
CalDAG-GEFI deficiency reduces atherosclerotic lesion 
development in mice

Yacine Boulaftali1, A. Phillip Owens III1, Ashley Beale1, Raymond Piatt1, Caterina Casari1, 
Robert H. Lee1, Pamela B. Conley3, David S. Paul1, Nigel Mackman1, and Wolfgang 
Bergmeier1,2,#

1McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 
USA

2Department of Medicine, Department of Biochemistry and Biophysics, University of North 
Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

3Portola Pharmaceuticals, South San Francisco, USA

Abstract

Objective—Platelets are important to the development and progression of atherosclerotic lesions. 

However, relatively little is known about the contribution of platelet signaling to this pathological 

process. Our recent work identified two independent, yet synergistic signaling pathways that lead 

to the activation of the small GTPase Rap1; one mediated by the guanine nucleotide exchange 

factor, CalDAG-GEFI (CDGI), the other by P2Y12, a platelet receptor for ADP and the target of 

anti-platelet drugs. In this study, we evaluated lesion formation in atherosclerosis-prone low-

density lipoprotein receptor deficient (Ldlr−/−) mice lacking CDGI and/or P2Y12 in hematopoietic 

cells.

Approach and Results—Lethally irradiated Ldlr−/− mice were reconstituted with bone marrow 

from Caldaggef1−/− (cdgI−/−), p2y12−/−, or cdgI−/−p2y12−/− (DKO) mice and fed a high fat diet 

for 12 weeks. Ldlr−/− chimeras deficient for CDGI and/or P2Y12 developed significantly smaller 

atherosclerotic lesions in the aortic sinus and in aortas when compared to the Ldlr−/−/WT controls. 

We also observed a significant reduction in platelet-leukocyte aggregates in blood from 

hypercholesterolemic Ldlr−/−/cdgI−/− and Ldlr−/−/p2y12−/− chimeras. Consistently, fewer 

macrophages and neutrophils were detected in the aortic sinus of Ldlr−/−/cdgI−/− and Ldlr−/−/

p2y12−/− chimeras. Compared to controls, the plaque collagen content was significantly higher in 

Ldlr−/− chimeras lacking CDGI. Interestingly, no statistically significant additive effects were seen 

in Ldlr−/−/DKO chimeras when compared to chimeras lacking only CDGI.

Conclusion—Our findings suggest that CDGI is critical for atherosclerotic plaque development 

in hypercholesterolemic Ldlr−/− mice due to its contribution to platelet-leukocyte aggregate 

formation and leukocyte recruitment to the lesion area.
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Introduction

Atherosclerosis is a chronic inflammatory vascular disease involving various cells, such as 

vascular cells, leukocytes and platelets. The presence of circulating activated platelets has 

been reported in the blood of patients with unstable atherosclerosis 1, 2, stable coronary 

disease 3 and hypercholesterolemia 4. Platelet depletion or blockade of the main platelet 

adhesion receptors, GPIbα or αIIbβ3, in apolipoprotein E-null (apoE−/−) mice profoundly 

reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion 

formation 5. Thus, platelets seem to be a proximal sensor of the vascular injury before the 

development of atherosclerotic lesions.

Platelet activation has long been postulated to contribute to the development of 

atherosclerotic plaques, although the mechanism by which this might occur is not clear. 

Activated platelets in blood bind leukocytes mainly via a platelet P-selectin – leukocyte 

PSGL-1 interaction 6, and platelet–leukocyte aggregates are well-documented in patients 

and mice with atherosclerosis 7, 8. Once formed, platelet-leukocyte aggregates promote 

endothelial cell (EC) activation and EC P-selectin-dependent leukocyte rolling 9. Indeed, 

deletion of P-selectin in platelets and/or ECs leads to significantly impaired early 

atherosclerotic lesion development in mice 10,11. Platelets are also a reservoir for cytokines 

(eg. CXCL4, IL1β, CD40L), which can increase vascular permeability and leukocyte arrest/

extravasation12,13. Interaction between activated platelets and endothelial cells triggers 

cytokine secretion (eg. CCL2), increased surface expression of inflammatory adhesion 

molecules (eg. VCAM1) and the release of microvesicles by endothelial cells 6. The initial 

platelet tethering depends on the interaction of glycoprotein (GP) VI with subendothelial 

collagen and GPIb-V-IX with von Willebrand factor (vWF) bound to the surface of activated 

endothelial cells 14. Following cellular activation, integrin αIIbβ3 is critical for firm 

adhesion of platelets to the exposed subendothelium and to activated endothelial cells 15.

Studies from our group established a central role for Ca2+ and diacylglycerol regulated 

guanine nucleotide exchange factor I (CalDAG-GEFI, CDGI, RasGRP2) in the inside-out 

activation of integrins on platelets and neutrophils 16,17,18. CDGI catalyzes the activation of 

the small GTPase Rap1. In platelets, the Rap1B isoform accounts for ~90% of the total Rap 

protein 19, and its importance in αIIbβ3 activation was demonstrated in studies with Rap1b-

deficient mice 20. Our recent studies identified a 2-pathway model for Rap1-dependent 

integrin activation downstream of PLC activation in platelets 21. CDGI is a high-affinity 

sensor for Ca2+, which mediates the rapid but reversible activation of αIIbβ3 22. In the 

absence of CDGI, Rap1/integrin activation is delayed but sustained and depends on 

signaling by protein kinase C and the platelet receptor for ADP, P2Y12 23. Importantly, 

apoE−/− mice deficient in P2Y12 exhibit reduced plaque formation when on high fat diet 

(HFD) 24. Furthermore, treatment of atherosclerotic patients with the P2Y12 inhibitor, 

clopidogrel, reduced the number of P-selectin-positive platelets and platelet-leukocyte 
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aggregates in blood 25, 26. In mice, an anti-atherogenic effect of clopidogrel was reported by 

some investigators 27, 28, while others could not reproduce these results 29, 30.

Based on these observations, we hypothesized that platelet Rap1 signaling, mediated by 

CDGI and P2Y12, contributes to plaque development in atherosclerosis-prone Ldlr−/− mice, 

and that deletion of CDGI in hematopoietic cells leads to impaired lesion development in 

hypercholesterolemic Ldlr−/− mice.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

Generation and characterization of Ldlr−/− mice lacking CalDAG-GEFI and/or P2Y12 in 
blood cells only

At 4 weeks of age, Ldlr−/− male mice were lethally irradiated and reconstituted with bone 

marrow from either WT, cdgI−/−, p2y12−/− or cdgI−/− p2y12−/− double knockout (DKO) 

mice. After 6 weeks of normal chow diet, leukocyte counts and platelet counts were not 

significantly different between transplanted animals (Supplemental Fig. I). The mice were 

then put on high fat diet (HFD) for 12 weeks, and the blood lipid levels and platelet 

activation response were assessed. Total cholesterol, triglyceride, VLDL, HDL and BWs 

were similar among all groups after 12 weeks of HFD (Table1). Platelet counts were similar 

between the different groups of chimeric mice (Fig. 1A). In response to stimulation of the 

thrombin receptor, protease-activated receptor 4 (PAR4), or the collagen receptor, GPVI, 

platelets from Ldlr−/−/cdgI−/− and Ldlr−/−/p2y12−/− mice showed reduced P-selectin 

exposure and integrin activation compared with Ldlr−/−/WT platelets (Fig. 1B). As expected, 

agonist-induced platelet activation was abolished in Ldlr−/−/DKO mice (Fig. 1B).

Platelet adherence to fibrous-cap-derived collagen or the damaged endothelium is a nidus for 

inflammatory and progenitor cell accumulation at atherosclerotic sites leading to 

atheroprogression. Therefore, we examined platelet accumulation on a collagen surface 

under flow. Anticoagulated whole blood from hypercholesterolemic mice was perfused over 

immobilized collagen at arterial (1200 s−1) shear rates. Blood from Ldlr−/−/WT chimeric 

mice formed three-dimensional thrombi that stained strongly for surface P-selectin, a marker 

of platelet activation (Fig. 1C–E). In contrast, thrombus formation at arterial shear rates was 

almost completely abolished in blood isolated from both Ldlr−/−/cdgI−/− and Ldlr−/−/DKO 

mice. Small thrombi consistent with activated (P-selectin-positive) platelets were observed 

when blood from Ldlr−/−/p2y12−/− chimeric mice was perfused over collagen. These 

findings are consistent with our previous work showing significantly impaired adhesion 

under flow conditions for platelets lacking CDGI or P2Y12 21.

While integrin activation, and to some extent granule secretion, are dependent on Rap1 

signaling, we wanted to directly assess Rap1 activation and determine the effect of 

cholesterol on platelet sensitivity to activation. When stimulated with the weaker agonist, 

ADP, platelet aggregation and Rap1 activation were abolished in CdgI−/− or p2y12−/− 
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platelets, both in the presence and absence of exogenous cholesterol (Fig. 2). Interestingly, 

cholesterol loading of wild-type platelets enhanced ADP-induced Rap1 activation and 

aggregation and delayed reversibility, with no apparent effect in platelets deficient for 

CalDAG-GEFI or P2Y12.

Reduced atherosclerotic lesion formation in hypercholesterolemic Ldlr−/−/cdgI−/− and 
Ldlr−/−/p2y12−/− chimeric mice

We next determined the effect of hematopoietic CDGI and/or P2Y12 deficiency on 

atherosclerosis in the aorta or aortic sinus of hypercholesterolemic mice. By morphometric 

analysis, we determined that lesions in the aortic sinus of Ldlr−/−/cdgI−/− chimeras were 

~42% smaller than those of Ldlr−/−/WT control chimeras (0.18 ± 0.02 mm2 vs 0.31 ± 0.05 

mm2, p< 0.001)(Fig. 3A,B). Similarly, lesions in the aortic sinus of Ldlr−/−/p2y12−/− 

chimeras were significantly smaller than those in controls (0.22 ± 0.10 mm2, p<0.01). 

Finally, Ldlr−/−/DKO chimeras had 48% smaller lesions compared to Ldlr−/−/WT controls 

(0.16 ± 0.02 mm2 vs 0.31 ± 0.05 mm2, p< 0.001). Aortic root lesion size was similar 

between hypercholesterolemic Ldlr−/−/cdgI−/−, Ldlr−/−/p2y12−/− and Ldlr−/−/DKO chimeric 

mice, with no additive effect in mice lacking both CDGI and P2Y12.

Atherosclerotic lesion development was also evaluated by en face analysis of the aortic arch 

and abdominal aorta. Analyses of the aortic arches showed a ~two-fold reduction in lesion 

size for Ldlr−/−/cdgI−/−, Ldlr−/−/p2y12−/− and Ldlr−/−/DKO chimeras when compared to 

Ldlr−/−/WT chimeras (5.93 ± 0.66%, 4.68 ± 0.65%, 4.42 ± 0.56% versus 9.26 ± 1.21%) 

(Fig. 4A). Similarly, atherosclerotic lesions in the abdominal aortas of Ldlr−/−/cdgI−/−, 

Ldlr−/−/p2y12−/− and Ldlr−/−/DKO chimeras were ~two-fold smaller compared to 

Ldr−/−/WT chimeras (1.35 ± 0.28%, 1.29 ± 0.30%, 1.60 ± 0.35% versus 3.48 ± 0.80%) (Fig. 

4B). No additive effects were observed in double vs. single knockout mice. Together, these 

results suggest a significant role for both CDGI and P2Y12 signaling in bone marrow-

derived cells in promoting atherosclerosis throughout the arterial tree.

Reduced platelet-neutrophil interactions in blood from hypercholesterolemic Ldlr −/−/
cdgI−/− mice

Activated platelets are known to form pro-inflammatory platelet-leukocyte aggregates in 

circulation 8,7, and these cellular aggregates are associated with increased atherosclerosis 

and acute coronary syndrome3. To test whether deficiency in CDGI and/or P2Y12 affects the 

formation of such aggregates, we measured platelet-neutrophil aggregates (PNAs), identified 

as GPIb+Ly6G+ events by flow cytometric analysis, in blood from the above described 

Ldlr−/− chimeric mice. PNAs were significantly increased in Ldlr−/−/WT mice fed a HFD for 

12 weeks when compared to mice on a normal diet (Fig. 5A). In contrast, 

hypercholesterolemia did not induce any increase in circulating PNAs in Ldlr−/−/cdgI−/−, 

Ldlr−/−/p2y12−/− or Ldlr−/−/DKO mice. Consistent with this finding, plasma levels of 

platelet factor 4, a marker of systemic platelet activation, were significantly reduced in 

Ldlr−/−/cdgI−/− and Ldlr−/−/p2y12−/− chimeras when compared to controls (Table 1). 

Platelet-neutrophil adhesion was also investigated in blood from hypercholesterolemic mice 

perfused over collagen at a shear rate of 400s−1. In these experiments, αIIbβ3-mediated 

platelet aggregate formation was inhibited to better visualize PNA formation. Firm 
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neutrophil adhesion to adherent platelets under flow was significantly reduced in Ldlr −/−/

cdgI−/− and Ldlr−/−/DKO blood (Fig. 5B). A trend to lower PNA formation was also 

observed in Ldlr−/−/p2y12−/− blood. Together, these findings suggest that CDGI and P2Y12 

may contribute to leukocyte recruitment into the developing plaque.

Decreased inflammation and plaque remodeling in hypercholesterolemic Ldlr−/−cdgI−/− 

mice

We next investigated whether macrophage (anti-CD68) and/or neutrophil (anti-Ly6G) 

accumulation in areas of plaque development was affected in Ldlr −/−/cdgI−/− and Ldlr−/−/

p2y12−/− mice. In line with the decreased lesion area, we observed markedly reduced intimal 

macrophage abundance in the aortic roots of Ldlr−/−/cdgI−/− and Ldlr−/−/DKO chimeras 

when compared with Ldlr−/−/WT controls (0.10 ± 0.007%, 0.10 ± 0.006% versus 0.20 

± 0.006%) (Fig. 6A–B, supplemental Fig II). A less pronounced but significant reduction in 

macrophage content was observed in Ldlr−/−/p2y12−/−chimeric mice. Similarly, we observed 

that the neutrophil content in the aortic sinus was significantly reduced in Ldlr−/−/cdgI−/− 

and Ldlr−/−/DKO chimeras. A small but insignificant reduction in neutrophil accumulation 

was also observed in the aortic sinus of Ldlr−/−/p2y12−/− chimeras (Fig. 7A–B). However, 

no marked differences in leukocyte numbers per lesion area were observed for any of the 

genotypes (Supplemental Fig III), suggesting that loss of CDGI, and to a lesser extent 

P2Y12, may limit atherosclerotic lesion formation by impairing the recruitment of 

monocytes and neutrophils into the vessel wall at athero-susceptible sites (Figs. 6–7).

In mice and humans, atherosclerotic plaque progression is associated with an increase in 

smooth muscle cell migration and proliferation within the subintima, where these cells 

produce and deposit extracellular matrix components, primarily collagen. Macrophages and 

neutrophils contain and release proteases such as elastase, cathepsin G and myeloperoxidase 

that can degrade extracellular matrix proteins, resulting in plaque remodeling. Interestingly, 

collagen abundance was significantly greater in aortic sinus lesions of hypercholesterolemic 

Ldlr−/−/cdgI−/− and Ldlr−/−/DKO chimeric mice when compared to Ldlr−/−/WT controls 

(0.48 ± 0.07% and 0.47 ± 0.05% vs 0.27 ± 0.01%, Fig. 8), while no significant difference in 

collagen levels was observed between hypercholesterolemic Ldlr−/−/WT and Ldlr−/−/

p2y12−/− chimeric mice (Fig. 8). As leukocyte densities were not significantly different 

between any groups of mice (Supplemental Fig. III), these findings suggest that, in addition 

to its role in leukocyte recruitment and atherogenesis, CDGI signaling may contribute to 

leukocyte activation and plaque destabilization.

Discussion

It is now widely accepted that platelets contribute to a pro-adhesive and pro-inflammatory 

environment during atherosclerosis. As shown by intravital microscopy, platelets adhere to 

the inflamed endothelium before lesions can be detected 5. Once adherent and activated, 

platelets can deposit chemokines on the luminal surface of the vessel wall. Activated 

platelets also express adhesion receptors important for the recruitment of leukocytes. 

Importantly, both leukocyte recruitment and atherosclerotic plaque formation were markedly 

reduced in thrombocytopenic mice or mice with select platelet adhesion defects 5. However, 
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the contribution of Rap1 signaling, a critical node in platelet activation, to this process has 

not been established. To address this question, we studied atherosclerotic plaque 

development in Ldlr−/− chimeric mice lacking key regulators of platelet Rap1 signaling. We 

provide evidence that signaling by the Rap-GEF, CDGI, is critical in promoting both 

atherosclerotic plaque formation and remodeling in Ldlr−/− mice. We further demonstrate 

that plaque formation, but not composition, depends on signaling via the ADP receptor, 

P2Y12, an important pathway leading to Rap1 activation in platelets.

CDGI is an important regulator of Rap1 activity in murine platelets and neutrophils. While 

our studies clearly show that CDGI signaling in hematopoietic cells is critical during 

atherosclerotic plaque development in mice, we cannot provide a conclusive answer for 

whether reduced plaque formation in Ldlr−/−/cdgI−/− chimeras is due to altered function of 

platelets, neutrophils, or both. However, for several reasons we think that CDGI signaling in 

platelets plays a critical role during plaque development. First, CDGI signaling is critical to 

αIIbβ3 integrin activation and platelet adhesion, important processes in atherosclerosis. 

Second, the CDGI-independent pathway to Rap1 activation and platelet adhesion requires 

signaling by P2Y12, a surface receptor that is not expressed on hematopoietic cell types 

other than platelets; plaque formation was also markedly impaired in Ldlr−/−/p2y12−/− 

chimeras. Finally, both platelet activation and platelet-leukocyte aggregate formation were 

significantly reduced in both Ldlr−/−/cdgI−/− and Ldlr−/−/p2y12−/− chimeras, providing a 

plausible explanation for the reduced accumulation of leukocytes in athero-prone areas of 

hypercholesterolemic mice. Future studies in mice lacking CDGI or the two Rap1 isoforms 

specifically in platelets or neutrophils will be required to clarify, on a cellular level, how this 

signaling pathway contributes to atherosclerotic lesion development, and whether the effects 

observed in Ldlr−/−/cdgI−/−mice are indeed caused by a defect in Rap1 signaling.

Interestingly, our studies also uncovered some interesting differences in plaque composition 

between Ldlr−/−/cdgI−/− and Ldlr−/−/p2y12−/− mice, as plaques from Ldlr−/−/cdgI−/− 

chimeras were high in collagen content. It is well-known that neutrophils secrete cytokines 

and proteases that result in: (1) endothelial cell dysfunction and vascular permeability, (2) 

monocyte recruitment and foam cell formation, and (3) endothelial erosion and weakening 

of the fibrous cap. In humans, neutrophils are often found in rupture-prone plaques, i.e. 

lesions with a large lipid core and low collagen content31. Thus, the increased collagen 

content in lesions of Ldlr−/−/cdgI−/− chimeras may, at least in part, be the result of impaired 

neutrophil activation, a conclusion that was not experimentally tested in this study. Future 

studies in mice with cell type-specific deletion of CDGI will be necessary to clarify these 

points.

A critical role for P2Y12 in atherosclerotic plaque development has been reported by several 

groups, using both genetic and pharmacological disruption of receptor function; however, 

the results using the P2Y12 inhibitor clopidogrel have been variable depending on the 

experimental conditions. Our results on the role of P2Y12 in atherosclerosis are in 

accordance with a recent publication by Li et al., showing that deficiency of P2Y12 in 

apoE−/− mice fed a HFD for 20 weeks results in decreased atherosclerotic lesion 

formation24. Both our study and that of Li et al. also document a significant reduction of 

plasma PF4 levels in P2Y12-deficient hypercholesterolemic mice, indicative of reduced 
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platelet activation in these animals. In contrast, treatment of apoE−/− mice with the P2Y12 

inhibitor clopidogrel bisulfate was associated with inconsistent results. While two groups 

found significant protection from atherosclerosis in clopidogrel-treated mice27,28, other 

groups could not reproduce these findings29, 30. Pharmacological inhibition is more likely to 

give variable results than a genetic approach. We can only speculate that differences in the 

experimental conditions and the inhibitor dose may be responsible for the discrepant results. 

The genetic approach eliminates some of these potential inconsistencies and thus should be 

considered more definitive.

An interesting observation in our studies is that the atherosclerotic lesion area in 

Ldlr−/−/DKO chimeras was not statistically different from that in Ldlr−/−/cdgI−/− or Ldlr−/−/

p2y12−/− chimeric mice, although a trend to smaller plaques was observed in the aortic sinus 

of DKO mice. Given that deficiency in CDGI or P2Y12 only partially inhibits Rap1-

mediated platelet responses (Fig. 1), one could have expected additive effects of deleting 

both molecules at the same time. It is important to remember, however, that synergistic 

activity by both pathways is required for Rap1 activation to occur in platelets that are 

activated with weak agonists, such as ADP (Fig. 2), or threshold concentrations of strong 

agonists23, 17. Thus, our results suggest that only weak stimulation of platelets occurs at sites 

of plaque development, a conclusion that is consistent with the fact that the endothelial 

lining is intact at early stages of atherosclerosis32.

Significant progress has been made in our understanding of the molecular mechanisms 

regulating plaque development and destabilization in experimental atherosclerosis. However, 

most of these new concepts have not been validated in humans, and translation of these 

findings into novel strategies to prevent atherosclerosis is lacking. Direct targeting of 

receptors critical for leukocyte or platelet adhesion, such as β2 and β3 integrins, is not a 

viable strategy, as these receptors are too important for the physiologic function of these 

cells. Targeting of agonist receptors, such as GPCRs, would seem a better approach, but 

redundancy among these receptors may limit the effectiveness of such interventions. Based 

on our studies, CDGI represents a novel therapeutic target to limit atherosclerotic lesion 

development. Rap1 signaling is critical for integrin activation both in platelets and 

neutrophils. CDGI is an important activator of Rap1, which operates downstream of most 

agonist receptors expressed on these cells. CDGI is important for the rapid inside-out 

activation of integrins, required for platelet adhesion under conditions of high shear stress; at 

lower shear stress, however, platelet adhesion is supported by CDGI-independent Rap1 

signaling, mediated by PKC and P2Y12. Thus, CDGI signaling is particularly important for 

platelet adhesion in areas of high shear stress, such as found in the coronary arteries. 

Expression of CDGI is limited to few cell types, including platelets, neutrophils and neurons 

in certain areas in the brain. However, dogs33 and humans34 with loss-of-function mutations 

in CDGI are characterized by impaired function of platelets but not other cells. Based on 

these findings and our current work, we propose that inhibition of CDGI signaling may be a 

powerful approach to safely prevent atherosclerosis and atherothrombosis.

In summary, our findings reveal a critical role for the Rap1-GEF, CDGI, in promoting 

atherosclerotic plaque development in hypercholesterolemic Ldlr−/− mice.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Atherosclerosis is characterized by a chronic inflammatory process, which leads to a 

remodeling of the inflamed vasculature and the formation of a plaque. The rupture of this 

plaque leads to platelet activation and thrombosis (atherothrombosis). In addition, 

platelets were identified as key players during plaque development, as they support 

leukocyte recruitment to the lesion area. However, relatively little is known about the 

platelet signaling machinery required in this process. In this study, we demonstrate a 

critical role for the Rap-GEF, CalDAG-GEFI, in promoting vascular inflammation and 

atherosclerotic lesion development in hypercholesterolemic mice. Our studies suggest 

that targeting CalDAG-GEFI would impair atherosclerotic lesion development and be 

beneficial in the prevention of atherothrombosis.
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Figure 1. Impaired platelet activation in hypercholesterolemic Ldlr−/−cdgI−/− and 
Ldlr−/−p2y12−/− chimeric mice
All studies were done with chimeric mice on high fat diet (12 weeks). (A) Peripheral platelet 

count. (B) αIIbβ3 integrin activation (JON/A-PE) and P-selectin exposure (anti P-selectin-

FITC) in platelets from the indicated chimeric mice after activation with Par4p (μM) or 

convulxin ng/ml (Cvx). (C–E) Platelet adhesion to collagen under flow. Whole blood from 

the indicated chimeric mice was perfused for 5 minutes over a collagen-coated surface at a 

shear rate of 1200s−1. Real-time quantification of platelet accumulation (C) and surface 

expression of P-selectin (D) was performed by fluorescence videomicroscopy. 

Representative images (E) are shown for each genotype at t = 5 min (red, platelets and 

green, P-selectin). Data are the mean ± SEM of at least 5–10 mice per group. **P< 0.01, 

***P<0.001.
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Figure 2. Effect of cholesterol on Rap1 activation in platelets
(A) Aggregation of washed platelets in response to ADP (1μM) and/or cholesterol-mβCD 

(50μM). Dotted line indicates the time point when samples were extracted for determination 

of Rap1-GTP levels. (B) Detection of Rap1-GTP and total Rap1 in the indicated platelet 

preparations. Data are representative of 3 independent experiments.
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Figure 3. Reduced atherosclerotic lesion formation in the aortic sinus of hypercholesterolemic 
Ldlr−/−cdgI−/− and Ldlr−/−p2y12−/− chimeric mice
(A) Representative images of oil red O staining of the aortic sinus of the indicated 

hypercholesterolemic mice. (B) Quantification of lesion area. Data are the mean ± SEM of at 

least 10 mice per group. **P< 0.01, ***P<0.001 versus Ldlr−/− WT chimeras.
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Figure 4. Reduced atherosclerotic lesion formation in the aorta of hypercholesterolemic 
Ldlr−/−cdgI−/− and Ldlr−/−p2y12−/− chimeric mice
Quantification of atherosclerosic lesion size in aortic arches (A) and abdominal aortas (B) of 

the indicated mice. *P<0.05, **P< 0.01, ***P<0.001 versus Ldlr−/−/WT chimeras. Data are 

the mean ± SEM of at least 10 mice per group.
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Figure 5. Reduced platelet-neutrophil interactions in hypercholesterolemic Ldlr−/−cdgI−/− and 
Ldlr−/−p2y12−/− chimeric mice
(A) Quantification of platelet-neutrophil aggregates in whole blood from the indicated 

hypercholesterolemic mice. (B) Whole blood from the indicated hypercholesterolemic mice 

(12 weeks of high fat diet) was perfused over a collagen-coated surface at a shear rate of 

400s−1. Firm neutrophil adhesion (green) to collagen-bound platelets (red) was quantified. 

*P<0.05, **P< 0.01, ns indicates not significant. Data are the mean ± SEM of at 5–10 mice 

per group.
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Figure 6. Decreased macrophage content per vessel area in hypercholesterolemic Ldlr−/−cdgI−/− 

mice
Tissue sections were stained for macrophages (CD68 positive cells, red) and nuclei (DAPI, 

blue). (A) Representative images. (B) Quantification of CD68-postive area in the cross 

section of aortic sinuses from each genotype. ***P<0.001. Data are the mean ± SEM of 5–

10 mice per group. Scale bar = 250μm.
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Figure 7. Decreased neutrophil content per vessel area in hypercholesterolemic Ldlr−/−cdgI−/− 

mice
Tissue sections were stained for neutrophils (Ly6G positive cells, green) and nuclei (DAPI, 

blue). (A) Representative images. (B) Quantification of Ly6G-postive area in the cross 

section of aortic sinuses from each genotype. **P <0.01, ***P<0.001. Data are the mean ± 

SEM of 5–10 mice per group. Scale bar = 250μm.
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Figure 8. Increased collagen content in hypercholesterolemic Ldlr−/−cdgI−/− mice
Tissue sections were stained for collagen (picrosirius red). (A) Representative images (B) 
Quantification of collagen-positive area in the cross sections of aortic sinus from each 

genotype. *P<0.05, **P <0.01. Data are the mean ± SEM of 5–10 mice per group. Scale bar 

= 250μm.
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Table 1

Body weight, lipid profiles and platelet factor 4 levels.

LDLr−/− WT LDLr−/− cdgI−/− LDLr−/− p2y12−/− LDLr−/− DKO

body weight (g) 27 ± 0.9 28 ± 1.1 29 ± 0.9 28 ± 1.3

total cholesterol (mg/dl) 1122 ± 78 1397 ± 151 1182 ± 69 1144 ± 115

total triglyceride (mg/dl) 614 ± 53 718 ± 164 540 ± 55 468 ± 47

total VLDL (mg/dl) 98 ± 8.5 117 ± 25 89 ± 6.5 80 ± 4.9

total LDL (mg/ml) 944 ± 74 1201 ± 136 1012 ± 69 982 ± 114

total HDL (mg/dl) 79 ± 1.2 78 ± 2.3 80 ± 1.2 80 ± 1.3

platelet factor 4 (ng/ml) 78 ± 6.9 48 ± 2.4*** 58 ± 3.3** 51 ± 1.5***
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