 6.49E-15 9.19E-06
ttest + + = - +
F13 mean 3.92E+01 3.15E+02 4.60E+00 5.34E+01 2.92E+01 3.56E+01
sd 5.80E+01 4.78E+02 1.28E+01 1.33E+01 9.63E+01 6.96E+02
ttest + + = + -
F14 mean 1.06E+00 2.09E+02 1.68E-03 4.19E-08 7.69E-04 7.06E-02
sd 2.10E-03 8.32E+01 4.13E-03 2.06E-07 8.66E-07 7.70E-03
ttest + + = = -
doi:10.1371/journal.pone.0154191.t005
PLOS ONE | DOI:10.1371/journal.pone.0154191  April 28,2016 13/19



@'PLOS ‘ ONE

LILPSO
Table 6. Results for D = 30, N = 40, FEs = 200,000.
Function Algorithm
CLPSO ECLPSO LILPSO1 LILPSO2
F3 mean 1.41E-14 1.13E-19 0.00E+00 0.00E+00
sd 4.76E-29 2.53E-37 0.00E+00 0.00E+00
ttest b ir =
F15 mean 3.24E+00 1.87E+01 3.60E-03 1.10E-03
sd 3.78E-01 2.50E-01 2.81E-05 2.60E-06
ttest + + +
F16 mean 3.54E+01 3.53E+02 2.36E+01 4.66E+01
sd 2.25E+01 8.27E+02 2.19E+01 7.91E+01
ttest - + =
F17 mean 1.06E+00 2.15E+02 1.40E-02 3.46E-02
sd 4.70E-03 8.67E+01 7.11E-04 4.20E-03
ttest + + -
doi:10.1371/journal.pone.0154191.1006
Table 7. results for D =50, N = 100, FEs = 500,000.
Function Algorithm
CLPSO ECLPSO DNLPSO LILPSO1 LILPSO2
F1 mean 1.07E-08 8.06E+03 9.44E-74 2.60E-57 4.77E-74
sd 5.82E-18 1.26E+07 9.13E-32 1.22E-113 5.61E-147
ttest + + + +
F2 mean 3.16E+01 1.08E+01 1.86E-03 1.00E+00 2.28E-01
sd 2.04E+02 8.00E+02 2.64E-02 6.23E-14 1.89E-01
ttest + + - +
F3 mean 3.19E-08 2.03E+04 0.00E+00 0.00E+00 0.00E+00
sd 4.15E-17 1.14E+08 0.00E+00 0.00E+00 0.00E+00
ttest + + = =
F4 mean 2.59E-05 1.27E+02 7.02E-09 8.85E-09 3.84E-13
sd 2.80E-11 2.38E+02 2.29E-06 1.99E-18 5.09E-25
ttest + + + +
F5 mean 2.69E-02 1.97E-02 6.11E-01 1.32E-02 9.30E-03
sd 1.64E-05 2.05E-05 2.20E-01 1.92E-06 8.08E-06
ttest + + + +
F6 mean 1.73E-09 1.35E+02 1.50E-32 1.28E-32 9.42E-33
sd 3.25E-19 3.25E+05 0.00E+00 2.57E-66 0.00E+00
ttest + + + +
F7 mean 1.69E-06 1.92E+02 1.34E-32 8.75E-31 9.42E-33
sd 2.23E-13 7.26E+05 0.00E+00 1.77E-60 0.00E+00
ttest + + + +
F8 mean 3.95E-04 1.58E+01 1.90E+01 8.13E-08 3.05E-14
sd 1.20E-08 1.43E+01 0.00E+00 1.87E-15 1.55E-27
ttest 4r dr dr 1
F15 mean 6.80E+00 1.81E+01 2.07E+01 1.86E-01 3.07E-01
sd 2.47E-01 9.77E-02 1.13E-02 2.86E-02 3.61E-01
ttest + + + -
F16 mean 1.07E+02 1.65E+02 3.40E+01 8.83E+01 8.13E+01
sd 5.02E+01 2.03E+02 8.03E+00 2.27E+02 1.22E+04
ttest + + - =
F17 mean 2.63E+00 4.40E+02 1.11E-02 2.75E-01 2.54E-01
sd 1.61E-01 4.54E+01 1.12E-02 2.46E-02 4.04E-02
ttest + + - =
doi:10.1371/journal.pone.0154191.1007
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Table 8. results for D =50, N = 100, FEs = 500,000.
Function Algorithm

CLPSO ECLPSO LILPSO1 LILPSO2
F9 mean 1.22E-10 6.80E+01 0.00E+00 0.00E+00
sd 7.80E-22 4.54E+02 0.00E+00 0.00E+00

ttest + + =
F10 mean 2.56E-07 5.71E+02 0.00E+00 0.00E+00
sd 1.34E-14 3.73E+04 0.00E+00 0.00E+00

ttest + + =
F11 mean 6.59E-04 1.44E+04 6.36E-04 6.36E-04
sd 1.11E-10 2.77E+06 2.53E-17 0.00E+00

ttest + + =
F12 mean 8.12E+00 1.74E+01 7.88E-02 4.22E+00
sd 9.58E-01 4.08E-01 1.50E-03 7.79E+01

ttest + + -
F13 mean 1.09E+02 4.89E+02 9.51E+01 1.12E+02
sd 1.07E+02 9.71E+02 8.31E+01 2.64E+03

ttest - = -
F14 mean 2.54E+00 4.33E+02 2.28E-01 2.88E-01
sd 9.47E-02 8.61E+01 3.30E-03 4.00E-02

ttest + + -

doi:10.1371/journal.pone.0154191.t008

world problems. In contrast, LILPSO just needs a small number of memory space to store
some related variables, i.e. X0, y0, x1, y1, x2, y2,a, band c.

5. Application for PID control

The fan speed system controlled by oil in air turbofan launch is taken for example. The transfer
function model of the system is:

1.1925 4 6.273
2+ 7.167s+12.84

PID discretion control equation is
k
Kp * e(k) +K1*Ze ) + Kd[e(k) — e(k — 1)]
i=0

The objective function is:
T = / (w1 - e(t)] + w2 - u*(t))dt + w3 - ¢,
0

Where, |e(#)| is the error, t,, is the rise time, u(¢) is the output of the controller, w1, w2, w3 are
the weight. To solve the problem of system overshoot, use the punish function, once the system
overshoot happens, the objective function will be:

T = /w(w1|e(t)| + w20’ (t) + wd|ey(t)|)dt + w3 - t,

Where, w4 > >wl, ey(t) = y(t) — y(t — 1), y(¢) is the output of the object controlled. In this
example, wl = 0.5, w2 = 1, w3 = 1, w4 = 200, the range of Kp, Ki, Kd is respectively [0.2, 10], [1,
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Table 9. PID Results optimized by some algorithms.
Variables CLPSO [10] ECLPSO [33] LILPSO2
Kp 3.0934 2.719 4.402
Ki 17.2368 16.817 24.58
Kd 0.042 6.13E-05 0.0964
overshoot 10.79% 11.75% 9.90%
Mean error 0.0099 0.0101 0.0079
T 2261 2267 2218
doi:10.1371/journal.pone.0154191.t009
50], [1e-7, le-1], and the overshoot should be smaller than 20%. Hence, the problem is:
min T
s.t. 0.2<Kp<10
1 <Ki<50 ( 14)

le—7T<Kd>1le—-1
overshoot < 0.2

The parameters are set as: swarm size N = 30, function evaluations FEs = 3000. The results are
shown in Table 9. It illustrates that the results optimized by LILPSO2 have the smallest goal
function value, and the mean error. Hence, LILPSO2 algorithm is more efficient.

6. Conclusions

In this study, we proposed a novel method known as LILPSO to improve upon the state-of-
the-art CLPSO method. First, the Lagrange interpolation approach is introduced to perform a
local search near the gbest, and help accelerating convergence. Second, this technique is intro-
duced to replace the simple comparison used in CLPSO, to achieve a better exemplar. After
performing numerical experiments, LILPSO was proven to be superior to CLPSO, ECLPSO,
DNLPSO, OLPSO for most of the test functions considered. The Lagrange interpolation was
proven to be an efficient local search approach except for rotated problems. The future work is
to use this method into other fields.
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