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Abstract

The accurate diagnosis of Alzheimer’s disease (AD) at different stages is essential to identify 

patients at high risk of dementia and plan prevention or treatment measures accordingly. In this 

study, we proposed a new AD staging method for the entire spectrum of AD including the AD, 

Mild Cognitive Impairment with and without AD conversions, and Cognitive Normal groups. Our 

method embedded the high dimensional multi-view features derived from neuroimaging data into 

a low dimensional feature space and could form a more distinctive representation than the naive 

concatenated features. It also updated the testing data based on the Localized Sparse Code 

Gradients (LSCG) to further enhance the classification. The LSCG algorithm, validated using 

Magnetic Resonance Imaging data from the ADNI baseline cohort, achieved significant 

improvements on all diagnosis groups compared to using the original sparse coding method.
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I. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder among aging 

people and its dementia symptoms gradually deteriorate over years. AD usually develops in 

3 stages as the pathology evolves from cognitive normal (CN) through mild cognitive 

impairment (MCI) to dementia. MCI represents the transitional state between AD and CN 

with a high conversion rate to AD. There are 40% MCI patients from the Alzheimer’s 

Disease Neuroimaging Initiatives (ADNI) [1] baseline cohort converted to AD within two 

years, whereas only 3.9% for normal aging subjects developed AD during the same period 

[2]. The accurate diagnosis of AD at different stages, especially the early detection, is 

important in identifying subjects at high risk of dementia, thereby taking appropriate 

intervention or prevention measures accordingly.

Neuroimaging, such as Magnetic Resonance Imaging (MRI) and Positron Emission 

Tomography (PET), is a fundamental component in the diagnosis of AD and MCI, and also 

an important indicator in disease monitoring and therapy assessments. A variety of 

neuroimaging-based classification methods in AD and MCI have been proposed [3–7]. Most 

of current studies of AD and MCI simplified the classification problem into two-class 

classification problems, i.e., AD vs. CN [3–6] and/or MCI vs. CN [4–7]. However, the 

staging of AD is indeed a multi-class classification problem leading to the necessity of the 

investigation of whole spectrum of AD, i.e., AD, MCI and CN subjects need to be identified 

in a single setting. The MCI subjects could be further classified into two subgroups, MCI 

converter (cMCI) and MCI non-converter (ncMCI), depending on whether they developed 

into AD in the short term (usually 0.5 to 3 years). The classification of AD, CN and MCI 

(ncMCI and cMCI) is challenging because there are more interferences in a multi-class 

model than in a two-class model.

There are several studies [8–11] on multi-class classification in AD, cMCI and ncMCI. 

These studies were conducted in the same fashion. The features were first extracted from the 

neuroimaging data, usually MRI [8–11] and/or PET [9], and sometimes combined with 

others biomarkers, e.g., cerebrospinal fluid (CSF) measures [9], genetic biomarkers [10] and 

clinical assessment scores [10]. The concatenated features [11] or a subset of the features 

selected using feature selection algorithms, e.g., feature selection based on stability of sparse 

codes [10], were subsequently used to train the classifiers, e.g., support vector machines 

(SVM). Finally, the derived classifiers were used to solve the classification [8, 9] or 

detection [10, 11] problems.

We believe the workflow of the above-mentioned studies could be optimized in two ways. 1) 

Instead of concatenating the multi-modal/multi-view features into a high dimensional feature 

vector or selecting a subset of features to represent the subjects, we may embed the high 

dimensional multi-modal/multi-view features into a low dimensional space. Such 

embeddings may reduce the complexity of high dimensional feature space without 

discarding less important features. 2) The classifiers, e.g., SVMs, enforce the global 

consistency and continuity of the boundaries and ignore the local classification. However, 

we believe we could incorporate such local information in addition to the subject’s feature 

values to further enhance the classification. For example, the oriented gradient in a subject’s 
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local neighborhood could reveal the most possible change of the subject over time and help 

to classify the subject with stronger confidence.

Therefore, in this study, we proposed a new multi-class classification enhancing method for 

the entire spectrum of AD based on the Localized Sparse Coded Gradients (LSCG) 

incorporating the information of the subjects’ local neighborhoods. This method is capable 

of integrating multi-view features to form a more distinctive representation than the naive 

features, and also could automatically update testing set based on LSCG. The proposed 

method was validated on 4 diagnosis groups from the ADNI baseline cohort and it showed a 

great potential to enhance the AD staging.

II. Methods

A. Neuroimaging Data Pre-processing

The neuroimaging data used in this work were obtained from the ADNI database 

(adni.loni.ucla.edu) [1]. In total, 331 subjects were randomly selected from the ADNI 

baseline cohort, and a T1-weighted volume acquired on a 1.5 Tesla MR scanner was 

retrieved for each subject. The sample dataset included 85 AD cases, 169 MCI cases and 77 

cognitive normal subjects. The MCI group was further divided into two sub-groups. There 

were 67 MCI subjects converted to AD in half to 3 years from the first scan, and they were 

considered as the MCI converters (cMCI). The other 102 MCI subjects in the MCI group 

were then considered as the non-converters (ncMCI).

All ‘raw’ 3D MRI data were converted to the ADNI format following the ADNI MRI image 

correction protocol [11]. We then nonlinearly registered the MRI images to the ICBM_152 

template [12] using the Image Registration Toolkit (IRTK) [13]. We mapped 83 brain 

structures in the template space using the multi-atlas propagation with enhanced registration 

(MAPER) approach [14] on each registered MRI image.

B. Feature Extraction

Three types of features extracted from multi-views were used in this study including the 

Grey Matter (GM) volume, solidity and convexity. The grey matter volume features of 83 

brain regions were extracted from each registered MRI image as the representations in the 

first view  for the ith image. We further normalized the  for each 

brain region (indexed by j) by the volume of the brain mask as a fraction of the whole brain.

While the GM volume feature had been widely used in many studies [2–6], it was not 

reliable due to anatomical variability between subjects. Figure 1 shows 4 examples from the 

4 diagnosis groups of the same brain region, the left hippocampus, which is an important 

biomarker in AD. The GM volume features were not able to distinguish the differences 

between the 4 subjects, because the GM volume values were identical, although the AD 

subject presented clear atrophy. Therefore, we proposed two other features, the convexity 

 and solidity  in addition to the GM volume features. Both 

convexity and solidity required the convex hull. The  was defined as in the ratio of 
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the convex hull surface area to the surface area of jth region of interest; and the  was 

the ratio of the volume of jth region of interest to the volume of the convex hull. The 

convexity and solidity provided the complementary information to the volume features in 

describing the brain region atrophy. Figure 1 also shows the convexity and solidity values of 

the left hippocampus for the 4 subjects.

The three types of features extracted from multi-views were then concatenated to form a 

tripled sized feature vector, a(i) ∈ ℝ1×249, as a naive representation of each subject.

C. Sparse Auto-encoder

Given the concatenated feature vectors, a ∈ ℝM×NI (M = 331, NI = 249), we then computed 

the sparse codes using a sparse auto-encoder [17]. The sparse auto-encoder is a special case 

of the neural-network. A sparse auto-encoder has three layers, the input layer, hidden layer, 

and output layer. The outputs of a sparse auto-encoder are constrained to be the same as the 

inputs. We set such constrains to find the internal structure of the input data and thus 

optimally embed the original input feature space to a new feature space. Assuming a sparse 

auto-encoder has NH-hidden-neurons, thus the sparse codes for each input vector is 

.

The goal of a sparse auto-encoder is to minimize the following cost function, as in (1):

(1)

where â(i) is the estimated output of a(i), W1 and W2 are NI × NH and NH × NI matrices 

representing the weights on the neurons in conjunctive layers, ρ̂
j is the average activation of 

jth hidden neuron, KL(*‖*) is the Kullback-Leibler divergence between two variables. We 

could use λ, β and ρ to control the ratios of the 3 cost functions, error cost, weight cost and 

sparsity cost. In this study, we solved this optimization problem through L-BFGS algorithm 

[18]. The sparse codes were then derived as in (2):

(2)

where a ∈ ℝM×NI, W1 ∈ ℝNI×NH, and aSC ∈ ℝM×NH. NI is usually set of a value smaller 

than NH, thus the high dimensional inputs could be embedded into a low dimensional space. 

Therefore the sparse auto-encoder completed multi-view feature embedding and dimension 

reduction simultaneously.

D. Localized Sparse Code Gradient

We assumed that the classification of a given case was not just based on the feature values of 

the subject in the feature space, but also affected by the local circumstance. Although SVM 

defined the hard boundaries in the kernelized space, the localized information could reduce 

the bias of the testing subjects near boundaries. It could be useful especially when a large 

number of support vectors were used in SVM. Figure 2 shows a toy example of 4 scenarios 
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of a simple SVM. The color boxes indicate the neighborhoods. If we update the subjects’ 

positions in the feature space by its local gradients as indicated by the arrows, then we may 

retain the correct classification of scenarios (1) and (3), and increase the margin of scenario 

(2), and correct the classification of scenario (4).

The sparse codes (aSC ∈ ℝM×NH) derived from the sparse auto-encoder were divided into 2 

subsets, a training set  with MU subjects and a testing set 

 with MV subjects. We then modeled the localized information of 

given  as local sparse code gradients (LSCG). In the feature space of aSC, we defined a 

local neighborhood space with radius of r for each subject in the testing subset, . We 

then detected the training subjects  within the local neighborhood of . The detected 

 formed a subset of the training subjects  and we believe it could provide important 

local information for . We argued that the neighbors could help to reveal the 

circumstance of the subjects in addition to the feature values alone. We then calculated the 

LSCG as in (3):

(3)

where  was the control function, and 

 was the smallest distance between  and subjects in . The 

control function controlled the magnitudes of the gradients to assign more weights of closer 

neighbors and also ensured the largest possible movement is less than the b. Finally, we 

update the  to generate  the as in (4):

(4)

where α is the amplitude parameter to control the overall oscillations of .

When using LSCG algorithm, the SVMs were trained with the same training set as the 

original sparse codes, but the testing set was updated based on LSCGs, which provide 

important insight of the local neighborhood and enhance the overall classification with the 

local information.

E. Performance Evaluation

The proposed method was validated using the entire spectrum of AD, including 331 subjects 

in 4 diagnosis groups, as described in Section II.A. We built a set of binary SVMs with the 

Liu et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2016 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



radial basis function (RBF) kernels as the classifiers and the average classification accuracy 

of 4 diagnosis groups was used to evaluate the performance of different features. A 

leave-50%-out 10-fold cross-validation paradigm was adopted throughout the whole process 

of performance evaluation. The optimal trade-off parameter (C) and the kernel parameter (γ) 

for SVM were estimated via grid-search. All SVM based cross-validations and performance 

evaluations were conducted using LIBSVM library [19].

We first evaluated the performance of the naive concatenated features and then compared the 

best performance of it to that of the sparse coding methods with different sparsity settings. 

We intuitively tested the n2 sequences with 1 < n ≤ 10, based on the assumption that the 

performance increased slower as the number of hidden neurons became larger. The optimal 

SVM settings of the desired sparse auto-encoder were inherited in LSCG evaluation, 

because the LSCG algorithm did not change the training set and the optimal parameter 

settings for SVM remained the same. Furthermore, we also used grid-search to determine 

the optimal radius parameter (r) and amplitude parameter (α) in the LSCG algorithm.

III. Results

Figure 3 shows the performance of naive concatenated features and the sparse codes with 

different sparsity settings. The two values in each bracket represent optimal setting of C and 

γ in SVM with RBF kernels. The x-axis represents the number of hidden neurons, and also 

the dimension of the derived sparse codes. The best performance achieved by the naive 

concatenated features (249 dimensional) has a 10-fold cross validation average accuracy of 

39.9%, as indicated by the red dashed line. When the number of hidden neurons were larger 

than 4, the sparse codes could outperform the naive concatenated features. This proved that 

sparse auto-encoder was very effective in multi-view feature embedding. In addition, when 

the number of neurons was set larger than 36, the performance improved slowly. Therefore, 

we set the number of hidden neurons in the sparse auto-encoder as 36, and then applied the 

optimal SVM settings (C = 1400, γ = 0.01) to the LSCG algorithm.

Table I. shows the results of the proposed LSCG algorithm compared to the original sparse 

codes (SC) using the optimized RBF SVMs. The optimal parameter setting of LSCG 

algorithm are (α = 0.5, r = 0.21), obtained through grid-search. The LSCG method formed 

discriminating representations based the original SC and outperformed the original SC 

thoroughly. The largest improvements were achieved on CN and AD groups with an increase 

of 18.5% and 11.9% respectively. The cMCI and ncMCI groups also showed slight increase, 

yet with poor performance. The classifier had the lowest classification accuracy in cMCI, 

and most of the type 1 errors occur between ncMCI and cMCI.

IV. Discussion

In this study, we applied the sparse auto-encoder to embed the concatenated multi-view 

features in a lower feature space in one step instead of two steps taken by the conventional 

multi-view feature embedding methods: 1) embedding the single-view features separately; 

and 2) concatenating the embedded features to synthesized features. This is because the 

sparse auto-encoder automatically updates weights towards the lowest overall cost, and 
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requires no manual concatenation of the sparse codes of single-view features. We further 

proposed the LSCD to model the local information of the testing dataset based on the 

assumption that a large number of support vectors were used in the SVMs. When we built 

the SVMs for the entire AD spectrum with different settings, we found the number of 

support vectors varied from 70 to 140 (with 166 or 165 training subjects). This large number 

of support vectors enables our method to work more effectively.

V. Conclusions and future work

In this study, we present an AD staging method on the entire spectrum of AD based on the 

localized sparse coded gradients. This method is capable of integrating the multi-view 

features and optimally embedding them in a lower dimension feature space to form a more 

distinctive representation. The method also automatically updates testing set based on 

LSCGs and thereby could further enhance the AD and MCI classification. Marked 

improvements are achieved by the proposed method on all diagnosis groups, yet the 

classifications of cMCI and ncMCI are still more challenging than AD and CN. Therefore, 

in our future work, more efforts will be put on the MCI group and other imaging biomarkers 

that are able to detect the subtle functional and anatomical changes, such as PET and DTI, 

will be investigated.
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Figure 1. 
The volume, convexity and solidity features. The 3D volume-rendered images were 

generated using the 3D Slicer software (Version 4.1) [15][16].
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Figure 2. 
The toy examples of the 4 scenarios (shown in different color boxes) in the proposed LSCG 

algorithm. The localized gradients are determined by the center of gravity of the 

neighborhoods. Note that in scenario (1), the subject has no neighbors in the neighborhood, 

so the subject’s position will not change.
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Figure 3. 
The performance of naive concatenated features and the sparse codes with different number 

of hidden neurons.
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