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Abstract

Throughout the past decade, there have been substantial advances in understanding the 

pathogenesis of idiopathic pulmonary fibrosis (IPF). Recently, several large genome-wide 

association and linkage studies have identified common genetic variants in more than a dozen loci 

that appear to contribute to IPF risk. In addition, family-based studies have led to the identification 

of rare genetic variants in genes related to surfactant function and telomere biology, and 

mechanistic studies suggest pathophysiologic derangements associated with these rare genetic 

variants are also found in sporadic cases of IPF. Current evidence suggests that rather than existing 

as distinct syndromes, sporadic and familial cases of IPF (Familial Interstitial Pneumonia, FIP) 

likely reflect a continuum of genetic risk. Rapidly evolving bioinformatic and molecular biology 

techniques, combined with next-generation sequencing technologies, hold great promise for 

developing a comprehensive, integrated approach to defining the fundamental molecular 

mechanisms that underlie IPF pathogenesis.

 Introduction

Idiopathic Pulmonary Fibrosis (IPF), the most common of the idiopathic interstitial 

pneumonias (IIPs), is characterized by clinical symptoms of cough and dyspnea, restrictive 

pulmonary function tests with impaired gas exchange, and progressive lung scarring [1]. 

Recently, two modestly effective drugs for treating IPF have been identified [2, 3]; however, 

the prognosis of IPF remains grave, emphasizing a need for a more complete understanding 

of the mechanisms of disease pathogenesis. Available data indicate that both genetic and 

environmental factors contribute to risk of IPF and other IIPs [1, 4, 5]. The first insights into 

IIP genetics came from studies of families with heritable cases of IIP, a syndrome termed 

Familial Interstitial Pneumonia (FIP). As early as the 1950’s, it was recognized that on 

occasion, IIP cases clustered in families [6, 7], suggesting a genetic basis to at least a subset 
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of disease. By the 1990’s, it was reported that FIP represented a rare subset of IIP, 

comprising 3-5% of cases [8]. More recently, estimates from several independent groups 

have suggested that as many as 20% of IIP cases are familial [9-12]. Studies in families have 

uncovered rare genetic variants in eight genes that are linked to FIP, including three 

surfactant-related proteins [surfactant protein C, SFTPC [13-16] and surfactant protein A2, 

SFTPA2 [17] and ATP-binding cassette member A3 (ABCA3)[18, 19]] as well as five genes 

linked to telomere function [telomerase reverse transcriptase, TERT [20, 21], human 

telomerase RNA component, hTR [20, 21], dyskerin, DKC1 [22-24], telomere interacting 

factor 2, TINF2[25-27] and regulator of telomere elongation helicase, RTEL1[28]]. Rare 

genetic variants in FIP-associated genes can be found in some cases of sporadic IPF[12], and 

investigations into the mechanisms through which these mutated genes contribute to disease 

have uncovered common underlying pathobiological changes that likely contribute to 

progressive fibrotic remodeling in FIP and sporadic IPF[4, 5].

 Common genetic variants in IPF

Several studies since the early 2000’s have investigated the role of functional 

polymorphisms in a variety of genes in relationship to IPF risk (Table 1). Variants in several 

genes related to inflammation and immune response, including transforming growth factor 

beta-1 (TGFB1)[29, 30], interleukin-1 receptor alpha (IL1RN)[31-33], interleukin 8 (IL8)

[34], toll-like receptor 3 (TLR3)[35], HLA DRB1*1501[36], as well as cell-cycle 

progression related genes CDKN1A and TP53 [37], have been nominally associated with 

IPF risk or progression. However, results from these small studies have not yet been 

validated in independent cohorts. More recently, several large genome-wide linkage and 

association studies have been completed and identified numerous additional loci that appear 

to confer risk for IPF.

 MUC5B

In 2011, a genome-wide linkage study identified a locus on chromosome 11 that was 

significantly associated with IPF risk[38]. Resequencing of this region subsequently 

identified a common single nucleotide polymorphism (SNP) (rs35705950) in the promoter 

of the gene encoding for Mucin 5B (Muc5B) that was associated with a 6-8 fold increased 

risk for IPF. The association of this MUC5B promoter polymorphism and IPF has since been 

confirmed in several independent cohorts, predominantly in Caucasians [39-44]. 

Interestingly, it appears the MUC5B SNP has a similar frequency in FIP and sporadic IPF 

cases[38]. This association, however, may be specific to IIP among interstitial lung diseases 

(ILD) since reports indicate rs35705950 does not confer increased risk of scleroderma-

related ILD or sarcoidosis [39, 42, 45]. This association of rs35705950 with IPF was 

confirmed in a cohort of Mexican patients [46]; however, rs35705950 was found to be rare 

in a Korean cohort of IPF patients. Similarly, in a Chinese population, rs35705950 was rare 

in IPF patients but different MUC5B polymorphisms were associated with disease [47].

While the rs35705950 MUC5B SNP was associated with increased MUC5B mRNA 

expression in lungs of control subjects, MUC5B expression was uniformly increased in 

lungs of IPF patients compared to controls regardless of whether the MUC5B SNP was 
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present[38]. Consistent with this observation, increased numbers of MUC5B expressing 

cells have been detected in the distal airways of IPF patients[48]. MUC5B rs35705950 has 

also been reported as a risk factor for asymptomatic interstitial lung abnormalities detected 

on CT scan among subjects over age 50 in the Framingham cohort[49]. Surprisingly, 

although minor allele carriers of rs35705950 have increased risk of developing disease, IPF 

patients who carry the minor (risk) allele appear to have improved survival compared to 

noncarriers[50]. Previous animal studies have suggested that MUC5B regulates airway host 

defense[51], but the mechanisms by which MUC5B influences fibrotic remodeling are 

uncertain at present.

 Insights from Genome Wide Association Studies

A major advance of the past several years has been the development of large, robust datasets 

with sufficient statistical power for genome wide association studies (GWAS). Two large 

independent GWAS of IPF patients have now been conducted and identified numerous 

genetic loci that confer IPF risk. The first, published in 2013[40], evaluated 1,616 IIP cases 

(the vast majority of which were IPF) and 4,683 controls subjects with replication in an 

additional 876 cases and 1,890 controls. In addition to confirming the previously reported 

association with MUC5B, 9 additional loci were significantly associated with IIP, 

predominantly IPF (summarized in Table 1), including SNPs near TERT and hTR. Ten SNPs 

on chromosome 11p15 nominally met genome-wide significance, but after controlling for 

MUC5B rs35705950 these loci no longer met genome-wide significance, suggesting weak 

linkage disequilibrium (LD) with the MUC5B promoter polymorphism was largely 

responsible for this association.

Results of a second GWAS again implicated a locus on chromosome 11p15 as significantly 

associated with IPF, but did not replicate other risk loci identified by Fingerlin and 

colleagues. This GWAS [41] performed a three-stage analysis, including a discovery and 

two replication cohorts, comprising in total 1410 IPF cases and 2934 control individuals. 

Five loci achieved genome-wide significance, including 4 SNPs on chromosome 11p15 and 

one on 17q21. Among the 11p15 SNPs were MUC5B rs35705950 and 3 SNPs within the 

Toll-interacting protein (TOLLIP) locus. LD was reported to be low with rs35705950, 

suggesting TOLLIP may represent an independent risk locus. Similar to MUC5B 
rs35705950, IPF cases with the TOLLIP risk allele (the major allele) had decreased 

mortality compared to minor allele carriers.

Deciphering the biological effects of common genetic variants identified by GWAS has 

proven challenging so far. It is possible that the relevant biological effect of most individual 

SNPs is subtle or manifests only in the context of unique additional genetic or environmental 

factors to confer disease risk. Despite challenges, future studies are needed to clarify the 

biological role of disease-associated common genetic variants.

 Rare genetic variants in FIP and IPF

FIP and sporadic IPF share many clinical and histopathologic features[52], which has led to 

the hypothesis that similar mechanisms underlie the pathogenesis of sporadic and familial 

disease. Additionally, Scholand et al. employed an extensive genealogical database and 
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found unexpected relatedness among patients who died of what was believed to be sporadic 

IPF[53], further supporting the idea that the genetic landscapes of sporadic IPF and FIP 

overlap considerably. Together, studies to date suggest that sporadic and familial disease 

reflect of spectrum of genetic risk for pulmonary fibrosis (Figure 1). In this model, genetic 

risk factors of small and large effects interact with rare and common environmental stimuli 

to produce the phenotype of pulmonary fibrosis. Most FIP kindreds appear to have an 

autosomal dominant inheritance pattern with incomplete penetrance, suggesting an 

important role for genetic rare variants (RVs) of large effect. In contrast, sporadic IPF may 

occur more often in the setting of de-novo or low penetrance RVs, or a combination of more 

common, less severe genetic risk alleles. As described below, in some cases genetic RVs of 

large effect may be found in genes that lie within loci also containing common variants 

associated with IPF risk. Focusing on familial disease offers the ability to use Mendelian 

approaches to identify disease-associated RVs. This represents a promising approach to 

enhance mechanistic understanding of the impact of genetic risk factors on development of 

FIP and potentially sporadic IPF.

 Telomerase and short telomeres

Pulmonary fibrosis occurs in approximately 20% of patients with dyskeratosis congenita 

(DC)[54], a rare inherited genetic disorder characterized by leukoplakia, bone marrow 

failure and dystrophic nails that typically affects young males. RVs in genes related to 

telomere biology have been implicated in DC[55]. In 2007, using candidate gene 

approaches, two groups identified heterozygous loss-of-function RVs in telomere-related 

genes in 7-15% of FIP families who did not have a history of DC[20, 21]. These variants in 

TERT and hTR lead to short telomeres in peripheral blood and in the lung [20, 21, 56, 57]. 

To date, TERT RVs are the most commonly identified mutations linked to FIP; however, 

TERT RVs are rarely identified in sporadic cases of IPF[56]. In addition to variants in TERT 
and hTR, two recent reports identified FIP patients with RVs in the gene encoding for 

dyskerin (DKC1)[22, 23], another component of the telomerase complex. Several reports 

have also identified pulmonary fibrosis in families with DC associated with RVs in TINF2 
[26, 27]. In one of these families, there was evidence of somatic or acquired mosaicism for a 

deletion which abolished expression of the missense variant [25]. This interesting 

observation suggests acquired genetic variation may represent one mechanism regulating the 

clinical spectrum of disease linked to telomere pathway RVs.

Using whole-exome sequencing in a cohort of >180 FIP kindreds, our group has identified 

heterozygous loss-of-function RVs in another telomere related gene, regulator of telomere 

elongation helicase (RTEL1) in 9 families with IPF[28]. Similar to TERT, hTR and DKC1 
RVs, these RTEL1 RVs are associated with short telomeres in peripheral blood. In addition 

to a role in telomere maintenance, RTEL1 appears to play a more general role in genome 

stability, DNA-repair, and replication[58-60], suggesting it may confer disease risk through 

additional mechanisms. As TERT deficiency has also been associated with abnormal DNA-

repair[61], it is possible that this mechanism, rather than direct effects on telomere length, 

could be an important in mediating disease risk associated with telomerase pathway RVs. 

Cumulatively, RVs in these five telomere-related genes are reported in approximately 

15-20% of FIP families.
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Notably, the short telomere phenotype in peripheral blood mononuclear cells (PBMCs) is 

not limited to patients with loss of function RVs in telomerase complex genes. 

Approximately 1/3 of sporadic IPF and FIP patients have short telomeres (<10th percentile 

for age) in PBMCs [56, 57]. In addition, it appears that the majority of IPF patients have 

short telomeres in alveolar epithelial cells[23, 56], suggesting that additional factors (besides 

genetic risk) contribute to telomere shortening in lungs of patients with IPF and FIP. 

Interestingly, asymptomatic first-degree relatives of FIP patients have decreased alveolar 

epithelial cell telomere length compared to controls, and alveolar epithelial cell telomere 

length is significantly associated with the presence of interstitial changes on high-resolution 

chest CT [62]. In addition, it appears that PBMC telomere length within families with TERT 
RVs can be inherited at least in part independent of a known RV, producing a unique 

scenario of inherited genetic risk without the risk allele[21, 56, 63]. PBMC telomere length 

appears to be predictive of survival among patients with IPF, wherein IPF patients with short 

telomeres have reduced survival compared to those with “normal” length PBMC telomeres 

[64]. In addition to rare genetic variants in telomere related genes, common genetic variants 

in loci near TERT, hTR and telomere gene OBFC1 have been linked to sporadic IPF by 

GWAS [40] and may be an important factor in determining telomere length. Environmental 

factors, including cigarette smoke exposure, may also play a role in telomere shortening in 

FIP and sporadic IPF[65].

Genetic and clinical evidence provide a compelling association between lung fibrosis and 

telomere biology. Although the mechanisms through which telomerase pathway RVs lead to 

lung fibrosis are uncertain, it has been suggested that these loss of function variants disrupt 

lung epithelial repair mechanisms[66]. Murine models of telomerase dysfunction have been 

developed but present a number of challenges that limit their utility for mechanistic studies 

[4]. In spite of these limitations, several studies have reported attempts to model telomerase 

deficiency in the lung. Tert null mice have decreased numbers of alveolar epithelial cells and 

modest architectural changes in the lung[67]. These mice have increased susceptibility to 

cigarette smoke induced-emphysema[68], but do not develop lung fibrosis. Studies using 

pro-fibrotic stimuli such as bleomycin to investigate fibrotic susceptibility in Tert and Terc 
null mice have yielded conflicting results[69, 70]. Together, it appears that recapitulating the 

biology of telomere dysfunction in humans using mouse models is problematic. Therefore, 

new approaches are needed in this area.

 Surfactant Protein-Related Genes

Nogee and colleagues first described a heterozygous mutation in the gene encoding 

surfactant protein C (SFTPC) in a young woman and her child with IIP in 2001[13]. Soon 

after, we identified the first association between SFTPC and FIP in a large family with 11 

affected individuals[14]. Subsequently, other groups have reported heterozygous RVs in 

SFTPC in 1-2% of FIP [9, 12, 14-16, 71]. Although one group reported SFTPC RVs in 25% 

of FIP kindreds [15], this high frequency was likely related to founder effects. The 

mechanisms through which SFTPC RVs contribute to disease pathogenesis were recently 

reviewed elsewhere[4, 72]. In brief, it appears that C-teminal BRICHOS domain mutants 

result in defects in folding of the propeptide within the endoplasmic reticulum (ER), leading 

to ER stress and activation of the unfolded protein response[73-77]. Linker domain mutants 
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(such as the I73T RV) appear to alter trafficking of the pro-peptide[78] and lead to 

dysregulated proteastasis.[79]. Animal modeling suggests induction of ER stress in alveolar 

epithelial cells is not sufficient to induce spontaneous fibrosis but results in an exaggerated 

fibrotic response following low-dose bleomycin challenge[80]. Induction of ER stress in 

alveolar epithelial cells increases susceptibility to apoptotic stimuli[80, 81], increases 

expression of mesenchymal markers, and enhances production of profibrotic mediators [82, 

83]. In addition, RVs in another surfactant protein (SFTPA2)[17] has been linked to FIP. 

SFTPA2 RVs also result in ER stress and may increase latent TGFβ activation[84, 85].

While the frequency of surfactant protein RVs in sporadic IPF appears to be low[86, 87], 

several groups have reported that ER stress and UPR activation is a common feature of FIP 

and sporadic IPF [74, 88], suggesting that environmental factors (such as herpesviruses [74, 

89] and tobacco smoke[90-92]) may contribute to this phenotype. Promisingly, it has 

recently been shown that pharmacologic chaperones might improve processing of mutant 

surfactant proteins in alveolar epithelial cell lines[93]. These exciting developments raise the 

possibility of targeted therapies for at least a subset of patients with pulmonary fibrosis.

In addition, RVs in another gene involved in surfactant processing, ATP-binding cassette-

type 3 (ABCA3) (previously linked to pediatric interstitial lung disease) have been reported 

in several FIP families[18, 19, 94], as well as in sporadic cases of IPF[12]. In one 

consanguineous family[18], homozygous RVs in ABCA3 were identified. A heterozygous 

RV in ABCA3 was also reported in a patient with “combined pulmonary fibrosis and 

emphysema”[19]. In another family carrying the I73T SFTPC RV, a second heterozygous 

RV in ABCA3 modified disease penetrance [94]. The exact mechanisms by which ABCA3 
variants confer FIP risk are unclear at present, but presumably relate to epithelial cell 

dysfunction.

 ELMOD2

A report using linkage in a cohort of Finnish FIP families suggested ELMOD2 as a 

candidate FIP gene[95] and in vitro studies suggest ELMOD2 may play a role in anti-viral 

responses[96]. Whether ELMOD2 plays an important role in lung fibrosis has not yet been 

elucidated.

 Missing heritability and future genetic discovery

Cumulatively, available literature suggests that rare-variants in FIP genes SFTPC, SFTPA2, 

ABCA3, TERT, hTR, DKC1, TINF2 and RTEL1 comprise 15-20% of FIP cases (Table 2). 

However, it is possible that selection of families for these candidate-based genetic studies, as 

well as founder effects in certain populations, may have overestimated the frequency of 

some variants among all FIP families. While common genetic variants also confer FIP risk 

and may explain as much as 30% of FIP risk [40], there remains substantial “missing 

heritability.” In an effort to identify novel FIP genes, recently, our group has performed 

extensive whole-exome sequencing of subjects from FIP kindreds. While this approach has 

implicated RTEL1 as an FIP gene, ongoing analysis suggests that RVs in a single gene (or 

small group of related genes) do not account for disease in a majority of families [28]. 

Compared to other genetic lung diseases such as cystic fibrosis and familial pulmonary 
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arterial hypertension, it appears the genetic basis of FIP is substantially more heterogenous. 

Given the lack of a dominant gene in FIP, the principal challenge is one of power, both 

within families and across subjects. Linkage or co-segregation based approaches rely upon 

the power of large, multigenerational pedigrees with numbers of affected individuals, a well-

established inheritance model, and ability to clearly ascertain affection status. Considering 

that each individual typically harbors 200 rare genetic variants in their exomes[97] and most 

FIP kindreds are small, dozens of RVs will be shared among affected individuals making it 

difficult to identify the culprit RV by this approach. In light of what appears to be substantial 

allelic heterogeneity, similar to what has been observed for other familial disorders including 

hypercholesterolemia [98], neurodegenerative diseases [99] and cardiomyopathies[100], 

functional testing and validation in cell and/or animal models will be critical to determine 

the pathogenicity of specific variants and genes tentatively linked to disease.

These challenges suggest that novel and creative approaches will be necessary to further 

genetic discovery in FIP and IPF. As elaborated further below, we anticipate that evolving 

bioinformatic approaches to variant prioritization [101, 102], coupled with network and 

pathway based analysis [103] hold promise for identifying, validating, and integrating 

disease-associated variants. In addition to rare coding variants, future studies investigating 

intronic variants or variants in more distant cis- and trans- regulatory regions should further 

inform understanding of the spectrum of genetic risk for FIP.

 Implications for other IIPs

The evolving understanding of the genetic landscape of FIP and sporadic IPF leads to the 

question of whether the same genes and genetic variants confer risk for other ILDs, 

including other forms of IIP. Genetic predisposition for IIPs other than IPF has been poorly 

characterized; however, several clues suggest there are both conserved and distinct genetic 

risk factors. Within FIP pedigrees, it has been well recognized that individuals may harbor 

the same disease-associated RV yet present with different histopathologies [13, 52]. This 

finding indicates that differential environmental exposures overlaid on a common set of 

genetic risk factors may play a role in determining IIP phenotype. No study to date has been 

adequately powered to assess whether common genetic variants linked to IPF also confer 

risk to other IIPs. Future studies are required to address this important issue.

 Implications for clinical management

 Impact on clinical trial design and treatment

Although no clinical trials to date have stratified patients based on genetic risk, this strategy 

could prove useful in light of the now recognized associations of the 11p15 risk variants 

(MUC5B and TOLLIP) with reduced disease progression and improved survival. As 

additional genes and risk alleles are identified, more complex stratification schemes may be 

developed to enhance study design. With the recent publication of randomized controlled 

trials of two pharmacologic agents, pirfenidone [2] and nintedanib[3], that reduce lung 

function decline among IPF patients, a reasonable question for future study is whether 

genetic factors influence response to treatment with one or both of these medications.
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Whether genetic factors influence outcomes after lung transplant remains an underexplored 

question. One small series described successful lung transplant in 8 patients with TERT 
RVs, however a high rate of hematologic and renal toxicities were noted[104]. The role of 

other rare or common genetic variants on outcome after lung transplant is not known.

 Genetic testing

As our understanding of the influence of genetic factors on risk of IPF and its natural 

history, a potential role for clinical genetic testing emerges. At present, we suggest that 

evidence is not sufficient to recommend routine genetic testing for rare or common genetic 

variants for patients with sporadic IPF. In families with FIP, clinical testing for variants in 

SFTPC, SFTPA2, and telomerase-related genes including TERT, hTR, DKC1 and RTEL1 is 

available from commercial and academic sources. Our practice is to offer genetic counseling 

and consideration of genetic testing to patients with FIP and a family history suggestive of a 

telomerase dysfunction syndrome (including diagnoses of aplastic anemia, cryptogenic 

cirrhosis, premature graying). Decisions to undergo genetic testing are complex and highly 

individual, and no studies have evaluated the impact of genetic testing on patients/families in 

the context of FIP. Extrapolating from our experience and literature from other disorders 

[105-107], continued close follow-up of patients who undergo genetic testing appears 

essential regardless of whether they are found to carry a disease-associated RV. In light of 

the incomplete penetrance and variable expressivity of FIP associated RVs, we recommend 

patients and their families confer with genetic counselors before consideration of genetic 

tests that are currently available or may become available in the future. Over time, we 

anticipate there may be a role for broader screening of common and rare genetic variants 

associated with IPF.

 Overcoming challenges and future directions

To date, investigations of the genetic basis of FIP and sporadic IPF have provided crucial 

insights into underlying mechanisms of progressive pulmonary fibrosis. We suggest that 

there is likely not a single “road to IPF” but rather there are “multiple paths” that converge to 

a common phenotype. The development of exciting next-generation sequencing capabilities, 

along with continuously evolving bioinformatic approaches to analysis of large data sets and 

rapidly improving molecular biological techniques, offer unique possibilities to identify 

additional novel genes and pathways that contribute to the pathogenesis of progressive 

pulmonary fibrosis (Figure 2). Whole-genome sequencing is rapidly becoming feasible, and 

although it presents new and greater bioinformatic challenges, the possibility of analyzing 

non-coding variants, as well as interactions among variants holds promise in identifying as-

of-yet unexplained heritability of FIP and sporadic IPF. In addition, the rapidly evolving 

field of stem-cell biology offers the possibility of studying the effects of genetic variants in 

primary human cell-types of interest using inducible pluripotent stem cell (iPSC) 

differentiation strategies[108, 109]. The development of improved gene-editing technologies 

including the CRISPR-Cas9-based system should facilitate enhanced ability to characterize 

genetic variants with functional testing in vitro and in vivo[110, 111].
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We anticipate that by understanding the biological mechanisms through which individual 

genetic variants contribute to disease pathogenesis, key pathways will be identified that will 

clarify the crucial molecular mediators of IPF pathogenesis. We anticipate that a role for 

molecular genetics in the classification of IIPs will emerge. The ultimate challenge that lies 

ahead is to develop an integrated understanding of the role of genetic variants (rare and 

common) and to identify how these variants interact with each other and with environmental 

factors to produce the epigenetic, transcriptomic, proteomic, histopathologic, and clinical 

features of IPF. With increased understanding of the fundamental mechanisms of disease, 

the future is promising for development of new, targeted therapies to further improve 

treatment of IPF.
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Take home idea

Emerging genetic studies offer new insights into the fundamental mechanisms of 

pulmonary fibrosis.
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Novel ideas

Through the past decade, rapid advances in genetic and genomic technologies have begun 

to reshape our understanding of the “idiopathic” interstitial pneumonias. Genome-wide 

association studies have identified more than a dozen common genetic variants associated 

with IPF risk, and may be linked to altered disease progression and survival. Rare genetic 

variants in 8 genes have been implicated in familial interstitial pneumonia (FIP), the 

familial form of IPF, which broadly fall into two categories: genes related to surfactant 

protein processing and trafficking and those linked to telomere biology. In addition to 

genetic links, unique disease phenotypes based on transcriptomic changes have been 

identified. As we go forward, we anticipate that advances in these genetic and genomic 

technologies will result in a re-organization of the way we define and classify interstitial 

lung disease based on molecular characterization. As we evolve from a system of 

diagnosis based on histopathology to one based on a specific genetic/genomic signature 

reflecting the fundamental biology of the disease, there will be unique opportunities to 

develop and test therapies in specific patient populations based on the molecular profiles. 

Coupled with advances in detection of early disease, the coming decade offers an 

unprecedented opportunity to dramatically change the lives of patients with idiopathic 

pulmonary fibrosis.
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Figure 1. 
Proposed model of gene × environment interactions in the pathogenesis of pulmonary 

fibrosis.
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Figure 2. Paradigm to develop an integrated model of genetic risk for IPF
Future studies identifying and characterizing the role of genetic variants in IPF will require 

integration of next-generation sequencing technologies, bioinformatics, and use of state-of-

the-art molecular biology in cell and animal models. Identification of variants by whole 

exome sequencing (WES) or whole-genome-sequencing (WGS) will require strategic 

bioinformatics approaches. These genetic variants will require functional validation in cell 

and animal models; characterizing the effects of these genetic variants on gene expression 

profiles will require integration of sequencing and bioinformatics technologies.
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Table 1

Summary of common genetic variants linked to IPF

Locus Gene SNP
IPF
Risk

IPF
Survival Reference

2q14 IL1RN rs408392
rs419598
rs2637988

Y
Y
Y

[31-33]

3q26 hTR rs6793295 Y [40]

4q13 IL8 rs4073
rs2227307

Y
Y

[34]

4q22 FAM13A rs2609255 Y [40]

4q35 TLR3 rs3775291 Harmful [35]

5p15 TERT rs2736100 Y [40, 112]

6p21
6p21

CDKN1A
HLA-
DRB1

rs2395655 Y Harmful
Y

[37]
[36]

6q24 DSP rs2076295 Y [40]

7q22 Intergenic rs47274443 Y [40]

10q24 OBFC1 rs11191865 Y [40]

11p15 MUC5B
MUC2
TOLLIP
TOLLIP
TOLLIP

rs35705950
rs7934606
rs111521887
rs5743894
rs2743890

Y
Y
Y
Y
Y

Protective
Protective

[38-43, 50]
[40]
[41]
[41]
[41]

13q34 ATP11A rs1278769 Y [40]

14q21 MDGA2 rs7144383 Y [41]

15q14-
15 Intergenic rs2034650 Y [40]

17q13 TP53
TP53

rs12951053
rs12602273

N
N

Harmful
Harmful

[37]

17q21
17q21

MAPT
SPPL2C

rs1981997
rs17690703

Y
Y

[40]
[41]

19q13
19q13

DPP9
TGFB1

rs12610495
rs1800470

Y
N

Harmful [40]
[29, 30]
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Table 2

Rare genetic variants linked to FIP

Gene Reported % of FIP Reference

TERT 8-15% [20, 21]

RTEL1 5% [28]

hTR <1% [20, 21]

DKC1 <1% [23, 24]

TINF2 <1% [25-27]

SFTPC 2-25% [13-16, 86, 87]

SFTPA2 <1% [17]

ABCA3 <1% [18, 19]

Unknown 75-85%
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