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How computer simulations of the human heart
can improve anti-arrhythmia therapy
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Abstract Over the last decade, the state-of-the-art in cardiac computational modelling has
progressed rapidly. The electrophysiological function of the heart can now be simulated with
a high degree of detail and accuracy, opening the doors for simulation-guided approaches to
anti-arrhythmic drug development and patient-specific therapeutic interventions. In this review,
we outline the basic methodology for cardiac modelling, which has been developed and validated
over decades of research. In addition, we present several recent examples of how computational
models of the human heart have been used to address current clinical problems in cardiac
electrophysiology. We will explore the use of simulations to improve anti-arrhythmic pacing and
defibrillation interventions; to predict optimal sites for clinical ablation procedures; and to aid
in the understanding and selection of arrhythmia risk markers. Together, these studies illustrate
how the tremendous advances in cardiac modelling are poised to revolutionize medical treatment
and prevention of arrhythmia.
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cardiac magnetic resonance images for electrophysiological simulation studies (modified with permission from Ukwatta
et al. 2015).

Abbreviations AF, atrial fibrillation; APD, action potential duration; CHD, congenital heart disease; DFT, defibrillation
threshold; DTI, diffusion tensor imaging; GZ, grey zone; ICD, implantable cardioverter defibrillator; LGE, late
gadolinium enhancement; LV, left ventricle; MRI, magnetic resonance imaging; MTWA, microvolt T-wave alternans;
QT, ECG interval between ventricular depolarization and repolarization; SCD, sudden cardiac death; VF, ventricular
fibrillation; Vm, transmembrane potential; VT, ventricular tachycardia.

Introduction

Computer modelling of heart function has emerged as a
powerful tool in the study of heart rhythm and pump
disorders. Biophysically detailed cardiac simulations
can explain experimental observations and help reveal
how organ-scale arrhythmogenic phenomena (ectopic
heartbeats, conduction failure, electrical turbulence, etc.)
and contractile dysfunction emerge from pathological
effects at the tissue, cell and protein levels. This extensive
‘virtual heart’ methodology (Noble, 2002; Vigmond et al.
2009; Gurev et al. 2011; Trayanova, 2011, 2014; Winslow
et al. 2012) has been built upon a strong foundation
of experimentally constrained model developments.
Advancements in single-cell action potential modelling
have produced the contemporary building blocks for
constructing models of the atria (Courtemanche et al.
1998, 1999; Nygren et al. 1998; Maleckar et al. 2009;
Grandi et al. 2011) and the ventricles (ten Tusscher
& Panfilov, 2006; Fink et al. 2008; Grandi et al. 2010;
O’Hara et al. 2011) with high levels of biophysical detail.
Similarly, cell mechanics (myofilament) models (reviewed
in Trayanova & Rice, 2011) have enabled the assembly
of coupled electromechanical models of the heart. Such
developments have helped to fuel the exciting progress
made in simulating cardiac electrical (McDowell et al.
2011; Moreno et al. 2011; Relan et al. 2011; Tandri et al.
2011; Trayanova et al. 2012; Boyle et al. 2013, 2014; Clayton
& Bishop, 2014; Trayanova & Boyle, 2014) and mechanical
(Gurev et al. 2011, 2015; Nordsletten et al. 2011; Land
et al. 2012; Hu et al. 2013a,b, 2014; Krishnamurthy et al.
2013; Tobon-Gomez et al. 2013; Fritz et al. 2014; Lim
et al. 2015) behaviour at the organ level. Importantly, the
emergent, integrative behaviours in the heart uncovered
by these modelling studies have demonstrated how they
result from complex interactions not only within a specific
structural level but also from feed-forward and feedback
interactions that connect a broad range of hierarchical
levels of biological organization, further underscoring the
importance of integrative research in heart (dys)function.
Several recent reviews have been written on our current
understanding of the mechanisms of atrial and ventricular

mechanisms from an integrative interactions perspective
(Janse, 2004; Rubart & Zipes, 2005; Jacquemet et al. 2008;
Plank et al. 2008; Rudy et al. 2008; Fishman et al. 2010;
Dossel et al. 2012; John et al. 2012; Trayanova, 2012,
2014; Chen et al. 2014; Heijman et al. 2014), often derived
from computer simulations.

In the modelling of heart rhythm disorders, recent
developments have begun to focus extensively on clinically
driven problems (Narayan et al. 2008; Bayer et al. 2010;
Krummen et al. 2012) or to adopt the patient-specific
approach (Gurev et al. 2011; Ashikaga et al. 2013;
Prakosa et al. 2014), where the geometry and structure
of the heart (including structural remodelling such as
infarction (Ashikaga et al. 2013) or fibrosis (McDowell
et al. 2015), and in some cases, the torso geometry (Jolley
et al. 2008, 2010), is reconstructed from clinical imaging
modalities. Clinical electrophysiological information has
also begun to be incorporated in simulation studies
(Krummen et al. 2012; Sohal et al. 2014). This new level
of heart rhythm modelling has placed heart models on
the pathway to becoming capable of representing the
electrical responses of the heart to inputs from existing
devices, such as pacemakers and defibrillators (particularly
implantable cardioverter defibrillators (ICDs)), as well as
suggesting new strategies for arrhythmia risk stratification
and anti-arrhythmia therapies. In this article, we
review the current state-of-the-art in using computer
modelling as applied to human anti-arrhythmia therapies.
Specifically, we focus on simulations that have used
human heart models only, at the tissue and organ level,
to model anti-arrhythmia treatments such as pacing for
termination of atrial fibrillation (AF) and ventricular
defibrillation, pharmacological studies, as well as the use
of biophysically detailed computer models of the heart
for risk stratification of arrhythmias. We present the basic
principles of how such models are developed, along with
how simulations of human arrhythmias, as well as patient
heart–device interactions, can be used to improve the
treatment of patients with arrhythmias. The content of
this review is far from being exhaustive regarding the
developments in the field; rather, it presents a glimpse of
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how computer modelling of heart electrical (dys)function
can be used to address clinically relevant problems.

Overview of modelling principles and methodology

Computer modelling of electrophysiology has made
enormous progress over the last decade. This
section reviews briefly the methodological basis
and advancements in biophysically based models of
heart function. A schematic diagram of the current
state-of-the-art general approach to 3-D multiscale (from
the molecule to the organ) electrophysiology modelling
(atrial or ventricular) is shown in Fig. 1. Modelling
the electrophysiology of the heart, even in its most
simple mathematical representation, involves propagation
of an electrical impulse (cell action potential) in a
three-dimensional network of cells. The vast majority of
these models involve biophysically detailed cell membrane
kinetics, i.e. ionic currents, pumps and exchangers,
the mathematical description of which is based on
the formalism introduced by Hodgkin & Huxley (1952).
The ionic exchanges across cell membranes, represented
by the action potential ionic model comprising numerous
ordinary differential and algebraic equations, drive current
flow in the tissue.

In tissue, atrial and ventricular myocytes are electrically
connected via low-resistance gap junctions. Ionic current
can flow from cell to cell via this pathway, in addition to the
current exchange between intracellular and extracellular
spaces through cell membrane proteins. Propagation
of the action potential is typically modelled using
spatially continuous models that are viewed as resulting
from a local spatial homogenization of behaviour in
tissue compartments (membrane, intra- and extracellular
spaces). Current flow in the tissue structure is typically
governed by the monodomain reaction–diffusion partial
differential equation (PDE) over the tissue or organ
volume, with the use of conductivity tensor fields.
Simultaneous solution of the PDE(s) with the set of ionic
model equations (Vigmond et al. 2002, 2003; Plank et al.
2008) represents simulation of electrical wave propagation
in the heart. The conductivity tensor fields used in
these continuous models integrate all the information
about the distribution of gap junctions over the cell
membranes as well as the fibre, sheet and other micro-
structure organization in the atria and ventricles. Cardiac
tissue has orthotropic passive electrical conductivities that
arise from the cellular organization of the myocardium
into fibres and laminar sheets. Global conductivity
values in the atrial or ventricular model are obtained
by combining fibre and sheet organization with
myocyte-specific local conductivity values.

Multiscale models of human heart electrophysiology
are typically modular, allowing the use of a variety of
cellular ionic models (Courtemanche et al. 1998; Nygren

et al. 1998; ten Tusscher & Panfilov, 2006; Fink et al. 2008;
Maleckar et al. 2009; Grandi et al. 2010, 2011; O’Hara et al.
2011), with different levels of biophysical detail. Solutions
are executed on user-specified organ geometries, typically
individual hearts’ (atria and/or ventricles) geometry and
structure (Aslanidi et al. 2011; Relan et al. 2011; McDowell
et al. 2012; Krueger et al. 2013; Prakosa et al. 2014;
Ukwatta et al. 2015), most often obtained from clinical
magnetic resonance imaging (MRI). Clinical MRI scans
with a contrast agent (late gadolinium enhancement, LGE)
can also be used to visualize the structural remodelling
in atria and ventricles (Nazarian et al. 2005; Akoum
et al. 2011; Ukwatta et al. 2015). Figure 2A presents
ventricular model generation from clinical LGE-MRI
images, as described in a recent paper (Ukwatta et al. 2015).
Atrial geometries used in electrophysiological simulations
are acquired using MRI data (Virag et al. 2002; Dang
et al. 2005; Jacquemet et al. 2005; McDowell et al. 2012,
2013; Ukwatta et al. 2014) as well as CAT data (Ridler
et al. 2011). Figure 2B illustrates the construction of
a geometric model of the patient atria from clinical
LGE-MRI scans, as described recently (McDowell et al.
2012, 2013, 2015); in this case the patient atria show a
significant amount of fibrotic remodelling. Since the atria
are much thinner than the ventricles, image-based models
of at least one of the human atrial chambers can further be
sub-classified into surface and volumetric models. Surface
models represent atrial geometry in 3-D but neglect wall
thickness (Vigmond et al. 2001, 2004; Virag et al. 2002;
Dang et al. 2005); the latter is not true for volumetric
models (Freudenberg et al. 2000; Harrild & Henriquez,
2000; Seemann et al. 2006; Reumann et al. 2008; Aslanidi
et al. 2011; McDowell et al. 2012, 2013, 2015).

Local fibre directions in ventricular or atrial models
of various species have traditionally been mapped based
on ex vivo histological sectioning information or on
diffusion tensor imaging (DTI). In human organ-level
heart models, fibre orientation is mapped either using
an atlas human heart (Vadakkumpadan et al. 2012) or
by employing rule-based approaches (Krueger et al. 2011;
Bayer et al. 2012; Dossel et al. 2012). The accuracy of
atlas-based and rule-based approaches for incorporating
fibre orientation in heart models has been evaluated by two
studies, respectively: Vadakkumpadan et al. (2012) and
Bayer et al. (2012). Both studies compared the outcomes
of electrophysiological models that involved atlas- or
rule-based approaches vs. fibre orientation obtained
from diffusion tensor MRI. For instance, results by
Bayer et al. (2012) demonstrated that activation patterns
from simulations with the rule-based fibre orientation
approach developed in that study and DTI-derived fibre
orientations were nearly indistinguishable, with relative
differences �6%, absolute mean differences in activation
times �3.15 ms, and positive correlations >0.99. These
results convincingly show that the rule-based algorithm is
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a robust alternative to DTI for assigning fibre orientation
to computational heart models.

Finally, numerical approaches for simulating the
electrical behaviour of the heart have been described
in detail in previous publications, some of which offer
comprehensive reviews on the subject (Jacquemet et al.
2008; Plank et al. 2008; Trayanova, 2011, 2014).

Pacing: anti-arrhythmia pacing for atrial fibrillation
termination. The ability to construct multiscale models
of the electrical functioning of the atria, representing
integrative behaviour from the molecule to the entire
organ, has paved the way for the use of these models in
AF management. In this section, we provide an example
of modelling work that has been conducted to optimize

Passive Tissue Properties Passive Tissue PropertiesCellular Ionic Model

Outward Currents

Inward Currents

Ca2+ Handling

Figure 1. Multiscale approach to image-based
modelling of cardiac electrophysiology
Passive electrical coupling of cardiac cells mediates the
tissue-scale propagation of bioelectric impulses that
originate at the membrane level (action potentials). 3-D
geometrical models are reconstructed from images.
(Modified with permission from Trayanova et al. 2014.)

In vivo MRI
A

B
In vivo MRI

Segmentation

Segmentation

Model

Model
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Atrial Tissue
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Figure 2. Constructing image-based models of the ventricles and the atria
A, construction of a patient-specific ventricular model of arrhythmia from a clinical MR scan. Images are shown
of an infarcted patient heart before ablation (treatment) and the corresponding segmentation: healthy (red), GZ
(green), or scar (yellow). An image of the 3-D geometric model of the patient heart rendered with the epicardium
and the infarct border zone semi-transparent is shown in the third panel. (Modified with permission from Winslow
et al. 2012.) B, a model of the fibrotic human atria (right) generated from a patient LGE-MRI scan (left) following
segmentation (middle) into normal and fibrotic tissue (fibrotic lesions in red). (Modified with permission from
McDowell et al. 2012.)
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anti-tachycardia pacing for AF, applicable to those patients
that have implanted devices.

Pacemaker-based therapy for AF has been recognized
as a possible alternative to drug therapy; today many
pacemakers and ICDs include pacing algorithms for AF
prevention and termination (Redfearn & Yee, 2006). As
compared with electrical cardioversion, pacing has the
advantage of being painless, safe and energy-efficient
in implantable devices. Most existing pacing algorithms
deliver preventive therapies aimed to suppress AF triggers
and reduce dispersion in atrial refractoriness (Ellenbogen,
2007). Uldry et al. (2010) recognized that with the use of an
atrial model, a better understanding of the degree of local
capture by pacing could be achieved, which might have
important implications for the development of pacing
algorithms for AF termination. The authors used a 3-D
surface model of the human atria and rapidly paced it at a
cycle length shorter than that of the detected arrhythmia,
from a single site, in an attempt to terminate AF. The
results demonstrated that the septum was the only pacing
site that yielded AF termination in both atria. However,
capture was sporadic, and overall, did not result in AF
termination or permanent changes in AF pattern. A new
pacing scheme, shown in Fig. 3, was subsequently devised
(Uldry et al. 2012), where the initial rapid septal pacing
phase, this time from a large septal area (see Fig. 3, shown
in red in the septal area, left), was followed by a slow septal
pacing phase from the same location (at a cycle length
longer than that of the detected arrhythmia) aimed at
lengthening the action potential duration (APD) and thus
eliminating any residual fibrillating wavelets that might
have survived in areas distant from the septum during the
rapid pacing phase. The new algorithm could suppress
AF reentries in a more robust way than single site rapid
pacing, with AF termination rate increasing from 10.2%
to 20.2%. This simulation research provided an example
of how realistic models of the atria can be used to generate
new ideas and potential approaches to AF management
optimization.

This research was further extended in a recent paper by
Rusu et al. (2014). Since AF can have different clinical
forms corresponding to different patient-specific atrial
substrates, inter-patient variability may affect the efficacy
of septum pacing. Rusu et al. (2014) used computer
simulations with the same atrial model as in the above
study to assess the influence of electrophysiological
heterogeneities (as occurring in the early stages of AF
progression) on the ability to capture AF with rapid pacing
from the septum area. Three different biophysical models
of AF were considered: (i) AF in a homogeneous sub-
strate (multiple wavelets), (ii) cholinergic AF arising from
heterogeneities in vagal activation, and (iii) AF arising
from heterogeneities in repolarization. The researchers
found that in a homogeneous atrial substrate, AF capture
could reach 80% of the atria. Heterogeneities, however,

decreased the ability to capture during AF, in a manner
that was different depending on the type of heterogeneities
(those in vagal activation vs. those in repolarization).
These model-based results suggest that heterogeneities
in atrial substrate greatly influence the ability to capture
AF with rapid pacing from the septum area, and that AF
pacing therapies in patients with implanted devices might
need to be specific to each patient’s atrial substrate.

More sophisticated 3-D human atrial models have been
recently developed (Colman et al. 2013; Tobón et al.
2013; Krueger et al. 2014) that incorporate biophysical
detail on electrophysiological remodelling associated with
persistent AF (for a review on recent efforts in AF
modelling, the reader is referred to Trayanova 2014). The
expectation is that such modelling efforts will also be
directed, in synergy with providing mechanistic insight,
towards addressing current clinical needs.

Pharmacological therapy: drug effects beyong the single
cell. Relating effects of drugs on ion channels beyond the
action potentials requires virtual tissue or whole heart
organ simulation, so that arrhythmia onset, termination
and prevention can be explored. Moreno et al. (2011)
incorporated both state-dependent Markov modelling
of drug effects and full integration to the human
action potential, human tissue, and finally realistic MRI
image-based human heart. This is the first instance
of such massive integration across the space and time
scales at play. Their study showed that the effects of
flecainide and lidocaine (lignocaine) on sodium current
(INa) block are globally similar in response to dynamic
protocols. However, clinical trials have shown previously
that flecainide tended to be proarrhythmic at therapeutic
doses, whereas lidocaine was not. Simulation results made
clear that neither simple reduction in INa nor single-cell
behaviour could explain this paradox. However, at the
macroscopic scale, the vulnerable window was greater for
flecainide than for lidocaine (especially in heart failure
simulations due to shortened diastole) and reentrant
arrhythmia in the ventricle persisted; as discovered by
examining Markov states, this was due to the relatively
slow accumulation of, and recovery from, use-dependent
block with flecainide.

A common approach to testing potential drugs for
cardiotoxicity is to measure hERG channel-binding
affinity, which indicates whether a compound will prolong
the QT interval of the ECG (ECG interval between
ventricular depolarization and repolarization) by blocking
the rapid delayed rectifier potassium current (IKr). Many
recent studies have sought to use computer modelling to
overcome the limitations of this screening methodology,
such as its high rate of false positives and false negatives.
Wilhelms et al. (2012) use detailed multiscale models
of healthy and ischaemic hearts to examine the effects
of two drugs that both fail the hERG screening test:

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society



2488 N. A. Trayanova and K. C. Chang J Physiol 594.9

cisapride, which is pro-arrhythmic, and amiodarone,
which is anti-arrhythmic. Simulations revealed that the
amiodarone is comparatively safe because in addition
to QT prolongation (which was seen for both drugs on
simulated ECGs) it also flattened APD restitution. This
study and others (Dux-Santoy et al. 2011; Carusi et al.
2012; Trenor et al. 2013; Zemzemi et al. 2013; Di Veroli
et al. 2014; Loewe et al. 2014; Mishra et al. 2014; Romero
et al. 2014; Yuan et al. 2015; Zemzemi & Rodriguez, 2015)
demonstrate the feasibility of predicting specific drug dose
effects on the thoracic ECG. It is hoped that this approach
will lead to the development of screening systems that will
accelerate cardiotoxicity testing by providing improved
reliability compared to the present standard.

Defibrillation: heart–torso models and novel
methodologies. Defibrillation by strong electric
shock is the only known procedure that reliably
terminates ventricular fibrillation (VF). A number of
simulation studies have been conducted to determine
computationally the defibrillation thresholds (DFTs)
associated with different ICD configurations. Torso
models have been developed for this purpose over the
years; typically, they have involved reconstruction of a
human torso and the heart (typically a normal heart)
from CAT scans. An example of a finite-element model
used to determine DFTs, reconstructed from a CAT scan
of a normal human torso, is shown in Fig. 4A–C; it was
used for the modelling of subcutaneous ICD electrodes
(Jolley et al. 2010). While such model studies (Eason et al.
1998; de Jongh et al. 1999; Hunt & de Jongh Curry, 2004,
2006; Jolley et al. 2008, 2010; Russomanno et al. 2008)
have provided an understanding of the current flow in
the human resulting from the various placements of the
defibrillation leads, they did not simulate the process
of defibrillation, where the cell membrane responses to

electric shocks have to be incorporated, but rather used
the criterion of static extracellular potential gradient
values above 5 V cm−1 in more than 95% of the volume of
the passive ventricles during the shock as a surrogate for
the DFT (Fig. 4D). This criterion is based on the critical
mass hypothesis, which postulates that a defibrillation
shock is successful if it produces a strong extracellular
potential gradient over a large amount of ventricular
tissue mass (Zipes et al. 1975).

While extracellular potential gradients are a
determinant of post-shock activity in the heart,
other mechanisms are at play as well that involve diverse
membrane responses to shocks (Knisley et al. 1999;
Trayanova, 2001; Arevalo et al. 2007), as determined from
experimental and simulation studies of isolated tissue
and heart preparations. Indeed, not only transmemb-
rane potential (Vm) gradients but also cardiac tissue
structure is responsible for virtual electrode polarizations
(VEPs; depolarizing and hyperpolarizing changes in
Vm in response to an electric field) that can generate
or abolish wavefronts (Efimov et al. 1998; Trayanova
et al. 1998; Rodriguez & Trayanova, 2003; Efimov &
Ripplinger, 2006). In addition, not only what happens
during the shock but also events after the shock determine
defibrillation outcome (Aguel et al. 1999; Anderson
et al. 2000; Rodriguez et al. 2004), particularly in the
case of graded responses (Trayanova et al. 2003; Bourn
et al. 2006) or tunnel propagation (Ashihara et al. 2008;
Constantino et al. 2010).

In addition to not incorporating the processes taking
place during activation and repolarization of the heart,
heart–torso defibrillation models historically involved
other limitations resulting from the lack of appropriate
imaging data. These included the use of a canine heart
model within the human torso (Eason et al. 1998), not
accounting for fibre architecture and tissue anisotropy
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Figure 3. Simulations of AF management with pacing
A dual stage septal pacing algorithm is presented with successful AF termination in a 3-D surface model of the
human atria. (Modified with permission from Uldry et al. 2012.)
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(de Jongh et al. 1999; Tilg et al. 2002; Berger et al.
2006; Russomanno et al. 2008; Vanheusden et al. 2012),
or only estimating the myocardial surfaces based on a
certain distance from ventricular blood masses, but not
detecting and modelling the myocardial volume itself (Tilg
et al. 2002; Berger et al. 2006). Limitations associated
with the lack of appropriate imaging data have been
recently overcome, and human heart–torso models aimed
at determining the DFTs associated with different ICD
configurations (both transvenous and extracardiac) in
a variety of patient groups, including paediatric and
congenital heart disease (CHD) patients (Jolley et al.
2008, 2010) have been developed from torso imaging
data. Generator (can) location, lead location, length,
geometry and orientation, and spatial relation of electro-
des to ventricular mass were systematically examined.
Transvenous orientations typically resulted in the lowest
DFTs, but subcutaneous arrays and epicardial placements
were also clinically feasible. Figure 4E presents the effect
of varying positions of a subcutaneous electrode with

right abdominal can on DFT. It can also be seen
that DFT increased with torso size. Optimization of
electrode/can placement was also performed in this torso
by changing the anatomical relations of electrodes to the
heart and by varying the length of the epicardial electrode.
Figure 4F shows the effects of anatomical variations in
electrode configuration designed to position the heart
more directly in the vector created from anode to cathode,
resulting, as seen in the figure, in a 10-fold difference in
predicted DFT.

A recent study Rantner et al. (2013b) made the first
attempt towards developing a full-blown biophysically
detailed heart–torso model, one that represents the
processes taking place during activation and repolarization
of the heart. The new model was used to address a
clinical need, namely that ICDs with transvenous leads
often cannot be implanted in a standard manner in
paediatric and CHD patients; currently, there is no
reliable approach to predict the optimal ICD placement in
these patients. The study provided the proof-of-concept
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that patient-specific biophysically detailed computer
simulations of the dynamic process of defibrillation could
be used to predict the optimal location of the ICD leads in
these patients. A pipeline for constructing personalized,
electrophysiological (including both membrane kinetics
and fibre orientation in the ventricles) heart–torso models
from clinical MRI scans was developed and applied to a
paediatric CHD patient, and the optimal ICD placement
was determined using patient-specific simulations of
defibrillation. Figure 5 shows the various configurations
tested, as the shock was delivered to an on-going VF
at different instants of time. In a patient with tricuspid
valve atresia, two configurations with epicardial leads were
found to have the lowest DFT. The study also demonstrated
that determining extracellular potential gradients during
the shock – without actually simulating defibrillation
– was not sufficient to predict defibrillation success or
failure. The study proved that using such methodology,

the optimal ICD placement in paediatric/CHD patients
could be predicted computationally, which could reduce
defibrillation energy if the pipeline is used as part of ICD
implantation planning.

Recently, defibrillation modelling has focused on the
development of new methodologies for low-voltage
termination of lethal arrhythmias or for applying
defibrillation in novel, less damaging ways. Although
these studies were not performed using human hearts
(Tandri et al. 2011; Rantner et al. 2013a; Weinberg
et al. 2013), we provide a brief example, due to
potential clinical significance and impact, and because
organ-level heart simulations were involved. The study
by Tandri et al. (2011) used sustained kilohertz-range
AC fields for arrhythmia termination, and was aided by
whole heart ventricular modelling to reveal mechanisms.
The article provided proof of the concept that electric
fields, such as those used for neural block, when applied
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from the biophysically detailed
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A, the finite element heart–torso mesh and
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placement locations. The ventricles are shown
in red, skin in transparent pink, bones in
transparent white, and lungs in transparent
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remaining conductive medium. B, VF as shown
in left anterior oblique (LAO; top row) and
right posterior oblique (RPO; bottom row) Vm
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of VF. Red lines mark the three VF phases from
B. (Modified with permission from Rantner
et al. 2013b.)
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to cardiac tissue, similarly produce reversible block
of cardiac impulse propagation and lead to successful
defibrillation; it also showed that this methodology
could potentially be a safer means for terminating
life-threatening reentrant arrhythmias. Since the same
AC fields block equally well both neural and cardiac
activity, the proposed defibrillation methodology could
possibly be utilized to achieve high-voltage yet painless
defibrillation.

Ablation target prediction: using models of
infarct-related ventricular tachycardia and atrial
fibrillation. The advances in MRI have facilitated
acquisition of the intact structure of explanted hearts
with high resolution. Leveraging these advances, a
new generation of whole-heart image-based models
of animal hearts with unprecedented detail, with or
without structural remodelling, has emerged (Bishop
et al. 2010; Vadakkumpadan et al. 2010). Such models
have been used, in combination with experimental
electrophysiological data, to provide better understanding
of the role of the individual infarct region morphology
in the generation and maintenance of infarct-related
ventricular tachycardia (VT), the most frequent clinical
ventricular arrhythmia, present in 64% of patients with
ventricular rhythm disorder and in 89% of patients with
sudden cardiac death (SCD) (Stevenson et al. 1985).
Such simulation methodology could have a major clinical
impact in predicting the optimal targets for catheter
ablation of infarct-related VT in individual hearts,
should the methodology be able to reconstruct patient
hearts from clinical imaging data and evaluate the 3-D
patterns of infarct-related VT in the patient. The first
attempts in this direction have already been made. Studies
by Relan et al. (2011) and Pernod et al. (2011) combined
geometrical model construction from clinical MRI
scans with invasive electrophysiological measurements
to achieve personalized models of VT, with the goal of
using them to guide clinical ablation. In these models,
however, cardiac tissue was segmented out into scar and
normal tissue, without the inclusion of a border zone
(also termed grey zone, GZ, based on appearance on
the MRI scan), which has been shown experimentally to
be very arrhythmogenic (Schmidt et al. 2007).

Figure 6A presents a schematic diagram of
patient-specific ventricular model development that
incudes the segmentation of the infarct zone into scar and
GZ, as illustrated in a recent publication (Ukwatta et al.
2015). In Fig. 6B a simulation is shown of arrhythmia in
a patient-specific model of the infarcted ventricles from
the study by Ashikaga et al. (2013). The study, based on 13
patient-specific models, demonstrated that non-invasive
simulation prediction of infarct-related VT is feasible;
similar conclusions were later made by Ringenberg et al.
(2014, 2015) based on two patient-specific heart models.

This approach could potentially be extended to the pre-
diction of the optimal ablation sites in patients, without the
invasive acquisition of personalized electrophysiological
data.

To be able to advance the use of patient-specific
modelling studies towards non-invasive prediction of
optimal ablation sites in patients, certain obstacles
have to be overcome. In particular, it is important to
explore how well the whole heart model reconstructed
from late-enhancement MR imaging by thresholding the
infarct into scar and border (grey) zone predicts the
infarct-related VT circuits, and specifically, how well their
organizing centres (isthmuses, regions of block, etc.),
which constitute targets of ablation, match experimental
data. Since human experimental data are not available,
we here briefly review a recent study by Deng et al.
(2015) in pig hearts (similar in size to human), where the
authors compared simulated and experimental epicardial
activation maps obtained with a multi-electrode sock.
Importantly, the study examined the accuracy of the
reentrant circuit location prediction when models of
the same hearts are reconstructed from high resolution
as well as low resolution clinical MRI scans. Results of
the reconstructions showed that the geometry of the
ventricles, including the infarct as well as isthmuses
and channels in the scar, could be accurately obtained
from low (clinical) resolution images (Fig. 7A), and the
arrhythmia utilizing these pathways in the scar could be
calculated (Fig. 7B and C shows an endocardial reentry
with epicardial breakthrough). Importantly, all models,
regardless of image resolution, accurately predicted the
VT morphology and circuit location induced in the
experiment (Fig. 7D). These results are consistent with
findings by Arevalo et al. (2013), which showed that
incorporating heterogeneities (up to a level determined
by experimental measurements) in the border zone did
not change the locations of the organizing centres of
infarct-related VT, thus justifying the use of scar and
GZ thresholding in reconstruction of patient-specific
ischaemic cardiomyopathy models from clinical MR scans.
These results demonstrate that MRI-based computer
models of hearts with ischaemic cardiomyopathy could
provide a unique opportunity to predict and analyse
VT resulting from specific infarct architecture, and thus
may assist in clinical decisions to identify and ablate the
reentrant circuit(s). This potential needs, however, to be
confirmed in human studies, both retrospective as well as
prospective.

Similar to human ventricular modelling, human
atrial models have been used to optimize AF ablation,
attempting to suggest strategies to minimize the size
of ablation lesions. A set of studies (Dang et al. 2005;
Ruchat et al. 2007) explored the effectiveness of ablation
line patterns that are less invasive than the Maze III
procedure and demonstrated that any such pattern
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needs to include ablation lines in both right atrium
and left atrium so that a multiple-wavelet AF can be
successfully terminated. Recently, human tissue (Ashihara
et al. 2012) and organ-level atrial models aimed at
studying AF ablation have begun to represent fibrotic
structural remodelling associated with persistent AF.
McDowell et al. (2012, 2013) created the first model
of patient atria with fibrotic remodelling by segmenting
out the enhanced regions in the LGE-MRI scans; similar
approaches followed (Krueger et al. 2014). Recently,

McDowell et al. (2015) provided the first proof-of-concept
that patient-specific atrial models which combine atrial
structure and fibrosis distribution from clinical MRI
and representation of remodelled atrial electrophysiology
could be used to predict how the fibrosis distribution
determines the dynamic behaviour of persistent AF
rotors and the optimal ablation targets in each patient.
Patient-specific distribution of fibrosis was found to be
a critical component of AF initiation and maintenance.
When the restricted regions encompassing the meander of
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Figure 6. Ablation target prediction
A, block diagram for generation of models of individual hearts from LGE-MRI images for electrophysiological
simulation studies. (Modified with permission from Ukwatta et al. 2015.) B, comparison between simulation-guided
and standard electrophysiological approaches for identifying ablation targets in two patients with infarct-related
VTs. Left panel: propagation pathways (green) and lines of conduction block (blue) are overlaid over VT activation
maps simulated in image-based patient heart models. Middle panel: pre-ablation infarct geometry (infarct scar:
orange; border zone: yellow; and non-infarcted: grey) along with ablation lesions delivered by the standard
approach (red circles) and conduction block lines as calculated from ventricular simulations. Right panel: optimal
ablation zones (green shading) predicted by simulations, with narrowest isthmuses indicated (cyan); in both cases,
only a fraction of the ablation sites from the standard approach were within the predicted optimal ablation zone
(yellow circles). (Modified with permission from Ashikaga et al. 2013.)
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the persistent phase singularities were modelled as ablation
lesions, AF could no longer be induced (Fig. 8). The study
demonstrates that a patient-specific modelling approach
to identify non-invasively AF ablation targets prior to
the clinical procedure is feasible. The electrophysiological
representation of fibrotic remodelling in the human atrial
models remains controversial, however, because of the lack
of experimental data. Similarly, the segmentation of the
LGE-MRI fibrotic regions, and even the segmentation of
the geometry of the thin atria from clinical MRI, is fraught

with uncertainty and is an area of intense image-processing
research. Finally, AF is a complex disease, involving triggers
from pulmonary veins, remodelling of cardiac nerves,
etc., and models will need to explore which aspects of
the disease will need to be represented under which
circumstances to achieve maximum clinical fidelity of a
particular targeted simulation approach.

Arrhythmia risk prediction: modelling to determine
markers of arrhythmia risk. Robust methods for
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Figure 7. Pig heart simulation and experimental
results regarding infarct-related VT
A, ventricular model construction from clinical resolution
scans (including infarct scar and border zone), with the
epicardium rendered semi-transparent. B, simulated VT
with epicardial breakthrough pattern shown (pink arrows:
propagation direction). C, the same VT, but with
endocardial view shown, demonstrating reentrant activity
being sustained by propagation through isthmuses in the
scar. D, experimentally recorded epicardial activation
showing breakthrough pattern as well. (Modified with
permission from Deng et al. 2015.)
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stratifying the risk of lethal cardiac arrhythmias decrease
morbidity and mortality in patients with cardiovascular
disease and reduce healthcare costs (Goldberger et al.
2011). The most widely used approaches currently used for
stratifying risk of cardiac arrhythmias involve testing for
abnormalities in the ECG, then using the results to identify
patients who would benefit from ICD therapy. ECG-based
risk stratification methods scan for abnormalities in
ventricular depolarization (late potentials (Kuchar et al.
1987) and a fractionated QRS complex (ECG waves
during ventricular depolarization) (Das et al. 2006)
and repolarization (T-wave alternans; Rosenbaum et al.
1994), QT variability or dispersion (Berger et al. 1997;
Couderc et al. 2007)). However, the mechanisms under-
lying these ECG indices, and their relationship to lethal
cardiac arrhythmias, are not fully understood. This lack
of knowledge probably explains why results of clinical
trials to correlate surface ECG indices to lethal cardiac
arrhythmias are often contradictory (Goldberger et al.
2011). Computational models of the heart are making
initial inroads in this clinical cardiology arena (see
Krummen et al. 2012, for example).

Research has reported a strong correlation between
increased arrhythmia risk and the presence of T-wave
alternans (Narayan, 2006; Qu et al. 2010). In the clinical
setting, testing for microvolt T-wave alternans (MTWA)
has particularly shown promise for dichotomizing
patients who would and would not benefit from ICD
therapy (Bloomfield et al. 2006; Hohnloser et al. 2009).
However, the mechanistic basis of MTWA preceding lethal
ventricular arrhythmias has been under debate. Until
recently, it was believed that a steep APD restitution
(>1) at rapid heart rates (Weiss et al. 2006) produces
alternans in APD that underlies T-wave alternans and
the genesis of fibrillation (Pastore et al. 1999). However,
MTWA is most successful in stratifying risk in patients
at heart rates <110 beats min−1, where APD restitution
is flat (Narayan et al. 2007). Computational models of
the left ventricle (LV) wall in combination with clinical
data revealed that abnormal handing of intracellular
calcium underlies alternans in action potential voltage,
which results in MTWA at heart rates <110 beats min−1

(Narayan et al. 2008; Bayer et al. 2010); abnormalities
in intracellular calcium have long been linked to VF
(Weiss et al. 2011; Merchant & Armoundas, 2012).
Computational modelling studies have also shown that
under the conditions of abnormal calcium dynamics,
the magnitude of the T-wave alternans is enhanced by
structural heterogeneities in the myocardium (Doshi &
Idriss, 2010).

Clinical studies have also revealed a correlation between
AF severity (control vs. paroxysmal vs. persistent) and
voltage alternans occurring in the atria, suggesting a novel
marker for risk stratification in AF patients (Narayan
et al. 2011; Lalani et al. 2013). As with MTWA, atrial

voltage alternans occurred in AF patients at slow heart
rates when APD restitution was <1, indicating that
abnormal calcium dynamics may underlie atrial alternans
associated with AF as well (Narayan et al. 2011). A recent
computational modelling study explored the potential
underlying mechanisms and showed that remodelling of
the calcium handling system in human atrial cells could
account for the onset and magnitude of APD alternans
at slow heart rates (Chang et al. 2014); the predictive
capabilities of the model were validated by matching
the heart rate at alternans onset as well as alternans
magnitude with those observed in the clinic. Furthermore,
the authors precisely quantified the contributions of
different AF-remodelled calcium-handling proteins to
alternans onset at clinically relevant slow heart rates,
allowing them to identify the key drivers of alternans
in the model (Fig. 9). These potential mechanisms
are in line with current understanding of calcium
remodelling in AF patients (Voigt et al. 2012), thus
providing compelling modelling predictions concerning
the mechanisms of AF-associated alternans, which may
be tested experimentally in the future. Such approaches
demonstrate the power of using computational models to
provide insight into the mechanistic basis for clinical risk
stratification markers.

An MRI-based computational model of the human
ventricles to demonstrate that detecting instabilities in the
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atrial voltage alternans associated with AF
The effects of AF remodelling on calcium cycling stability were
quantified in a human atrial action potential model using an iterated
map analysis, formulated in terms of sarcoplasmic reticulum (SR)
calcium release slope (m), SR calcium uptake factor (u), and cellular
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threshold), thus promoting alternans. (Modified with permission
from Chang et al. 2014.)
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QT interval within the clinical ECGs can predict the onset
of VT (Chen et al. 2011), particularly in patients with
acute myocardial infarction (Chen et al. 2013). By having
the ability to easily control the frequency and degree of
premature activations in the model, the studies found that
increased frequency of premature activation can precede
the onset of VT, with the premature activations placing
the system in a state where the QT interval is unstable.
Therefore, screening the QT interval of the ECG for
instabilities using the novel algorithm developed by Chen
and Trayanova (Chen et al. 2011; Chen & Trayanova, 2012)
could potentially be a robust risk stratification method
for patients with acute myocardial infarction. These
studies pave the way for executing computer simulations
to determine patient-specific thresholds for arrhythmia
stratification ECG indices, rather than relying on clinical
guidelines based on large and diverse cohorts of patients.
Another approach for stratifying the risk of lethal cardiac
arrhythmias that has recently gained traction is the use of
computer models to predict the arrhythmia outcome in
patients that exhibit potentially lethal mutations in genes
encoding cardiac proteins associated with the long-QT
syndrome (Zhao et al. 2009; Benson et al. 2011; Jons et al.
2011; O’Hara & Rudy, 2012). These studies chart new
directions for future genotype-based risk stratification and
personalized gene therapy.

Finally, a recent study (Vadakkumpadan et al. 2014)
conducted a shape analysis to uncover whether the
indices of left ventricular (LV) shape differ between
patients with a high and low risk of SCD. By using
clinical cardiac MRI and computational anatomy tools, a
novel computational framework to compare 3-D LV end-
ocardial surface curvedness, wall thickness and relative
wall thickness between patient groups was implemented.
The framework was applied to cardiac magnetic resonance
data of 61 patients with ischaemic cardiomyopathy
who were selected for prophylactic ICD treatment on
the basis of reduced LV ejection fraction. The study
found that in patients with ischaemic cardiomyopathy
and low LV ejection fraction, there exists quantifiable
differences in 3-D endocardial surface curvedness, LV wall
thickness and LV relative wall thickness between those
with no clinical events and those with arrhythmic or
heart failure outcomes, reflecting adverse LV remodelling.
This computational study demonstrated that regional LV
remodelling indices have the potential to improve the
personalized risk assessment for SCD.

The outlook for using modelling and simulation to
address clinically relevant problems in heart rhythm
disorder treatment

Over the last decades, cardiac models have been used
extensively to gain insights into the mechanisms of
arrhythmia in many disease settings and to under-

stand how external currents can terminate ventricular
arrhythmias. Currently, this trend continues to be strong,
with cell, tissue and organ level studies contributing to
major advances in our understanding of human heart
rhythm and pump dysfunction. In addition, a major
thrust in computational cardiac electrophysiology in the
human has been to use models, particularly cellular and
tissue level, as a test bed for evaluation of anti-arrhythmic
drugs, as reviewed briefly here. Advances have been
made in testing hypotheses regarding the mechanisms
of drug action on the scale of the whole heart; the latter
work has the potential to more effectively guide the drug
development pipeline – a process that currently has high
failure rates and high costs.

As the trend to develop human cardiac computational
models will continue in the future, atrial and ventricular
electrophysiological modelling as a tool will necessitate
continuous adaptation and integration of new elements,
including model redesign and evaluation, improvements
in the execution time of biophysically detailed atrial
and ventricular membrane models, implementation of
consistent strategies for comparison with experimental
and clinical measurements, and investing in efforts
to ensure repeatability and consistency of modelling
results. The advancement in human whole-heart electro-
physiological modelling will continue to be strongly
dependent on experimental and clinical measurements,
which provide data to constrain, enrich and validate the
models. Of particular importance to human whole-heart
modelling will be the capability to better resolve the
structural features of the intact human heart by developing
methods to characterize complex tissue geometries, such
as that of the Purkinje system, and specifically, structural
remodelling in disease. The development of unique
and sensitive probes for the architecture of cardiac
tissues, including tractography and connectivity mapping
techniques, will provide a significant impetus to the
human whole-heart modelling efforts.

The use of heart models in personalized diagnosis,
treatment planning, and prevention of SCD is also slowly
becoming a reality. As demonstrated in this review,
simulation studies have ventured into exploring cardiac
electrophysiology in patients with implanted devices;
progress has been made in optimizing the use of pacing
for AF termination, in determining the most appropriate
ICD configuration for deployment in subcutaneous
defibrillation, and in CHD and paediatric patients, where
no standard of therapy exists. Computer simulations of
the function of the individualized diseased heart and its
response to electrophysiological therapies such as pacing
and defibrillation represent a profound example of a
research avenue in the new discipline of computational
medicine, and offer high promise for clinical trans-
lation. The feasibility of subject-specific modelling is
beginning to be demonstrated through the use of heart
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models reconstructed from clinical MRI or CAT scans.
Biophysically detailed models of the atria and ventricles
assembled with data from these clinical imaging modalities
that incorporate electrophysiological and structural
remodelling in cardiac disease are poised to become
a first line of screening for new atrial and ventricular
anti-arrhythmia therapies and approaches, new diagnostic
developments, and new methods for arrhythmia
prevention. Implementing patient-specific cardiac
simulations at the patient bedside for arrhythmia therapy
and management could become a thrilling example of
computational approaches in translational medicine.

Currently, however, researchers face numerous
obstacles in the development of patient-specific heart
models, including the low resolution of the in vivo
heart scans, issues with segmenting out structural
remodelling in the patient heart such as the infarct,
and, finally, difficulties in validating these models with
ECGs and patient electrophysiological data. Future
studies will need to create the right balance between
minimal invasiveness of the approach and the need
to incorporate the correct amount of patient-specific
electrophysiological information, including autonomic
influences. Furthermore, the advancement of algorithms
and approaches for high-speed simulations is of critical
importance in order for these approaches to become
clinical reality. Finally, the development and use of electro-
physiological models of the heart currently requires a
great amount of expertise in a number of different fields
such as numerical analysis, computer science, cardiac
electrophysiology, medicine and image processing. Efforts
must be supported to develop a user-friendly web-based
computing infrastructure that can facilitate the trans-
ition of personalized computational models into potential
clinical tools. This infrastructure should allow the direct
input of cardiac structural imaging data and the ability to
easily assemble models with the click of the mouse.

Despite the numerous obstacles facing the development
of patient-specific heart models of rhythm dysfunction,
we are poised at an exciting moment in cardiovascular
medicine. The findings of the molecular biology of the
heart, the emergence of new technologies for measuring
the properties of cells, tissues and organ function, and
the impact of Moore’s law on computational modelling
could finally come together to drive the creation of new,
quantitative, model-based approaches to understanding
the function of the heart in disease, and the use of
computational modelling of the heart at the patient
bedside.
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