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Pain is a complex disease which can progress into a
debilitating condition. The effective treatment of pain
remains a challenge as current therapies often lack the
desired level of efficacy or tolerability. One therapeutic
avenue, the modulation of ion channel signaling by small
molecules, has shown the ability to treat pain. However, of
the 215 ion channels that exist in the human genome, with
85 ion channels having a strong literature link to pain, only a
small number of these channels have been successfully
drugged for pain. The focus of future research will be to fully
explore the possibilities surrounding these unexplored ion
channels. Toward this end, a greater understanding of ion
channel modulation will be the greatest tool we have in
developing the next generation of drugs for the treatment of
pain.

Introduction

The effective and safe treatment of pain remains an immense
clinical challenge. Current therapies often lack the desired level
of efficacy or tolerability to offer optimal pain management. This
unmet medical need has driven huge research efforts toward the
improved understanding of the physiology and pathophysiology
of pain mechanisms, with the aim of providing more effective
treatment options.

Modulation of ion channel signaling has the potential to effec-
tively treat pain. Ion channel modulators such as Lidocaine (1)1

and Carbamazepine (2)2 (Fig. 1) act on voltage-gated sodium
channels and are known to reduce pain in both the clinical and
pre-clinical setting. However, modulators such as these identified
early in the era of modern drug discovery, generally lack ion
channel selectivity which makes firm conclusions about the roles
of individual ion channels difficult to draw. More recently, evi-
dence for the role of ion channels in pain has come from the
study of monogenic pain related diseases caused by mutations
that affect the function of specific ion channels. These include
studies into both loss and gain of function mutations in the volt-
age gated sodium channel Nav1.7 mutations, which cause pro-
found pain insensitivity3 and sensitivity4,5 respectively, in
individuals with such mutations.

Ion channels are integral membrane proteins with a gated,
water-filled pore that regulates voltage potential across cell mem-
branes via control of ion flow between the intracellular and extra-
cellular environments. Ion flow results in the production of an
electrical signal, causing adjacent voltage-sensitive channels to
open in a chain-reaction fashion, thereby creating a self-propagat-
ing electrical signal that can traverse the entire length of a human
nerve cell, a distance of as much as one meter, within millisec-
onds. Ion channels are broadly classified into voltage or ligand
gated families, depending on the primary factors that lead to
channel opening and closing. Within family types, ion channels
are further categorized into sub-types, based on various factors
that include the location and function of the specific channel.
This review focuses on the current status of ion channel modula-
tors and their application toward pain relief. It also discusses
some of the drawbacks of current therapies and potential direc-
tions for improved treatment of the human pain condition.

Current Ion Channel Modulators for Pain Therapy

Of the 215 ion channels that exist in the human genome, 85
ion channels have strong literature links with pain, many of
which are linked to multiple pain types.6 Some common ion
channel-targeting drugs for pain are highlighted in Table 1. The
number of discrete channels that have been successfully drugged
for pain is very small compared to the number of ion channels
that could have therapeutic potential.

Most of the currently available ion channel pain therapeutics
were discovered more than a decade ago and some are over 50 y
old. For example, Carbamazepine (2) is a first generation anticon-
vulsant developed in the 1950s for the treatment of trigeminal
neuralgia, epilepsy, and mania.2 Drugs of this era were often dis-
covered using “phenotypic” methods such as in vivo efficacy mod-
els or isolated tissue preparations designed to mimic a component
of the clinical condition. In this way, a definitive characterization
of which protein target(s) the ligand engaged with often came
much later on. Carbamazepine is now known to inhibit sustained
repetitive firing by blocking sodium channels in a use-dependent
fashion with pain relief resulting from synaptic transmission
blockade in the trigeminal nucleus. Carbamazepine also blocks
calcium channels and GABA receptors at high micromolar levels
of potency. This pan-ion channel inhibition profile likely drives
Carbamazepines’ broad list of indications (including antiarrhyth-
mic, antidepressant, neuromuscular blocking, and sedative
effects). Additional older drugs in this class are local anesthetics
exemplified by lidocaine (1), which have been used in surgical
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procedures carried out on peripheral tissues, to reverse acute pain,
or to treat chronic pain.1 These anesthetics are administered at rel-
atively high doses to primarily block voltage gated sodium chan-
nels, but also block potassium and calcium channels.7 As with
many compounds possessing polypharmacology, safety side effects
of non-selective agents limit their chronic usage.8

A commercially successful compound, Gabapentin (3)9

(Fig. 2), was discovered using this “phenotypic” method. Gaba-
pentin was originally developed to treat epilepsy and is currently
also used in the treatment of neuropathic pain. As a lipophilic
analog of GABA, Gabapentin was originally thought to increase
GABA levels by activating glutamate decarboxylase and was
found to be efficacious as an anti-convulsant. It was not until
much later that Gabapentin’s true mechanism of action was dis-
covered, namely an interaction with the a2d subunit of voltage
gated calcium channels.10 A follow up drug discovery effort from
Pfizer8 has since delivered Pregabalin (4), a compound with
improved pharmacokinetics over Gabapentin that has become
the gold standard for the treatment of chronic pain associated
with diabetic neuropathy.

The relative lack of success in bringing new ion channel pain
therapies to market in recent years is notable. The reasons for
this include failure to deliver clear efficacy and/or safety differen-
tiation over the current standard of care therapies. This lack of
return upon investment has driven new approaches in pain
research. The strategy to select and validate pain targets is moving
away from those supported by preclinical pain models (which are
largely unsuccessful in predicting clinical efficacy for novel pain
medicines) to an approach in which human data, including
genetic data and human in vitro pharmacology data from
patient-derived cells, define confidence in mechanism. These
human data are coupled with an increased focus on the delivery

of translatable biomarkers to enable effective clinical dose-setting.
In addition to assessing the efficacy of new mechanisms, it is
hoped that such human cell platforms will enable a more pheno-
typic approach to the identification of new pain targets. The
increased investment in human biology, human-relevant in vitro
screening platforms, and translational biomarkers is hoped to
lead to greater success in Phase 2 and 3 clinical trials.

Ion Channel Modulators for Pain Therapy in Clinical
Development

As described above, non-selective sodium channel blockers
have been used for many years in the treatment of acute pain, but
their utility is limited due to the functional consequences of
inhibiting sodium channels other than those expressed in noci-
ceptors, e.g. in the heart and CNS. A more recent understanding
of which sodium channels are expressed in nociceptors and the
generation of experimental and/or genetic data linking specific
Nav receptors to a pain phenotype, has spurred the pain research
community to deliver selective sodium inhibitors for clinical
characterization. Advances in automated in vitro electrophysiol-
ogy screening platforms8 have greatly facilitated these research
efforts, enabling high quality Nav isoform data to be generated
in a high through-put fashion.

In 2006, a seminal publication by Cox et al.3 demonstrated
that congenital insensitivity to pain (CIP) could be conferred by
missense mutations in Nav1.7. In addition to this, gain-of-func-
tion Nav1.7 mutations have been described in the rare, extreme
pain conditions of inherited primary erythromelalgia (IEM)5 and
paroxysmal extreme pain disorder (PEPD).4 These findings initi-
ated a huge pharmaceutical investment that has delivered a range

Figure 1. Lidocaine (1) and Carbamazepine (2) are known ion channel
modulators.

Table 1. Common Ion Channel Drugs for Pain Indications

Drug Target Channel Disease Target Year of First Clinical Usage

Gabapentin Cav (a2d) Pain 1994
Pregabalin Cav (a2d) Pain 2004
Ziconotide Cav 2.2 Severe Pain 2004
Lidocaine Nav Local Anesthetic 1949
Bupivacaine Nav Local Anesthetic 1987
Lamotrigine Nav Off label neuropathic pain 1994
Lacosamide Nav Seizures and Pain 2008
Carbamazepine Nav Epilepsy and off label for pain 1963
Eslicarbazepine Nav Epilepsy 2009

Figure 2. Gabapentin and Pregabalin.
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of reportedly selective Nav 1.7 blockers. A number of these
compounds have now entered clinical trials for pain (Fig. 3),
including the proline derivative 5 from GSK/Convergence,11 a
spiro-oxindole compound from Xenon (series exemplified by 6
XEN402, now known as TV-45070)12 and an aminoheterocycle
sulphonamide series from a Pfizer-Icagen collaboration (series
exemplified by 7).13 To-date, Xenon have reported efficacy
treating pain in patients with congenital erythromelalgia, but no
efficacy was seen in a study of postherpatic neuralgia. Also, Con-
vergence has reported positive data from an open-label phase of a
trigeminal neuralgia study as well as statistically significant differ-
ences in the reduction of pain in a
lumbosacral radiculopathy (sciat-
ica) trial.50

In addition to Nav 1.7, a lot of
interest has been generated in
Nav1.8 as a target for both
inflammatory and neuropathic
pain. Abbott, in collaboration
with Icagen, reported the discov-
ery of a number of biaryl Nav1.8
inhibitors (Fig. 4), exemplified by
8 (A-803467)14 and 9,15 of which
A-803467 has been used exten-
sively in preclinical target valida-
tion. Pfizer has also disclosed a
series of Nav1.8 selective com-
pounds, exemplified by 6,6-biaryl
amide 10,16 and progressed an
example into the clinic. Unfortu-
nately, in the one result published

so far, amide 10 showed no efficacy in a post-surgical dental pain
clinical trial.

The TRP channels constitute a family of mammalian cation
channels with biological functions that include pain perception
and thermosensation.17 TRPV1 is activated by numerous stimuli
including heat (>42�C), vanilloids, lipids, and protons/cations.
Several highly selective TRPV1 antagonists have advanced into
clinical development for the treatment of pain including 11
AMG517,18 12 SB-705498,19 13 ABT-102,20 and 14 MK-
229521 (Fig. 5). Unfortunately, reports from many of the clinical
studies have shown TRPV1 blockade to have effects on core body

Figure 3. Nav1.7 compounds.

Figure 4. Nav1.8 compounds.

Figure 5. TRPV1 ligands.
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temperature, which has halted much of the drug development
activity targeting this channel. The use of desensitising TRPV1
agonists has also been shown to reduce pain sensitivity.22,23 This
has found clinical application with a topical approach (e.g.,
Astella’s Qutenza� patch, 8% capsaicin) in which a local anes-
thetic is applied to the painful area prior to topical capsaicin, pre-
venting the initial painful flare that occurs with agonist-induced
nociceptor excitation prior to desensitisation.

TRPM8 is activated in vitro by cool temperatures (10¡23�C)
and cooling agents such as icilin and menthol. Researchers at
Pfizer have recently disclosed that TRPM8 antagonist 15 (PF-
05105679), Figure 6, is analgesic in an experimental model of
cold pain (the Cold Pressor Test) in humans, without affecting
core body temperature.24

TRPA1 is activated by a variety of ligands including exoge-
nous electrophiles such as cinnamaldehyde, allyl isothiocyanate,
and the endogenous ligand 4-hydroxynonenal (4-HNE).9

Recombinant TRPA1 is activated by noxious cold (<17�C).17

The TRPA1 channel has been directly linked to pain in humans
by a gain-of-function mutation that causes familial episodic pain
syndrome.25 The most advanced TRPA1 antagonist is
Glenmark’s GRC17536, which has shown a statistically signifi-
cant and clinically relevant response in a Phase 2a clinical trial for
treating diabetic peripheral neuropathy. The structure of
GRC17536 has not been disclosed, but an exemplar from one of
Glenmark Pharmaceutical’s patent applications is shown in

Figure 7 (compound 16,26 TRPA1 IC50 2.5nM). Another
TRPA1 compound comes from a Hydra Biosciences/Cubist
Pharmaceuticals partnership. They have taken TRPA1 antagonist
CB-625, presumed to be from a series that includes 17 HC-
03003127 and 18 HC-068559,28 to the clinic for the potential
oral treatment of pain and inflammatory conditions. Hydra/Cub-
ist have reported completion of a single ascending-dose Phase 1
study with CB-625, but efficacy data is not yet available.

TRPV3 is activated by natural products such as camphor, 2-
APB, and warm temperatures (>32�C). Several classes of selec-
tive TRPV3 antagonists have to-date been disclosed (Fig. 8) that
have enabled research into the role of TRPV3 in pain signaling.
These include the benzothiazole 1929 and the quinazolin-4-one
20 from Hydra30 and Glenmark’s GRC15300 (structure not dis-
closed), Glenmark reported the completion of a Phase 1 study
with GRC 15300 in 2011 and, following a deal with Sanofi-
Aventis, opened a Phase 2 trial in neuropathic pain in 2012.51

Unfortunately, Sanofi discontinued the trial in 2014 when the
compound failed the Phase 2 proof of concept trial. Glenmark
has filed a number TRPV3 patent applications, examples from
which include pyridopyrimidine 2131 and benzimidazole 22.32

TRPV4 is activated by a number of small molecules that
include anandamide, 5,6-epoxyeicosatrienoic acid, and
GSK1016790A, and by heat (27¡34�C). A number of selective
TRPV4 antagonists have been disclosed over recent years
(Fig. 9). These include RN-173433 from Renovis, Hydra’s HC-
067047; a compound reported to be efficacious in preclinical
models of bladder cystitis,34 and sulphonamide 25 from Pfizer.35

To date, the only TRPV4 ligand to have entered clinical trials is
GSK 2798745, a compound of undisclosed structure that has
entered a Phase 1 study. This ligand is hoped to be effective in
treating pulmonary edema.

There is interest in the pain research field in delivering small
molecule N-type Cav2.2 selective compounds. This is driven by
the established clinical link of this subtype to neuropathic pain36

and the fact that specific knockdown of Cav2.2 ameliorates pain
in chemically induced and neuropathic pain models.37 The only
marketed N-type Cav2.2 selective compound is the analgesic
peptide Ziconotide, derived from the toxin of the cone snail
Conus magus. Ziconotide requires intrathecal administration to
be efficacious and is associated with significant side effects. Prog-
ress has been made in developing orally acting small molecule N-
type inhibitors to overcome these limitations. N-type Cav2.2
chemotypes have now been disclosed from several research
groups (Fig. 10) including CNV2197944 from Convergence

Figure 6. TRPM8 modulator PF-05105679.

Figure 7. TRPA1 ligands.
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(likely to be from the same family as compound 26)38 and Z-160
from Zalicus (now Epirus Biopharma),39 both of which have
been progressed into Phase 2 studies. The Convergence com-
pound has now completed a pair of Phase 2 studies, in posther-
petic neuralgia and diabetic peripheral neuropathy. While the
resulting efficacy data is not yet available, it is expected to be
revealed at the end of 2015. The Zalicus compound has also fin-
ished a pair of Phase 2 studies, in lumbosacral radiculopathy and
postherpetic neuralgia. Compound 27 did not meet the primary
endpoint for either of these studies.

T-type calcium channels are low-voltage activated calcium
channels that act as modulators of action potential threshold by
increasing the calcium current, leading to further depolarization
of the cell and activation of other calcium channels, and ulti-
mately, sodium and potassium channels. They are present within
cardiac and smooth muscle, and many neuronal cells within the
central nervous system. T-type calcium channel blockade can
reduce pain in neuropathic, inflammatory, and visceral pain
models. Z944, is a novel, oral, state-dependent, selective T-type

calcium channel blocker (structure
not disclosed). This blocker has
>150-fold selectivity vs. non-T-
type voltage-gated ion channels. A
Phase 1 study to determine the
safety, tolerability, and pharmaco-
kinetics of oral Z944 showed it was
safe and well tolerated. A Phase 1b
clinical study measuring Laser-
Evoked Potentials (LEP) from skin
irritated following topical applica-
tion of capsaicin or exposure to
UV light demonstrated that Z944
reduced peak-to-peak amplitudes
of LEPs from both capsaicin and
UV irritated skin models and
reduced subjective Visual Analog
Scale (VAS) pain scores in both
skin types. On the basis of these
findings, Z944 is currently being
tcgq.53

Kv7 ion channels are widely
expressed in neurons and a genetic
association exists between channel
mutations in Kv7.2 and Kv7.3 and
neuronal hyperexcitability.40 A

number of preclinical pain models have been used to examine
the effects of activation of Kv7 channels41,42 which support the
role of Kv7 channels in pain signaling and the potential opportu-
nities for Kv7 openers in pain therapy. Retigabine was approved
in 2011 for use in partial-onset seizures and then later taken on
to a Phase 2 proof-of-concept clinical trial for pain from posther-
petic neuralgia. Unfortunately Retigabine was non-superior to
placebo in this study with respect to reducing pain scores. A
structurally similar analog of Retigabine, Flupirtine, is approved
for treatment of lower back pain in Europe.

Ionotropic glutamate receptors (iGluRs) are ligand gated ion
channels that mediate excitatory neurotransmission.43 Subtype-
selective GluN2B receptor antagonists in particular have
attracted attention from the pharmaceutical research community
for targeting CNS disorders including stroke and Parkinson dis-
ease.44 Examples of GluN2B receptor antagonists include Ifen-
prodil45 and the more selective derivative Traxoprodil46

(Fig. 11). Traxoprodil has progressed into clinical trials for a
number of indications including stroke and neuropathic pain.

Figure 9. TRPV4 ligands.

Figure 8. TRPV3 ligands.
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P2X receptors are purinergic cell surface ion channels gated by
extracellular ATP.47 P2 £ 3, P2 £ 2/3, P2 £ 4, and P2 £ 7
receptors have received much attention over the last few years as
potential targets to treat a variety of conditions that include
chronic pain and arthritis.48 Evotec, Pfizer, and AstraZeneca
have progressed P2 £ 7 receptor antagonists to the clinic. Unfor-
tunately, CE-224535 and AZD9056 (Fig. 12) did not demon-
strate clinical efficacy in rheumatoid arthritis, although it is not
yet known whether compounds such as these may be useful in
pain indications.49

Conclusion and outlook

The modulation of ion channel signaling by small mole-
cules has shown the ability to treat pain. However, current
therapies often lack the desired level of efficacy or tolerability
to offer optimal pain management. The focus for future
research will inevitably be to provide safer and more effective
treatments for pain. This future research will include advances
in ion channel cloning and screening capabilities, increased
knowledge regarding subtype selective molecules, and

Figure 12. P2 £ 7 ligands.

Figure 10. N-type Cav2.2 compounds.

Figure 11. Ionotropic glutamate receptor ligands.
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additional screening against ion channels known to elicit CNS
and cardiovascular side effects. Finally, discovery of strong
genetic linkages between specific ion channels and their related
diseases will help to determine the most beneficial targets. In
the end, a greater understanding of ion channel modulation
will be the greatest tool we have in developing the next

generation of drugs for the modulation of pain in the human
disease state.
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