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Abstract Mathematical models of cardiac electrophysiology are instrumental in determining
mechanisms of cardiac arrhythmias. However, the foundation of a realistic multiscale heart
model is only as strong as the underlying cell model. While there have been myriad advances
in the improvement of cellular-level models, the identification of model parameters, such as
ion channel conductances and rate constants, remains a challenging problem. The primary
limitations to this process include: (1) such parameters are usually estimated from data recorded
using standard electrophysiology voltage-clamp protocols that have not been developed with
model building in mind, and (2) model parameters are typically tuned manually to subjectively
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match a desired output. Over the last decade, methods aimed at overcoming these disadvantages
have emerged. These approaches include the use of optimization or fitting tools for parameter
estimation and incorporating more extensive data for output matching. Here, we review recent
advances in parameter estimation for cardiomyocyte models, focusing on the use of more complex
electrophysiology protocols and global search heuristics. We also discuss future applications
of such parameter identification, including development of cell-specific and patient-specific
mathematical models to investigate arrhythmia mechanisms and predict therapy strategies.
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Corresponding author D. J. Christini: Weill Cornell Medical College, 520 East 70th Street, Starr 463, New York, New
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Abstract figure legend The process of estimating parameters in cardiac myocyte models can be improved by matching
model output to complex objectives, such as irregularly timed action potentials and carefully designed voltage-clamp
protocols. When combined with a global search heuristic, rather than manual parameter tuning, models can be generated
that are more accurate and specific to individual cells.

Introduction

A prominent contribution of George R. Mines, published
just over 100 years ago in this journal, was the
conceptualization of reentrant activation of cardiac
tissue as a mechanism underlying arrhythmias (Mines,
1913; Aguilar & Nattel, 2016). A century later, despite
this fundamental insight, sudden cardiac death due to
ventricular arrhythmias remains one of the leading causes
of mortality in the developed world.

Over the past several decades, the proteins that are
altered in congenital and acquired arrhythmia disorders
have been largely identified and characterized. Only a
few of these basic-science advances, however, have been
translated into successful new therapies for arrhythmia
treatment or prevention. One contributing factor to this
gap may lie in the complex dependencies and interactions
between the many different proteins and molecules under-
lying electrical activity in the heart. Complex systems, such
as the cardiac myocyte, often exhibit emergent properties
that are not easily predicted from the characteristics of
the individual parts. Therefore, although malfunction in
virtually any of the individual components involved in
generation of the heartbeat may increase arrhythmia risk,
mechanistic and quantitative linking of such individual
component malfunction to arrhythmogenesis is daunting.

Because of this complexity, mathematical modelling
can be an important means of illuminating both
normal and pathophysiological cardiac electrophysiology.
Mathematical models of electrophysiological dynamics
in cardiac myocytes, consisting of coupled, non-linear
differential equations, have been developed with
increasing complexity and specificity for more than
50 years (Noble et al. 2012). These models have inarguably
helped increase our understanding of cellular electro-
physiology and cardiac arrhythmias (Roberts et al. 2012).
In addition to simulating the effects of pharmacological
agents, models can be employed in, e.g., predicting the

impact of specific genetic variations, and simulating
arrhythmogenesis at the tissue level.

Many of the mathematical models used to investigate
cardiac physiology and arrhythmia mechanisms, however,
suffer from important limitations. For example, the rate
dependence of the action potential is inaccurate for several
human atrial and ventricular models and models may
not exhibit expected arrhythmia-relevant dynamics such
as early afterdepolarizations and repolarization alternans
(O’Hara et al. 2011; Gonzales et al. 2014). In addition,
models generally present the behaviour of average or
typical cells and may not accurately reproduce electro-
physiological properties of particular, individual myo-
cytes. In this review, we discuss how limitations inherent
to the traditional model development process results in
suboptimally parameterized models and discuss recent
advances towards improved model generation.

Limitations to cardiac ionic model development
process

Although ionic cardiomyocyte models have undergone
tremendous development over the last decades, in
particular by more thoroughly representing the ensemble
of cardiac ionic currents and by improving treatments
of intracellular calcium handling, the process through
which models are developed remains relatively unchanged.
Models are constructed by assembling equations for
individual currents into a composite cell model. These
formulations are most often based on current data
obtained from whole-cell voltage-clamp experiments,
which ideally would be designed to estimate values for
all of the steady-state and kinetic parameters of the
Hodgkin–Huxley formalism, in addition to the maximal
conductance.

Well-known shortcomings intrinsic to the voltage-
clamp process as it relates to modelling include:
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(1) insufficient separation of activation and inactivation
processes (Lee et al. 2006), (2) non-selective pharmaco-
logical ion channel blockers, and (3) non-physiological
solutions. Additionally, modellers often must make do
with data that were not obtained for the specific purpose
of building a model and therefore are incomplete (ten
Tusscher et al. 2004; O’Hara et al. 2011). For example, time
constants may be obtained only at a few voltage values,
whereas a model requires values over the full physiological
range. Further, experimental studies may purposefully
select cells that have larger currents in order to more
easily characterize kinetics and activation/inactivation
processes, thus creating a bias towards larger conductance
values (Courtemanche et al. 1998).

Inter-laboratory variations and data inconsistency. For
a number of reasons, including varying experimental
specialization required for quantification of different
ionic components, data and formulations for individual
currents are typically obtained from voltage-clamp
experiments performed in several different laboratories.
Distinctions in experimental protocols introduce inter-
laboratory variations in many factors that directly
influence cellular electrophysiology, including tempe-
rature, composition of solutions, and enzymatic digestion
isolation procedure (Fig. 1; Niederer et al. 2009; Fink
et al. 2011). Different laboratories may also favour or have
primary access to subjects of certain characteristics such
as sex, age and breed.
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Figure 1. Limitations to cardiac myocyte ionic model development
Top: experimental and species variability is illustrated for a human ventricular myocyte model (the ten Tusscher
et al. 2004 model). Different ionic components originate from previous modelling or experimental studies using
data from a variety of species obtained at a range of temperatures. Reproduced from Niederer et al. (2009)
with permission. Left: cell-to-cell variability in action potential for 14 myocytes isolated from the guinea pig left
ventricle (following the protocol in Groenendaal et al. 2015). Bottom: manual tuning of parameters provides only
poor coverage of the model parameter space (red dots represent parameter combinations tested) and may not
find the best solution (the dark blue well). Right: two different sets of conductance parameters (represented by
blue and red) give rise to overlapping action potentials, emphasizing that simple dynamics cause non-uniqueness.
Reproduced from Sarkar & Sobie (2010).
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Besides the inconsistencies stemming from lab-to-lab
variability, models often contain a source of divergence
because data are not always available for all the relevant
currents for the particular species and cell-type of choice.
In these cases, modellers make do with what they deem
is best back-up. One might expect such lack of data to be
particularly pronounced for human models, for which a
careful analysis of data sources was first carried out (Fig. 1;
Niederer et al. 2009), but murine models exposed to the
same analysis also show considerable re-use of off-species
data (Niederer & Smith, 2012).

Lab-to-lab inconsistencies also occur in the compound
data used to validate and/or develop models, such as
action potential recordings. As an example of how
inter-lab variability in output data can directly affect
model development, consider the two widely used human
atrial myocyte models due to Courtemanche et al.
(Courtemanche et al. 1998) and Nygren et al. (Nygren
et al. 1998). As the two models are contemporary, they
were developed based on the same available literature and
contain the same currents, although with some differences
in their formulations. Even so, the models produce very
different outputs, with, most prominently, contrasting
baseline action potentials: the Courtemanche et al. model
produces a spike-and-dome morphology whereas the
Nygren et al. model generates a triangular one. These
differences have been ascribed to choices made by the
developers in order to match the model to the morphology
most frequently observed in their own labs (Nygren
et al. 2001). For both models, conductance parameters
were adjusted to generate the desired action potential
morphology, and indeed, modifying parameters can cause
the Courtemanche et al. model to instead produce a
triangular action potential and the Nygren et al. model
to switch to a spike-and-dome morphology (Nygren et al.
2001; Syed et al. 2005; Cherry et al. 2008). With the
ability to estimate multiple cell-specific conductances and
produce cell-specific models as discussed in this review,
it may now be possible to directly test this idea: do
human atrial myocytes exhibiting the spike-and-dome
morphology have conductances similar to those of the
Courtemanche et al. model and do myocytes with the
triangular morphology have conductances comparable to
those of the Nygren et al. model? If not, the discrepancy
may stem from the dissimilar calcium dynamics employed
by the models (Cherry et al. 2008) and/or the inconsistency
in the choices for data use where human atrial data were
not available: the Courtemanche et al. model then relied
on a guinea pig ventricular model, whereas the Nygren
et al. model used a rabbit atrial model.

Cell-to-cell variability. While inter-laboratory variations
can, in theory, be minimized, the electrical activity of
individual cardiomyocytes will inherently vary due to
population heterogeneity, i.e. inter-heart variability. It is

also well known, from tissue and whole-heart experiments,
that even within individual hearts, intrinsic gradients in
ion channel densities cause variations in action potential
morphology of many cell types, including sinoatrial, atrial
and ventricular (Fig. 1). These large-scale gradients cover
apex-to-base, transmurally across the ventricular wall, left
versus right atrium or ventricle, and across the sinoatrial
node region (Schram et al. 2002). However, even in cells
isolated from the same region of the heart, action potential
characteristics and currents vary (Bénardeau et al. 1996;
Groenendaal et al. 2015).

Mathematical cardiomyocyte models typically do
not take into account cell-to-cell variability in ionic
conductances and electrical activity, but instead use
average data to formulate a ‘representative’ cell. This is
problematic for several reasons:

(1) an average cell may not exist if individual cells from
the same region rely to varying extents on different
ionic currents as demonstrated in some neuro-
nal systems, e.g. in the crustacean stomato-gastric
ganglion (Schulz et al. 2006);

(2) the process of averaging individual model parameters
can induce a bias towards larger values and cause
mismatch between model output and targeted
experimental data (Zhou et al. 2009);

(3) the accuracy with which an average cell model
can predict responses to perturbations such as
pharmacological agents for a particular cell is unclear.

Manual tuning. Given these impediments to the process
of model development, it is not surprising that model
parameters often need adjustment when assembling
the individual current formulations into a composite
model. This tuning is usually done manually, varying
one parameter at a time, until the model is thought to
reproduce the experimental target data, such as an action
potential, well enough by some subjective measure. The
process seems simpler when manually adjusting a single
parameter to a particular output, e.g. sodium current
conductance to action potential upstroke velocity or
delayed rectifier conductances to action potential duration
(Nygren et al. 1998; Courtemanche et al. 1998; ten Tusscher
et al. 2004; O’Hara et al. 2011) – steps rationalized by
inherent inaccuracies in voltage-clamp recordings of these
currents. However, the mapping between conductances
and action potential parameters is not unique, as each
action potential feature is generally determined by a
combination of a few key ionic current parameters (Sarkar
& Sobie, 2010; Britton et al. 2013).

The optimal parameter values for a model are those
that give the smallest discrepancy or error between model
output and target data. This error is a function of the
model parameters (the error function). In addition to
being laborious and time consuming, manual parameter
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tuning is suboptimal as the approach explores only a small
fraction of the many possible parameter combinations
and therefore will almost certainly not result in the best
possible fit to the target data. This idea is illustrated in
Fig. 1, where sparse sampling of the combination of the
two parameters (i.e. a two-dimensional parameter space)
results in not locating the best solution, identified as the
lowest peak of the error function.

The method of manual tuning is also problematic from a
physiological point of view as tuning currents individually
neglects the possibility of inter-current dependencies due
to channel co-regulation. Consequently, a hand-tuned
model may therefore not adhere to the underlying physio-
logy. Since arrhythmogenesis occurs through an inter-
action between different cellular components, ideally a
model should be fitted to data capturing relevant inter-
actions in whole-cell dynamics.

Simplistic target data. Although hand tuning is not
expected to find the optimal model fit, it does generate
models that closely recreate the targets they were meant
to match. However, these are often dynamically simple
objectives, such as a single action potential. Because of the
many parameters incorporated into modern ionic cardio-
myocyte models, different combinations of parameters
may generate simple outputs that are very similar (Fig. 1;
Dokos & Lovell, 2004; Sarkar & Sobie, 2010; Zaniboni et al.
2010; Groenendaal et al. 2015). It is possible that different
individuals or different cells employ distinct parameter
combinations as these may each be ‘good enough’ for each
cell to perform its functional role (Marder, 2011; Sarkar
et al. 2012; Weiss et al. 2012). Therefore, on a population
scale, a range of combinations may be representative,
but on the scale of the individual myocyte they proffer
false alternatives to the particular combination present in
that cell. While such a model may recreate existing data
well, it would not be expected to be able to accurately
predict the effects of perturbations as different ionic
current combinations change basic characteristics such
as excitability, current sensitivity and rate dependence
(Zaniboni et al. 2010). For example, if a particular myo-
cyte relies on a large rapid delayed rectifier potassium
current (IKr) and on little of the slow delayed rectifier (IKs)
for normal repolarization, a model generating a similar
baseline action potential using a combination of large
IKs and little IKr would be expected to underestimate the
effects of IKr block (Weiss et al. 2012). Similarly, due to
the intrinsically different kinetics of ion channels, models
with different parameter combinations would be expected
to behave differently during the often fast and irregular
excitation patterns associated with arrhythmias.

As we will discuss below, fitting a model to
more complex data can help eliminate the incorrect
solutions and better constrain parameters. Importantly,
this can help overcome the limitation that models

tuned to reproduce only simple dynamics may fail to
accurately predict more complex dynamics relevant to
arrhythmogenesis.

Parameter estimation and optimization

Brief overview of common methods. In general,
optimization works by finding the global minimum of
the error function in the potentially high-dimensional
parameter space of the model. Different approaches
are available to solve optimization problems. Gradient
descent methods rely on computing local gradients of
the error function to determine a path to a minimum.
Special manoeuvres are required to ensure that the
global, rather than a local, minimum is eventually found
(e.g. Dokos & Lovell, 2004). A fundamentally different
methodology, genetic algorithms test many different
parameter combinations in the process of guiding an
initial, random population of parameter sets toward a
best parameter set using ideas from evolutionary biology.
Gradient descent methods and genetic algorithms have
been used in several studies to optimize parameters in
cardiac cell models (e.g. Dokos & Lovell, 2004; Syed et al.
2005; Bot et al. 2012; Guo et al. 2013; Kaur et al. 2014;
Groenendaal et al. 2015), rather than adjusting post hoc and
by hand. Other techniques used for these or similar types
of optimization problems include simulated annealing
(Vanier & Bower, 1999) and particle swarm optimization
(Weber et al. 2008; Chen et al. 2012). Linear regression
presents a simpler alternative to these optimization
techniques, using local searches to infer parameter values
based on correlations between parameters and biomarkers
such as action potential duration and calcium transient
amplitude (Sarkar & Sobie, 2010).

There has been no direct comparison or benchmarking
of these methods for parameter estimation in cardiac cell
models. We expect the answer to the question of which
method is best to be problem-specific and particular to the
number of parameters to be estimated, the complexity of
the objective, and the characteristics of the error function
(Vanier & Bower, 1999).

Search algorithms themselves have intrinsic parameters
whose settings affect their speed and ability to find
the global minimum. The optimal settings of such
parameters may also be problem-specific and may even
vary throughout a given optimization. Optimization
thus does not automate parameterization in the process
of developing improved models, as it still requires
investigator-based choices and intuitions.

Choice of parameters to be estimated. In general,
optimization is computationally expensive. The difficulty
and the computational cost of an optimization problem
increases tremendously with the number of parameters, as
the addition of each parameter adds another dimension to

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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the parameter space, and because more data are required
to constrain more parameters. Therefore, many parameter
estimation problems have concentrated on optimizing
simplified models with fewer parameters (Bueno-Orovio
et al. 2008; Weber et al. 2008; Abed et al. 2013; Guo
et al. 2013) or, for biophysically detailed models which
can contain hundreds of parameters, have focused on
either identifying kinetic and steady-state parameters for
a single current only (Fink & Noble, 2009; Zhou et al.
2009) or determining maximal conductances only (Syed
et al. 2005). We have done the latter in previous work
(Bot et al. 2012; Groenendaal et al. 2015), based on the
assumption that ion channel kinetics are preserved among
(healthy) subjects while conductances vary as a result of

differences in expression levels. Conductance parameters
are intrinsically easier to estimate as they, unlike kinetic
parameters, are voltage independent.

In addition to deciding which parameters to estimate,
modellers have to choose an allowed search range for each
parameter. Constraining these ranges based on a priori
knowledge can help reduce computations.

Example: single action potential fitting by genetic
algorithm. As an example of an optimization, we show
here the estimation of conductance parameters in a guinea
pig ventricular myocyte model using a genetic algorithm
(Fig. 2; Groenendaal et al. 2015). This example represents
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Figure 2. Progression of genetic algorithm parameter estimation
A–C, the genetic algorithm is initialized with 500 random individuals, i.e. model instantiations, in generation 0.
Models are paced and a single action potential is recorded as its phenotype. The fitness of each individual is
calculated inversely as an error (sum of squared differences) between model output and target objective action
potential. Left columns show action potentials generated by three different generation 0 model instantiations
(traces are coloured according to their error and colour bar in F) compared to the baseline model (black). Right
column bar graphs indicate the scaling of the nine model parameters for each individual, with a scaling of 1
representing the original model value. Parameters 1–9 correspond to maximal conductance of the sodium current,
the L-type calcium current, the T-type calcium current, the inwardly rectifying potassium current, IKr, IKs, the
plateau potassium current, the sarcolemmal calcium pump current, and the maximal flux of the sarcoplasmic
reticulum Ca2+-ATPase, respectively. D–G, with progression through the generations, individual action potentials
become more similar to the optimization objective and errors decrease accordingly. At generation 100, the overall
best individual and the original model are indistinguishable by eye, although the bar graph indicates differences
among the parameters (E). Reprinted from Groenendaal et al. (2015).
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an in silico test case, assessing the ability of the optimization
method to recover the known model parameters.

We used an initial, random population of 500
individuals, or model instantiations, each characterized
by a genotype (a set of parameters), a phenotype (model
output, here a single action potential), and fitness (the
inverse of the error between model output and target).
The evolution of this population occurs in discrete
steps, termed generations. From the first generation,
individuals with higher fitness are selected, in our set-up
through pair-wise tournaments, where the most fit of two
individuals continues to a mating pool. Individuals in the
mating pool produce the offspring for the next generation
through randomized parameter swapping and parameter
modification (i.e. computational correlates of crossover
and mutation). Repeating this process, here through 100
generations, results in a more fit population (Fig. 2E–G),
in which the best individual produces a phenotype that
closely replicates the objective (Fig. 2E). Notice, however,
that this match is obtained despite a discrepancy between
the genotype of the individual and that of the objective
(Fig. 2E), emphasizing the point that simple target data are
insufficient to estimate parameter combinations in these
models.

Although the action potential of the optimized model
is indistinguishable by eye from its target in this example,
the error has not dropped all the way to zero as it ideally
should. A larger population size, an increased number
of generations, and more diversity through crossover
and mutations can help reduce the error (at the cost of
raised computation times), but genetic algorithms are not
guaranteed to find the global minimum. For practical
purposes, fits to within the intrinsic, experimentally
observed, beat-to-beat variation, or within the limits of
measurement noise, are generally considered sufficient.

Use of complex objectives in optimization

Addition of more data to the target objective presents a
key strategy to better constrain parameters and help over-
come the limitation that multiple parameter combinations
may generate the same single action potential. Different
approaches to generating more elaborate objectives
include (1) developing more complex pacing or
voltage-clamp protocols that probe the cell in dynamically
richer ways; and (2) incorporating measurements of
multiple variables, such as transmembrane potential, ionic
current, and membrane resistance. Complex objectives
can be used in conjunction with various search methods,
including genetic algorithms. Different types of data
may make up a single objective, potentially with
different relative weights for the individual components
(Groenendaal et al. 2015), or can be implemented as a
multiple objective optimization (Druckmann et al. 2007;
Kaur et al. 2014). If the protocol generating the objective

data is both capable of uniquely defining the model
parameters of choice and sufficiently concise that it can be
implemented on individual cells (i.e. without significant
damage to the cell as can occur with long protocols),
then this strategy can be used to generate cell-specific
models, which can overcome the twin shortcomings of
data inconsistency and cell-to-cell variability.

Pacing-based protocols. As the rate dependence of
the cardiac action potential is of direct relevance to
arrhythmogenesis, the approach of fitting to data obtained
at multiple pacing rates is pertinent. This has been
done for both simplified, phenomenological models
(Bueno-Orovio et al. 2008; Weber et al. 2008; Guo et al.
2013) and biophysically based ionic models (Syed et al.
2005). For example, Syed et al. (2005) demonstrated
that fitting a model to experimentally recorded action
potentials obtained during 2 Hz pacing only, resulted in
inaccurate predictions of action potential dynamics during
1 Hz pacing. However, consistent with the principle that
dynamically richer training data improve the fit, fitting to
data obtained at four different pacing rates resulted in a
more robust parameter estimation.

As recording data from multiple pacing rates can be
time consuming, a more efficient way of probing the
rate-dependent action-potential dynamics is by using a
sequence of irregular pacing intervals (Guo et al. 2013;
Groenendaal et al. 2015). Such a sequence may also
closely resemble arrhythmia-relevant dynamics such as
the irregular excitations associated with fibrillation. When
estimating conductances in an ionic model using a genetic
algorithm, we found that fitting to a sequence of randomly
timed action potentials yielded models much better at pre-
dicting novel irregular dynamics than did models fitted to a
single action potential (Fig. 3). This increase in predictive
power was associated with a more accurate estimation
of several conductance parameters, in particular those
of IKr and IKs (Fig. 3). When optimizing using a single
action potential only, plausible solutions exist that have
too little IKr and too much IKs. However, due to their
differences in kinetics, the stochastic pacing protocol
enables an untangling of their otherwise compensatory
effects resulting in more accurate estimation.

Complex voltage-clamp protocols. The strategy of
generating complex and efficient voltage-clamp protocols
has shown its merits in several studies aimed at
developing improved models of individual currents,
typically many-parameter Markov models to enable more
precise simulations of pharmacological current inhibition
(Fink & Noble, 2009; Zhou et al. 2009). Clamping to
wave-like, artificial voltage series, in addition to a single
action potential, leads to more precise estimation of many
currents in an ionic model (Dokos & Lovell, 2004).
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Another voltage-clamp strategy is to develop a
multi-segment protocol, where each part is designed to
emphasize a different, individual current (Groenendaal
et al. 2015). This approach should force optimized models
to fit individual currents accurately, as only models that
fit each isolated current will match the total voltage-clamp
current well. We have found that this strategy of current
separation without pharmacological blockage works well
for the currents that are indeed well isolated during
the protocol (e.g. IKs; Fig. 3), but that it is difficult to
design voltage-clamp sequences that effectively isolate
all major currents. When used in combination with a
stochastic pacing sequence to generate a target objective,
this approach can generate precise estimates of the isolated
current conductances and result in models with strong
predictive power (Fig. 3).

Membrane resistance and calcium transients. In
optimization problems, more precise parameter
estimation is typically gained when including information
about additional variables rather than entering longer
recordings of the same variable. For cardiomyocyte
physiology, several variables other than transmembrane
voltage and individual currents are crucial to normal
and pathological function and are therefore important
for a model to reproduce. Membrane resistance, for
example, controls the voltage response to a current

perturbation, e.g. current flowing through gap junctions
from neighbouring cells. Models do not necessarily
reproduce physiological resistances but can be adjusted
(Nygren et al. 1998; Courtemanche et al. 1998) or
optimized (Kaur et al. 2014) to do so.

The intracellular calcium concentration is perhaps
the most obvious candidate variable for addition to
an optimization problem, due to its importance for
contractility, intracellular regulation, and to the fact
that it is routinely measured experimentally. Further,
several of the examples in which different parameter
combinations resulted in similar action potentials had
divergent calcium transients (Dokos & Lovell, 2004; Sarkar
& Sobie, 2010), suggesting that addition of calcium data
would help constrain parameters. In particular, additional
optimizing to calcium data would be expected to estimate
more precisely the parameters directly regulating [Ca2+]i

(e.g. sodium–calcium exchange current and sarcoplasmic
reticulum Ca2+-ATPase activity (SERCA) flux; Fink et al.
2011; Groenendaal et al. 2015).

Protocols to improve tissue models. Many mathematical
models are developed for the purpose of simulating
arrhythmias in virtual tissues and therefore need to
accurately reproduce tissue features. Conduction velocity
and its restitution are key characteristics of tissue
dynamics that can be included in optimizations to help
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A, irregular sequence of action potentials due to stochastic pacing. B, multi-segment voltage-clamp protocol and
resulting current response. C, improvements in the in silico, genetic algorithm-based, parameter estimation of
IKr and IKs conductances by enhancing the optimization objective, from a single action potential (cyan triangles),
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be recovered. Symbols indicate the best solution from each of 10 individual runs, differing due to the random
nature of the genetic algorithm. Error bars give mean ± standard deviation. D, the ability of the optimized
models to predict novel dynamics is calculated as the error in response to a novel stochastic pacing sequence
(‘Prediction error’). Predictive ability is improved when using the stochastic pacing over the single action potential.
The prediction error is large for the voltage-clamp protocol alone, which does not train models according to
membrane potential. Adding the voltage-clamp protocol to the stochastic pacing protocol gives better predictions
compared to stochastic stimulation alone. A second application of the genetic algorithm, allowing only fine,
local, parameter changes (‘Iterative approach’, magenta triangles) results in improved parameter estimation and
predictive power. Reproduced from Groenendaal et al. (2015).
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constrain parameters and ensure accurate propagation
speed (Bueno-Orovio et al. 2008; Weber et al. 2008).
The process of fitting conduction velocity may take into
account tissue-wide or local conductivities (Camara et al.
2011).

When coupled together to form a virtual tissue, myo-
cyte dynamics may behave differently from the uncoupled
cell model constituent (Clayton et al. 2011; Kaur et al.
2014). One way to address this problem is to optimize
tissue models to data from tissue recordings (Abed et al.
2013), but this process is computationally demanding for
complex models. Therefore, there is a need for rigorous
ways to parameterize cellular models so that they exhibit
appropriate behaviour in tissue. Inclusion of membrane
resistance in the optimization as discussed above, may be
a first step towards this goal.

Towards patient-specific modelling of cardiac
electrophysiology

Model optimization presents methods to study both
cellular and subject-level variability. By generating
cell-specific models, we can begin to answer questions
regarding cellular heterogeneity, both in terms of
global heterogeneity due to intra-cardiac ionic gradients
and small-scale heterogeneity due to stochastic gene
expression. A key question, for example, is how variations
in ionic currents contribute to functional differences in
action potential and calcium transient waveforms (Sarkar
et al. 2012). Simulations of cell-specific models can also
generate new, experimentally testable, predictions specific
to an individual cell regarding the response to an inter-
vention such as a particular pacing sequence or drug
application.

To be able to quantify, compare and contrast intra-heart
and inter-subject heterogeneity, these analyses should
be applied to large populations of cells. Indeed, such
analyses may present a first step towards generating
subject-specific ventricular models, as the intra-ventricle
variation is particularly large with apex–base, trans-
mural and left–right contributions. Development of
subject-specific (animal or human) models may be useful
as means to investigate sources underlying inter-subject
variability as well as its functional consequences. This
includes, e.g., genetic variations that can make a person
more prone to early or delayed afterdepolarizations and
ventricular arrhythmias, as well as complex pathologies
such as heart failure that slowly change the electro-
physiological substrate. Models of individuals in such
patient groups can be helpful in making precise pre-
dictions and risk stratification on, e.g., vulnerability
to arrhythmias upon different challenges or effects of
different treatment strategies (Lerma, 2016).

One area of cardiology where patient-specific modelling
may be particularly impactful in the near future is

atrial fibrillation. Because atrial fibrillation progresses
(deleteriously) with time and has many different
comorbidities and variants, the atrial anatomy and
arrhythmogenic substrate can vary significantly among
patients. Recent years have seen rapid progress in the
development of personalized atrial model structures based
on medical images (Dössel et al. 2012; Trayanova, 2014).
Simulations with such models have replicated clinical
electrocardiogram features including P-wave duration
and excitation patterns (Krueger et al. 2013; Gonzales
et al. 2014), and have also demonstrated how fibre
discontinuities or fibrotic lesions can steady reentrant
waves (Gonzales et al. 2014; McDowell et al. 2015),
providing plausible mechanisms for the stable rotors
seen in many atrial fibrillation patients in clinical
investigations (Swarup et al. 2014) (see also Zaman
et al. 2016 and Haı̈ssaguerre et al. 2016 in this issue of
The Journal of Physiology for discussions on fibrillation
mechanisms). As discussed in yet another article in this
issue (Jacquemet, 2016), model utilizations have focused
on simulating radio-frequency ablation treatment of atrial
fibrillation, with the aim of providing a basis for generation
of personalized clinical ablation strategies, including
decisions on whether atrial fibrillation is terminable in
a given patient and where to best place minimal ablation
lesions.

Although atrial structure is of particular importance
to atrial fibrillation dynamics due to the anatomical
complexity of the atria, we postulate that personalized
atrial models stand to gain significant improvement by the
addition of patient-specific electrophysiological cellular
models – inter-subject differences in cellular electro-
physiology have been seen clinically using, e.g., mono-
phasic action potential (MAP) catheters (Kim et al.
2002; Krummen et al. 2012) and experimentally in iso-
lated human atrial myocytes (Sánchez et al. 2014). To
date, patient specificity in the ionics of personalized
atrial models has been limited to groupings between
control versus chronic atrial fibrillation and adjustments
based on extracellular electrolyte concentrations (Krueger
et al. 2013). Efforts to personalize cellular models
could include optimization using in situ clinical MAP
duration restitution data and ex vivo data such as trans-
membrane voltage or current recordings in cells iso-
lated from tissue biopsies in patients undergoing surgery.
An obvious limitation to these recordings is the lack of
sampling of the spatial heterogeneity in electrophysiology
(Aslanidi et al. 2011). Also, cellular electrophysiology may
change on a short time-scale in situ due to changes in
nervous tone because of the sensitivity of atrial myo-
cytes to levels of both acetylcholine and β-adrenergic
agonists. Therefore, accurate model optimization may
require rapid fitting, which is currently possible only
when estimating relatively few parameters (Bot et al.
2012).
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In addition to informing treatment decisions for
individual patients, e.g. regarding an ablation procedure
or pharmacological intervention, patient-specific models
may also give insights into basic mechanisms under-
lying arrhythmias. For example, more accurate models
of the human atria may enable us to answer the question
of how the novel treatment strategy ‘focal impulse and
rotor modulation’ (FIRM) ablation successfully termi-
nates atrial fibrillation in many patients (Narayan et al.
2012), instead of lesions merely anchoring and stabilizing
activation waves into an anatomical reentry as that
described by Mines (Mines, 1913; Gonzales et al.
2014).

Conclusions

The traditional disjoint method of developing
mathematical models of cardiac myocyte electro-
physiology suffers from several inherent problems. In
recent years, a number of studies have demonstrated the
benefits of applying automated optimization methods
to cardiac myocyte model parameterization. Because
multiple parameter combinations can reproduce simple
dynamics such as a single cardiac action potential,
these methods only come to full fruition when used
in conjunction with more complex target data, such as
multiple variables or dynamically rich perturbations.
These methodologies can be used to generate cell-specific
and tissue-specific models in order to address issues
such as inter-subject heterogeneity in baseline electro-
physiology and in response to therapeutic interventions.

In addition to generating more accurate models, new
information can be gained directly from optimization
results. For one, the outcome of an optimization may be
analysed in terms of parameter sensitivity. For example,
multiple runs of a genetic algorithm result in a distribution
of values for each parameter to be estimated (as in
Fig. 3). The widths of these distributions are related
to the sensitivity of the model to the parameters, with
narrow ranges indicating high sensitivity and a broad
range suggesting that a parameter has little influence on
the target. Secondly, analysing correlations between the
estimated parameters can help illuminate under what
conditions different parameter combinations result in
similar behaviours. To date, little has been done in terms of
exploiting this information rigorously and fully, although
such analyses could provide important new hypotheses for
cellular dynamics and variability.
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