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Predicting the risk of sudden cardiac death
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Abstract Sudden cardiac death (SCD) is the result of a change of cardiac activity from normal
(typically sinus) rhythm to a rhythm that does not pump adequate blood to the brain. The most
common rhythms leading to SCD are ventricular tachycardia (VT) or ventricular fibrillation
(VF). These result from an accelerated ventricular pacemaker or ventricular reentrant waves.
Despite significant efforts to develop accurate predictors for the risk of SCD, current methods for
risk stratification still need to be improved. In this article we briefly review current approaches
to risk stratification. Then we discuss the mathematical basis for dynamical transitions (called
bifurcations) that may lead to VT and VF. One mechanism for transition to VT or VF involves
a perturbation by a premature ventricular complex (PVC) during sinus rhythm. We describe the
main mechanisms of PVCs (reentry, independent pacemakers and abnormal depolarizations).
An emerging approach to risk stratification for SCD involves the development of individualized
dynamical models of a patient based on measured anatomy and physiology. Careful analysis
and modelling of dynamics of ventricular arrhythmia on an individual basis will be essential in
order to improve risk stratification for SCD and to lay a foundation for personalized (precision)
medicine in cardiology.
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Abstract figure legend Schematic diagram showing sudden cardiac death as a transition from sinus rhythm to ventricular
tachycardia (VT) or ventricular fibrillation (VF). The onset of VT or VF is preceded by premature ventricular complex
(PVC), which could originate by any of these mechanisms: reentry, spontaneous pacemaker or triggered activity. The
ECG trace was taken from the Sudden Cardiac Death Database (record number 32) from www.physionet.org.

Abbreviations CI, coupling interval; DAD, delayed afterdepolarization; EAD, early afterdepolarization; ECG, electro-
cardiogram; ICD, implantable cardioverter defibrillator; NIB, number of intervening beats (between two consecutive
PVCs); NN interval, time between two sinus beats; MRI, magnetic resonance imaging; PVC, premature ventricular
complex; SCD, sudden cardiac death; SDCI, standard deviation of the coupling interval; SNIB, score of NIB; VF,
ventricular fibrillation; VT, ventricular tachycardia; VV interval, time between two consecutive PVCs.

Introduction

Sudden cardiac death (SCD) refers to death within 2 h of
onset of symptoms or during sleep due to a cardiac cause
(Zipes & Wellens, 1998). Although SCD can occur due to
a slow heart rhythm (bradycardia) caused by a stopping or
blocking of the normal sinus pacemaker, more commonly
it is due to a rapid heart rhythm (tachycardia), usually
originating in the ventricles – ventricular tachycardia (VT)
or ventricular fibrillation (VF). One major route to SCD
is secondary to a heart attack (coronary infarct) in which
a coronary artery is blocked. Although bradyarrhythmias
and coronary infarcts are also causes of SCD, developing
risk stratification for these occurrences lies outside the
scope of this review. Rather, we consider SCD associated
with a transition from a normal sinus rhythm to VT or
VF. Since an implantable cardioverter defibrillator (ICD)
may be an effective therapy for this class of arrhythmias
(Moss et al. 2002; Bardy et al. 2005; Tung et al. 2008),
a major clinical question involves risk stratification for
SCD (Goldberger et al. 2008, 2011; Bastiaenen et al. 2012;
Bilchick et al. 2012; Huikuri, 2015).

Recent reviews summarize studies on risk stratification
for SCD (Wellens et al. 2014; Deyell et al. 2015). The
paradigms for these studies are similar. First measure
some set of parameters and dynamical features based
on cardiac anatomy and physiology in some large sub-
set of patients meeting a predefined clinical profile.
Then assess the incidence of SCD over several years to
see which factors show a strong correlation with the
future incidence of SCD. These reviews underscore the
conclusions that: (i) many different factors are associated
with an increased risk for SCD; and (ii) current methods
for risk stratification still need significant improvement
in order to better define the roles for various existent
and emerging medical and device therapies. One strategy
to improve risk stratification for SCD is to carry out
large observational studies, similar to those carried out
previously (Huikuri, 2015). Although large observational
studies play an important role in clinical decision making,

we believe that alternative strategies will also be useful to
improve risk stratification for SCD.

In this review, we address SCD from a basic science
perspective. In SCD, the spatio-temporal organization
of cardiac activity changes typically from a pattern in
which the normal sinus pacemaker is setting the rhythm
of the entire heart, to a rhythm in which an accelerated
ventricular pacemaker or ventricular reentrant waves set a
rapid ventricular rhythm leading to VT or VF. Dynamical
transitions such as these are called bifurcations and can
be studied mathematically using techniques developed
in the field of nonlinear dynamics (Glass et al. 1987;
Krogh-Madsen & Christini, 2012; Weiss et al. 2015).

In the next section, we briefly summarize the various
physiological and electrocardiographic factors that have
been the main focus of clinical investigations for risk
stratification. After that we discuss generic mathematical
properties of cardiac tissue and summarize conditions
leading to blocking of excitation, alternans, and initiation
of extra beats and pacemakers. These basic processes are
implicated in the transition from sinus rhythm to the
onset of arrhythmias. In the following section, we focus on
mechanisms of premature ventricular complexes (PVCs)
and discuss evidence that shows that not all PVCs are
equal – some mechanisms confer a higher risk of SCD than
others. The section after that discusses a new method for
identifying mechanisms of PVCs based on their dynamic
properties measured over 24 h. Such an analysis could
provide a basis for better identifying mechanisms of
PVCs and improving risk stratification for SCD. Then we
discuss realistic and patient-specific modelling of cardiac
arrhythmias with a view towards improving the diagnosis
and therapy for SCD. Finally, we identify directions for
future research.

Prediction of sudden cardiac death

Clinical studies of risk stratification for SCD have
investigated and identified a large number of physio-
logical and anatomical characteristics that have been
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associated with an elevated risk of SCD (Wellens et al.
2014; Deyell et al. 2015). These different characteristics
include anatomical substrate, autonomic function, genetic
mutations, electrophysiological function and provocative
testing.

Anatomical substrate. According to current guidelines,
the main criterion for implantation of an ICD for primary
prevention of SCD is a low left ventricular ejection fraction
(Moss et al. 2002; Bardy et al. 2005; Epstein et al. 2008).
Although this criterion has been verified in numerous
clinical studies, a large fraction of patients who meet
the criterion do not receive an ICD, a large fraction of
patients who meet the criterion and do receive an ICD
do not have triggering events, and a large number of
people who do not meet the criterion do experience
SCD (Goldberger et al. 2011; Albert & Stevenson, 2013).
Indication of scarring in the ventricles is provided by
fragmented QRS complexes on the electrocardiogram and
this has also been used for risk stratification (Jain et al.
2014). Alternative approaches to assessing the anatomical
substrate for arrhythmia involve imaging the heart using a
variety of methods including echocardiography, magnetic
resonance imaging and photon emission tomography
(Vadakkumpadan et al. 2014). Prospective assessments of
these modalities have not yet been carried out.

Autonomic function. The period of the cardiac cycle
is continuously modulated by activity from the
sympathetic and parasympathetic systems where greater
sympathetic activity increases the heart rate and greater
parasympathetic activity reduces the heart rate. Reduced
heart rate variability is associated with an increased risk
of SCD (Kleiger et al. 1987; Task Force of the European
Society of Cardiology and the North American Society
of Pacing and Electrophysiology, 1996). The observation
that blocking sympathetic activity using beta blockers
reduces the incidence of SCD provides additional strong
evidence of the importance of autonomic function in the
pathophysiology of SCD (Shen & Zipes, 2014).

Patients with diseased hearts typically have increased
heart rate and reduced fluctuations in the heart rate
associated with increased sympathetic hyperactivity,
decreased vagal activity, or both (La Rovere et al. 1998;
Shusterman et al. 1998). Reduced heart rate variability
(HRV) as measured by assessment of standard deviation
of interbeat intervals (Goldberger et al. 2008), power
spectral density of HRV (Huikuri et al. 2009), analysis
of the complexity of HRV using entropy-related measures
(Wessel et al. 2000; Costa et al. 2002; Norris et al. 2008),
and reduced values of scaling coefficients associated with
fluctuations of heart rate (Au-Yeung et al. 2015) show
correlations with impaired health and increased risk for

serious disease and/or SCD. Decreased entropy of rapid
cardiac rhythm may also be useful to distinguish VT
and VF from atrial fibrillation, thereby reducing the
occurrence of inappropriate ICD shocks (DeMazumder
et al. 2013).

Another measure associated with autonomic function
is heart turbulence, measured by determining the trans-
ient heart rates following a PVC. Heart rate turbulence
describes the short-term fluctuations in sinus cycle length
that follow a PVC (Barthel et al. 2003). After a PVC, the
next sinus beat is typically blocked leading to a pause
before the next sinus beat. This leads to an increase
in blood pressure due to prolonged filling time and
consequent slowing of the heart rate through operation of
the baroreceptor reflex mediated by decreased sympathetic
activity and increased parasympathetic activity. In patients
who survived an acute myocardial infarction, indices
reflecting increased sympathetic activity and reduced
parasympathetic activity following a PVC were predictors
of mortality (Barthel et al. 2003) and life-threatening
arrhythmias (Huikuri et al. 2010). In patients with
congestive heart failure these indices were associated with
a higher risk of SCD (Au-Yeung et al. 2015). Although the
measures of autonomic function are correlated with the
risk for SCD, the correlations are not sufficiently strong to
provide a basis for risk stratification.

Genetic mutations. Advances in genetics and cardiac
electrophysiology have led to the identification of a
large number of different genetic mutations affecting
ion channels that have been associated with increased
incidence of cardiac arrhythmias and SCD. The best
understood are mutations of potassium and sodium
channels that lead to longer action potentials manifested
by an increased duration of QT interval on the electro-
cardiogram (long QT syndrome) (Priori et al. 2003; Amin
et al. 2013). The longer durations of action potentials
may lead to PVCs as a consequence of early after-
depolarizations, and these may in turn induce a potentially
lethal VT, torsade de pointes. However, since other
factors including sympathetic activity and drugs also affect
repolarization, it is not simple to assess the risk for SCD
based solely on the presence of a mutation (Priori et al.
2003). Another group of mutations was discovered from
genetic analysis of individuals that were identified initially
by electrocardiographic abnormalities in a family that
had several instances of cardiac arrest (Chen et al. 1998;
Brugada et al. 2013). These mutations of the sodium
channel, associated with the Brugada syndrome, lead to
slow conduction predisposing to reentrant tachycardias
(Brugada et al. 2013). Another class of mutations in
receptors associated with calcium handling lead to calcium
overload and VT induced by sympathetic stimulation
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(catecholaminergic polymorphic ventricular tachycardia)
(Mohamed et al. 2007). Because there can be multiple sites
of mutation in a single gene and there are other modulating
factors of cardiac activity that are poorly understood,
observation of mutations must be combined with electro-
physiological data to assess risk.

Electrophysiological function. One of the earliest
recognized risk factors for SCD is an increased numbers
of PVCs (Kotler et al. 1973; Berkowitsch et al. 2004;
Carrim & Khan, 2005). As is well known, the cardiac
arrhythmia suppression trial demonstrated that reducing
the incidence of PVCs with drugs led to an increased
incidence of SCD (Echt et al. 1991). This study is partially
responsible for a reduced emphasis on the role of PVCs in
the assessment of risk and the genesis of SCD. However,
a recent study, that reexamined ventricular ectopy in
heart failure patients, showed increased risk with increased
ectopy (Dukes et al. 2015) and concluded that there is a
need for better understanding mechanisms of PVCs.

Another electrophysiological marker for increased risk
for SCD is alternans of the T-wave (Weiss et al. 2006;
Verrier et al. 2011; Nieminen et al. 2014). From a
dynamics perspective, T-wave alternans is of particular
interest since analysis of mathematical models of action
potential duration have demonstrated the possibility for
instabilities (bifurcations) leading to alternating action
potential durations (Qu et al. 2010). T-wave alternans
on the electrocardiogram (ECG) could arise from this
instability. However, it could also arise in other ways such
as from 2:1 conduction in some parts of the heart and 1:1
conduction in other regions of the heart.

The stability of ventricular repolarization, as evaluated
by the maximum slope of the relationship between
the action potential duration and the diastolic interval
(restitution curve), is a known factor for the onset of
ventricular arrhythmias (Garfinkel et al. 2000). From the
ECG, an estimated restitution curve is obtained from the
relationship between the QT interval and the preceding TQ
interval, to estimate the QT interval dynamics stability.
In patients with myocardial infarction, the instability
of QT interval dynamics is increased before VT (Chen
et al. 2011), and a QT instability has predictive value
for ventricular arrhythmia in patients with an implanted
ICD (Chen et al. 2013). However, direct measurement
of action potential restitution curves in patients failed
to show a direct correlation between steep restitution
curves and T-wave alternans (Narayan et al. 2007). Since
alternation of the action potential voltage can occur in
the absence of alternans of the action potential duration
(Bayer et al. 2010), an important question in basic science
is to clarify the mechanisms of alternans in normal and
heart failure patients and to clarify the role of calcium
handling (Narayan et al. 2008; Wilson et al. 2009).

Electrophysiological testing. The development of clinical
cardiac electrophysiology has been greatly advanced by
the development of intracardiac catheters that can be
used to record local activity, deliver electrical stimuli, and
ablate cardiac tissue using radio-frequency stimulation
(Josephson, 2008). Provocative testing involves pacing the
heart at a fixed rate and delivering a sequence of up to
three premature stimuli from one or more sites in the
ventricles in an effort to induce VT that would be sub-
stantially the same as a VT that would arise spontaneously
(Roy et al. 1983; Buxton et al. 2000). Such procedures
have provided a basis for testing antiarrhythmic drugs
as well as for risk stratification for SCD. However, such
procedures are invasive and impossible to implement on
a routine basis. Although electrophysiological testing has
the ability to predict patients at increased risk for SCD in
patients with ischaemic heart disease and reduced ejection
fraction, it has poor negative predictive power, and its
predictive power for individuals in other populations at
elevated risk for SCD is largely unknown (Thomas &
Josephson, 2008). As discussed below, work is underway
to develop patient-specific models that can be used to
assess the anatomical substrate for arrhythmias to help
guide risk stratification and to assess targets for ablation
in individuals (Trayanova, 2014).

Dynamics of wave propagation

Given the difficulties in developing risk stratification
for SCD using standard clinical approaches, we think
it is useful to discuss this question from a more basic
theoretical perspective. Excitable media, such as the heart,
can support propagation of waves of electrical activity.
Simple and complex mathematical models reproduce and
in some cases can be used to predict dynamic features
associated with the onset of arrhythmias in cardiac tissues
(Moe et al. 1977; Keener, 1981; Guevara et al. 1984;
Glass et al. 1986; Courtemanche et al. 1989; Fenton &
Karma, 1998; Chialvo et al. 1990; Lewis & Guevara, 1990;
Vinet et al. 1990; Ito & Glass, 1992; Courtemanche et al.
1993; Starmer et al. 1993; Karma, 1994; Schulte-Frohlinde
et al. 2002). We discuss conduction block, alternans, and
initiation of extra beats.

Conduction block. Following an excitation wave, cardiac
tissue has a refractory period and a stimulus or excitation
will not conduct if it is delivered too close to a pre-
vious stimulus. In addition, the velocity of propagation of
cardiac excitation typically slows as the latency from a pre-
vious conducted beat decreases. As a consequence, as the
pacing frequency of cardiac tissue increases, either from an
external pacemaker or from an intrinsic source (the sinus
pacemaker, an ectopic atrial or ventricular pacemaker, or
a reentrant circuit) conduction may be blocked locally
(Keener, 1981; Shrier et al. 1987; Courtemanche &
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Winfree, 1991; Karma, 1994). Such blocking of conduction
plays a crucial role in atrio-ventricular heart block,
unidirectional block leading to reentry and termination of
reentry as a consequence of anti-tachycardia pacing, and
transitions from monomorphic to polymorphic tachy-
cardias. If there is blocking of cardiac excitation locally
due to refractory tissue, there may be initiation of rotors
or three-dimensional reentrant waves (Krinsky, 1966;
Courtemanche & Winfree, 1991; Karma, 1994; Fenton &
Karma, 1998; Bub et al. 2002).

Alternans. During rapid pacing of cardiac tissue, in
addtion to blocked beats, an instability may lead to
alternation of electrophysiological properties (Chialvo
et al. 1990; Lewis & Guevara, 1990; Vinet et al. 1990;
Echebarria & Karma, 2002). The action potential duration
decreases as the time from a preceding action potential
decreases. If this decrease is steep enough, there will be an
alternation of action potential duration (the technical term
for this instability is a period-doubling bifurcation). Since
local alternation of action potential duration in ventricular
tissue would lead to T-wave alternans, this may provide
insight into the reason why T-wave alternans is associated
with an increased risk of SCD (Rosenbaum et al. 1994;
ten Tusscher & Panfilov, 2006; Weiss et al. 2006; Qu et al.
2010).

Initiation of extra beats. Cardiac tissue can also generate
extra beats. Early afterdepolarizations and delayed after-
depolarizations may arise due to genetic abnormalities
(Amin et al. 2013) or drug effects (Farkas & Nattel, 2010;
Gonano et al. 2011). Theoretical models rely on detailed
analyses of the underlying ionic mechanisms (Qu et al.
2013). It is also possible to have localized regions of
cardiac tissue make a transition from an excitable cell to a
pacemaker leading to an ectopic focus (Antzelevitch et al.
1983). If the localized pacemaker has a lower frequency
than the sinus rhythm, then the pacemaker may be
entrained in a one-to-one fashion to the sinus rhythm,
and the localized pacemaker properties would not be
evident. If, however, the pacemaker was in an anatomical
region that had entrance block, the pacemaker might
act as an ectopic focus generating a parasystolic rhythm
(Antzelevitch et al. 1983), such as sometimes occurs in the
right ventricular outflow tract. Although mathematical
models for transtions from oscillatory to non-oscillatory
states are well developed (the transition can take place via
a Hopf bifurcation) (Qu et al. 2013), theoretical models
of physiological mechanisms that lead to such trans-
tions, such as variation of catecholamine levels (Shen &
Zipes, 2014), need to be developed better. Independent
of specific mechanisms for ectopic pacemaker initiation,
the consequence of ectopic pacemakers can be analysed
theoretically (see the next section).

Dynamics of PVCs

The preceding section summarized several dynamic
features of cardiac models. Transitions from sinus
rhythm to VT often occur as a consequence of a
PVC. Consequently, it is of interest to consider possible
mechanisms of PVCs. In this section we briefly review
this work from a perspective of improving methods for
risk stratification. Although PVCs are commonly found in
normal individuals and may be considered benign, there is
also significant clinical data that show that frequent PVCs
confer a risk for SCD (Kotler et al. 1973; Berkowitsch
et al. 2004; Carrim & Khan, 2005; Dukes et al. 2015).
The onset of ventricular tachyarrhythmia preceded by
PVCs has been documented in different clinical contexts.
In idiopathic VF patients, spontaneous VF episodes are
initiated by PVCs with very short coupling intervals
(Viskin et al. 1997; Haı̈ssaguerre et al. 2008). Spontaneous
VF initiated by PVCs with short–long–short sequences
have been documented in 72% of VF episodes in patients
with early repolarization and in 15% of VF episodes in
Brugada syndrome patients (Nam et al. 2010). In long QT
syndrome patients, the onset of polymorphic VT (torsade
de pointes) is typically pause dependent: most episodes
of polymorphic VT are preceded by either a single PVC
or short–long–short sequences that arise due to PVCs in
complex rhythms, such as ventricular bigeminy (Viskin
et al. 1996). In other clinical contexts such as myocardial
infarction, there is a less clear relationship between PVCs
and the onset of VT or VF. An early study with 77 patients
describes 492 episodes of VT that occurred during the
first 48 h following the onset of myocardial infarction.
PVCs were observed in 76% of cases during the 10 min
preceding VT, but the incidence dropped to 40% during
the minute prior to VT (Bluzhas & Lukshiene, 1985). The
frequency of PVCs per minute had a large range (1 to
20) and the complexity of PVCs also varied, with groups
of PVCs (24%), early PVCs (12%) and multifocal PVCs
(30%). Since transition from VT to VF was observed in
only 1% of cases, the frequency and complexity of PVCs
were concluded to be of little predictive value for VF in
patients with myocardial infarction. Regardless of the lack
of a clear link between PVCs and the onset of VT or VF in
myocardial infarction patients, the assessment of PVCs as
precursor of VT or VF is still important for certain groups
of myocardial infarction patients (Makikallio et al. 2005;
Lerma et al. 2013). We now consider different mechanisms
for the generation of PVCs.

Reentry. Reentry of ventricular beats can lead to PVCs.
One scenario for this involves entrance of ventricular
activity from a sinus beat into a ventricular scar resulting
from an infarct via an isthmus of viable tissue (Josephson,
2008). If the conduction velocity is sufficiently slow, the
exit from the scar tissue would occur after the refractory
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time of the sinus beat and lead to a PVC. The conduction
time through the scar would be expected to be affected by a
variety of factors including the sinus rate, prior conduction
through the scar, drugs, and levels of catecholamines.
Depending on these factors, it is possible that the PVC
would lead to VT using the same pathway (Bogun et al.
2008). In that case one would expect that the morphology
of the VT would be close to the morphology of the PVC
(Pogwizd & Corr, 1987; Bogun et al. 2008; Chinushi
et al. 2011). Conduction through the isthmus would be
expected to show similar properties to conduction in
excitable media including decremented conduction and
various patterns of block (Callans et al. 1993). Theoretical
models have addressed the dynamics of PVCs arising from
reentry (Kinoshita et al. 1990; Schulte-Frohlinde et al.
2002).

Parasystole. Ventricular parasystole results from the
interaction between an ectopic ventricular pacemaker and
the normal sinus rhythm. In the classic manifestation both
rhythms are independent. Given different mechanisms for
PVCs, this is the mechanism best understood. A PVC will
be observed if the timing of the parasystolic beats falls
outside the refractory period of the sinus beat; the ectopic
beat will be blocked if it falls during the refractory period of
the sinus beat; and there will be a fusion beat with different
morphology if the ectopic beat falls simultaneously with
the onset of the QRS complex of the ECG. Classically,
parasystole is identified on the ECG from a triad of
characteristics: intervals between PVCs are multiples of a
common divisor, the coupling interval from the sinus beat
to a PVC varies, and there are fusion beats. Mathematical
analysis of parasystole revealed surprising properties for
the sequence of integers that gives the number of sinus
beats between two consecutive PVCs. In this sequence
assuming that sinus frequency and the ectopic frequencies
are fixed, there will in general be three integers that can be
predicted based on the periods of the sinus and ectopic
beats and the refractory time following the sinus beat
(Glass et al. 1986). An important early paper by Moe
and Jalife demonstrated that it is also possible for the
parasystolic focus to be re-set (or modulated) by the sinus
beat (Moe et al. 1977). If only one sinus beat falls between
two consecutive PVCs, plotting the interval between two
consecutive PVCs as a function of the timing of the
sinus beat in the PVC cycle generates a resetting curve.
Modulated parasystole can lead to repetitive sequences
such as bigeminy, in which there is one sinus beat between
two consecutive PVCs, or trigeminy, in which there are two
sinus beats between two consecutive PVCs (Antzelevitch
et al. 1983; Courtemanche et al. 1989). An early paper
that assessed malignancy of arrhythmias in individual
patients concluded that although parasystole could lead to
frequent ectopy, it did not confer an elevated risk of SCD

(Kotler et al. 1973). Thus, identification of a parasystolic
mechanism for PVCs based on dynamic features could
play an important role in risk stratification. Because of
the independent timing of sinus and parasystolic beats, in
parasystole there will be occurrences of PVCs at different
times in the sinus cycle and in particular on the T-wave of
the ECG. If one assumes that PVCs occurring during the
T-wave are proarrhythmogenic (Smirk, 1949), one would
expect that parasystole would be a malignant rather than a
benign arrhythmia. This apparent inconsistency indicates
the possible importance of mechanism of PVCs, and bears
further investigation.

Early afterdepolarizations and delayed afterdepolari-
zations. Early afterdepolarizations (EADs) and delayed
afterdepolarizations (DADs) are depolarizations following
a cardiac action potential that occur earlier than would
otherwise be expected. EADs occur during the action
potential and DADs occur shortly after the action
potential. In contrast to parasystolic PVCs, PVCs that
arise as a consequence of EADs and DADs give rise
to malignant arrhythmias. Although EADs and DADs
are typically identified based on intracellular recordings,
optical recordings from tissue culture provide a powerful
new method to assess repolarization abnormalities on
a tissue level. Several different mechanisms can lead
to abnormal depolarizations; for a review see Roberts
et al. (2012). They include genetic mutations of sodium
channels leading to enhanced automaticity (Brugada
syndrome; Brugada et al. 2013), genetic mutations of
potassium channels leading to prolonged action potentials
(long QT syndrome; Amin et al. 2013), drug effects
leading to prolonged action potentials (acquired long QT
syndrome; Farkas & Nattel, 2010), defects in calcium
handling that may be exacerbated in conditions of
catecholaminergic stimulation (catecholaminergic poly-
morphic ventricular tachycardia; Mohamed et al. 2007),
drug effects from digitalis and other drugs leading to
calcium overload and DADs (Gonano et al. 2011). Recent
papers have developed mathematical models of the cardiac
action potential and demonstrated bifurcations that can
lead to the onset of arrhythmias induced by EADs
(Chang et al. 2012; Karagueuzian et al. 2013; Qu et al.
2013).

Detailed ionic models have been useful in under-
standing the circumstances that can lead to PVCs. EADs
that occur during phase 2 of the action potential (phase-2
EADs) can markedly prolong the action potential duration
but cannot generate propagating PVCs (Sato et al. 2009).
An animal model of isolated ventricular rabbit myocytes
exposed to H2O2 produced phase-2 EADs due to slowed
IKs activation (Qu et al. 2013). Phase-3 EADs, produced
for example with IKr blockade using dofetilide in iso-
lated rabbit ventricular myocites (Guo et al. 2007), can
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prolong the action potential duration and also generate
propagating PVCs (Qu et al. 2013). Phase-3 EADs can
also result from electrotonic coupling between regions
with and without phase-2 EADs in heterogeneous tissue
(Maruyama et al. 2011). Finally, late phase-3 EADs, which
are similar to DADs, can arise from intact tissue (not
from isolated myocytes) when the Ca2+ transient outlasts
the action potential duration and Ca2+ inward currents
depolarize the membrane voltage until it reaches the INa

threshold (Qu et al. 2013).

Heartprint

Since some mechanisms for PVCs are associated with
lethal arrhythmias, distinguishing mechanisms of PVCs
in individual patients may provide useful clinical
information. Based on theoretical analysis of models of
PVC generation, we have developed a visual method,
called the heartprint, to characterize long-term dynamics
of the mechanism of PVCs. It was created as a visual
and qualitative method to display statistical properties
of intervals related to the PVCs: (i) the coupling interval
(CI) between each PVC and the preceding sinus beat,
(ii) the time interval between PVCs (VV interval), and
(iii) the number of intervening sinus beats (NIBs)
between two consecutive PVCs (Schulte-Frohlinde et al.
2002). To explore the dependencies between these indexes

and the underlying cardiac rhythm (represented by NN
intervals, usually sinus rhythm), bivariate histograms are
represented as grey scale plots where the ordinate is the
NN interval, the abscissa axis is one of the heartprint
indexes, and the incidence of VV intervals, NIB values
and CI are indicated in the greyscale plots respectively,
where the relative frequency of occurrence is indicated by
the shading (darker shading representing more events)
(Fig. 1). The example in Fig. 1 is derived from a Holter
recording in the Sudden Cardiac Death Database in a
patient who experienced an episode of sustained VT of
unknown cause (Goldberger et al. 2000). The CI, observed
in the ECG (Fig. 1A), remained fixed throughout the 24 h
recording (Fig. 1B).

Based on the hearprint, new quantitative indices have
been found which are associated with a higher risk of SCD,
including the standard deviation of the CI (SDCI) and the
NIB score (SNIB), which is the number of incidences (i.e.
the height of the histogram in the heartprint) of the most
prevalent values in the range 1–8 (Lerma et al. 2013). In
survivors of acute myocardial infarction with depressed
left ventricular function, repeating forms of PVCs (SNIB
� 83) was associated with a higher risk of fatal or near-fatal
sudden arrhythmias (primary endpoint of the study) with
a hazard ratio of 3.5 (1.3–9.5). Although this is better
than some other non-invasive markers of risk for SCD
based on the signal averaged ECG or heart rate turbulence
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Figure 1. Example of ECG trace (A) and heartprint (B) from a Holter recording of the Sudden Cardiac
Death database (no. 47) with repetitive arrhythmia with fixed coupling interval (CI)
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(Huikuri et al. 2009), it requires further development
and confirmation before it can be incorporated in new
methods for risk stratification. A fixed CI (SDCI � 80 ms)
was associated with a higher risk of all-cause mortality with
a hazard ratio of 2.89 (1.13–7.38) and with cardiac death
with a hazard ratio of 3.36 (1.00–11.22) (Lerma et al. 2013).

The heartprint was created as a visual tool to identify
patterns in the interaction between the arrhythmia
characteristics and the sinus interval, which could
be associated to specific arrhythmogenic mechanisms
(Schulte-Frohlinde et al. 2002). Patterns with fixed CI may
reflect either reentry or triggered activity, while patterns
with broad CI are expected in parasystole. Using data from
the Holter cardiac death database (Goldberger et al. 2000),
a pattern of fixed CI and persistent ventricular bigeminy
(as is shown in the example of Fig. 1) was found in 6 out
of 15 recordings (Lerma et al. 2007). Since the recordings
with such a pattern had also long QT interval and poly-
morphic VT (torsade de pointes), it is possible that EADs
are the mechanism underlying the PVCs.

We conclude that it is important to understand the
mechanisms of PVCs (Glass et al. 2011). Others have a
similar perspective. A recent study found an increased
risk associated with frequent PVCs (Dukes et al. 2015). A
commentary on this paper concludes, ‘A patient-specific
physiological characterization is crucial to better under-
stand the mechanistic links between [PVCs] and increased
risk of adverse cardiovascular events’ (Santangeli &
Marchlinski, 2015).

Realistic and patient-specific diagnosis and modelling

In contrast to the simplified models discussed above
(Dynamics of wave propagation), realistic models attempt
to incorporate detailed features of cardiac tissue including
multiple types of ion channels, anisotropy, extracellular
medium, and three-dimensional geometries including
measured geometries in the individual. Of course,
depending on the particular objectives, only a subset of
these factors may be included in any particular model. The
realistic models are playing an important role in under-
standing the effects of genetic mutations on ion channels,
and the analysis of anti- and pro-arrhythmic drugs on
cardiac function (Fenton & Cherry, 2008).

Noble and colleagues pioneered the development of
ionic models for cardiac cells. Detailed models now exist
for a broad range of cell types and a broad range of
species. Since the development of ionic models is based on
voltage clamp experiments, development of these models
is difficult due to many technical issues, including effects
of tissue preparation on ionic properties, differences
between homologous ion channels in different species,
and variability between different cells of the same tissue
type in the same species (Carusi et al. 2012; Britton et al.
2013; Sanchez et al. 2014).

The main observable of the models is the membrane
voltage, and after fitting individual currents to available
data, the model parameters are adjusted to fit the
membrane voltage under some set of physiological
conditions. One limitation of the approach is that
the resulting models do not necessarily agree with
other sorts of experimental data including dependence
of cell and tissue properties on stimulation frequency
(restitution properties) and the resetting properties of
pacemaker cells. Indeed, different models of the same
tissue often have important differences when exercised
under various stimulation routines (Cherry & Fenton,
2007). A discussion of the problems involved in parameter
estimation and possible approaches can be found in an
article in this issue (Krogh-Madsen et al. 2016).

In parallel with development of realistic ionic models,
work is also underway on the development of whole-heart
models that incorporate three-dimensional geometry of
the heart based on magnetic resonance imaging (MRI).
Although the potential for this has been recognized for
a long time (Vigmond et al. 2001; Virag et al. 2002),
there are many challenges given the complexity of the
anatomy and physiology. However, significant progress
has been made in simulation of both atrial and ventricular
arrhythmias. Computational models can provide insight
into determining potential loci for ablations (Hwang
et al. 2014; Trayanova, 2014; McDowell et al. 2015).
Whole-heart modelling of the ventricles based on MRI
imaging may also provide a novel approach to risk
stratification. Trayanova and colleagues have pioneered
this analysis with the study of the induction of VT in 13
patient-specific models (Ashikaga et al. 2013; Trayanova
et al. 2014). Inducibility of VT in the computer model
correlates well with the risk of VT or VF in patients
with implanted ICDs (Dickfeld et al. 2011; Ringenberg
et al. 2014, 2015) and may play a potential role in risk
stratification.

Challenges for risk stratification for SCD

Risk stratification for SCD poses a major problem for
clinical medicine. Although ICDs offer the prospect of a
life-saving therapy for a subset of patients, they are highly
invasive and expensive, and have associated risks due
to infection and various types of malfunction including
mis-sensing and lead fracture. Since ICDs are not triggered
in a large fraction of the patients who receive them,
and many patients who experience SCD do not meet
current criteria for implantation, there is a need for new
approaches (Goldberger et al. 2008, 2011; Bastiaenen et al.
2012; Bilchick et al. 2012; Huikuri, 2015).

Our review of current approaches to risk stratification,
theoretical modelling of cardiac dynamics, and dynamics
of PVCs makes clear that the range of normal
and pathological dynamics is large. Although simple
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algorithms and criteria for medical diagnoses and
treatments have traditionally provided a basis for decision
making in clinical medicine, recent work emphasizes
that individual differences must be evaluated in decision
making. Personalized or precision medicine, in which
individual variability is taken into account for prevention,
diagnosis and therapy of disease, has the potential to
improve medical care (Collins & Varmus, 2015). Although
precision medicine is most often discussed in the context
of the influence of genetic differences on cancer biology,
we believe that individualized analysis of cardiac dynamics
will be an essential component of the application of
personalized medicine to cardiology.

Some aspects of cardiac electrophysiology already adopt
a personalized approach. Medical procedures involving
cardiac ablation to treat arrhythmias involve mapping
the intracardiac substrate using a variety of protocols
to determine the arrhythmic loci and pathways in
each individual. Such procedures are invasive, expensive
and require specialized personnel. As mentioned earlier,
significant progress is being made to assess the
cardiac arrhythmia substrate using MRI combined with
whole-heart modelling to identify ablation targets and
to do risk stratification for SCD (Trayanova, 2014).
Since whole heart models simulate complex anatomy
and physiology, these methods now require powerful
computational facilities and high levels of technical
expertise.

In a recent review, Goldberger et al. write, ‘Given
the desirability of accurate risk stratification [for sudden
cardiac death] and the long history of research in this area,
it is important to understand why the field is not further
advanced.’ (Goldberger et al. 2011).

We believe that it is possible to do a better job for
risk stratification for SCD. However, there is a need
for new strategies employing richer data subjected to
mathematical analysis and modelling. Until recently,
most research has been carried out by clinicians based
on data collected over a limited time frame. Since
cardiac arrhythmias often have significant fluctuations
during the day and tachycardias have paroxysmal onsets,
determining the physiological changes that lead to the
arrhythmia onset and mechanism presents a problem in
data collection as well as a problem in analysis. However,
the increasing development of wearable devices, cloud
computing, and big data offers the prospect of carrying
out analysis of electrocardiographic data with a perspective
of developing a better understanding of the mechanisms
of arrhythmias and the factors that lead to their onset.
We believe that it will be useful to examine fluctuating
dynamics of arrhythmias over many hours or days,
develop quantitative methods to identify distinguishing
features, and carry out simulations of dynamics to
compare with the data. Since the changing physiological
conditions during the day may lead to bifurcations

in the dynamics, it will be necessary for people with
mathematical expertise to collaborate with cardiac electro-
physiologists to develop appropriate theoretical models.
Although this is still at a research stage, it provides the
potential for understanding mechanisms of arrhythmias
in individuals. We believe that this is a crucial step for the
development of better methods for risk stratification for
SCD.
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