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Abstract The mechanisms underpinning human cardiac fibrillation remain elusive. In his 1913
paper ‘On dynamic equilibrium in the heart’, Mines proposed that an activation wave front
could propagate repeatedly in a circle, initiated by a stimulus in the vulnerable period. While the
dynamics of activation and recovery are central to cardiac fibrillation, these physiological data
are rarely used in clinical mapping. Fibrillation is a rapid irregular rhythm with spatiotemporal
disorder resulting from two fundamental mechanisms – sources in preferred cardiac regions
or spatially diffuse self-sustaining activity, i.e. with no preferred source. On close inspection,
however, this debate may also reflect mapping technique. Fibrillation is initiated from triggers
by regional dispersion in repolarization, slow conduction and wavebreak, then sustained by
non-uniform interactions of these mechanisms. Notably, optical mapping of action potentials in
atrial fibrillation (AF) show spiral wave sources (rotors) in nearly all studies including humans,
while most traditional electrogram analyses of AF do not. Techniques may diverge in fibrillation
because electrograms summate non-coherent waves within an undefined field whereas optical
maps define waves with a visually defined field. Also fibrillation operates at the limits of activation
and recovery, which are well represented by action potentials while fibrillatory electrograms poorly
represent repolarization. We conclude by suggesting areas for study that may be used, until such
time as optical mapping is clinically feasible, to improve mechanistic understanding and therapy
of human cardiac fibrillation.

(Received 23 July 2015; accepted after revision 20 November 2015; first published online 26 November 2015)
Corresponding author S. M. Narayan: Cardiovascular Division, 780 Welch Road Suite CJ250F, Stanford, CA 94305,
USA. Email: sanjiv1@stanford.edu

Abstract Figure legend Hierarchical and non-hierarchical mechanisms for cardiac fibrillation. Cardiac fibrillation is
characterized by disorganized activation and recovery both spatially and temporally. The central dichotomy is whether
this disorder is sustained by preferred regional sources (hierarchical model), illustrated by a central driving rotor that
replenishes surrounding fibrillatory waves, or self-sustains (non-hierarchical model), illustrated by transient wavelets.
These mechanisms can also be divided by the type of mapping. Cardiac chambers depicted are right and left atria.
(Modified from Calkins et al. 2012.)

Abbreviations APD, action potential duration; AF, atrial fibrillation; DI, diastolic interval; FIRM, focal impulse and
rotor mapping; MAP, monophasic action potential; VF, ventricular fibrillation.

Introduction

Cardiac fibrillation encompasses the most complex
currently appreciated electrical disorders of the heart,
whose rapidly changing spatiotemporal patterns challenge
our mechanistic understanding. In many ways, fibrillation
represents a ‘final frontier’ in arrhythmia medicine.

Atrial fibrillation (AF) is the most common sustained
arrhythmia in the world, affecting over 30 million
individuals worldwide (Chugh et al. 2014), and is a
major cause of hospitalizations, stroke and death. Therapy
includes drugs to modulate cellular or membrane electrical
function, or ablation to eliminate pro-arrhythmic tissue,
yet both remain suboptimal due to uncertain mechanistic
targets and side-effects on bystander myocardium
(January et al. 2014).

Ventricular fibrillation (VF) is a major cause of sudden
cardiac arrest, which afflicts over 300,000 individuals
per year in the USA (Chugh et al. 2004) and a similar
number in Europe. Pharmacological therapy is limited,
and even drugs with sound scientific rationale can

increase mortality, highlighting dangerous gaps in our
understanding (The Cardiac Arrhythmia Suppression
Trial (CAST) Investigators, 1989). Non-pharmacological
therapies are also suboptimal and primarily comprise
ablation of potentially large areas of viable tissue with
modest success rates or cessation of an episode of
fibrillation by high-energy electric field-shock that does
not prevent future episodes.

Improved mechanistic definition is essential to
improve therapy. A central debate in human atrial or
ventricular fibrillation is whether disordered activity is
driven by organized processes (hierarchical model) or
is self-sustaining (non-hierarchical model). Fibrillatory
wavelets have a stochastic probability of terminating
upon encountering a boundary, and must therefore be
replenished to sustain fibrillation (Chen et al. 2000a).
In the first model wavelets are replenished by spatially
localized mechanisms, at preferred ‘source’ regions,
whereas in the second model wavelets self-replenish,
indicating no preferred regional source(s). This dichotomy
is of fundamental importance because it dramatically
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influences mechanistic thinking at the genetic and cellular
levels, structure–function relationships, imaging and
therapy.

It is striking not only how little overlap exists between
camps, but that this dichotomy may also be divided
by mapping technique. Focusing on AF, whilst optical
mapping studies of regional activation and recovery
(action potentials) mostly show stable source regions that
drive disordered activity, most studies that map surrogates
for local activation (bipolar or unipolar electrograms) do
not, as summarized in Table 1.

This review sets out to reconcile how mapping
techniques may diverge in fibrillation due to the functional
information they convey. We first review results from
optical mapping (Gray et al. 1998), often considered
the gold standard (Efimov et al. 2004). These studies
highlight re-entry (Spach, 2001; Kléber & Rudy, 2004) that
emphasize Mines’s seminal work on dynamic equilibrium
(Mines, 1913), which defined basic criteria for re-entrant
arrhythmias and introduced the concept of a vulnerable
period. The centenary of this work was marked in the The
Journal of Physiology (Paterson, 2013) and its continued
importance is clear from the depth and breadth of articles
in this special issue. Second, we discuss how various
mapping approaches that are concordant in organized
rhythms may diverge in fibrillation, focusing on the
commonly mapped and ablated rhythm of AF. Third,
given recent optical mapping studies of human cardiac
fibrillation, we attempt to reconcile the results of clinical
mapping in human AF and VF. We conclude by suggesting
fruitful areas for future study.

Dynamic equilibrium and human cardiac fibrillation

Dynamic and fixed mechanisms are essential ingredients
of paroxysmal arrhythmias (Weiss et al. 2015). Under
certain conditions, a single ectopic beat can initiate supra-
ventricular tachycardia using stable anatomical pathways,
yet under different conditions the ectopic beat may
remain orphaned. These concepts also apply to AF or VF,
in which dynamic triggers such as ectopic beats, short
bursts of tachycardia or varying autonomic balance may
initiate fibrillation despite relatively unchanging cardiac
architecture, surface curvature, fibre angles, fibrosis and
other ‘fixed’ substrates (Engelman et al. 2010).

Dynamic factors can be considered in the context of
Mines’s dynamic equilibrium of activation and recovery.
His original definition describes what we may currently
call restitution of these fundamental determinants of
reentry: ‘For the beating heart is in a complex dynamic
equilibrium. The character of each individual beat
depends, inter alia, upon the lapse of time between that
beat and its predecessors.’

This review uses this concept as a foundation to
understand fibrillation – in deference to Mines, but also

because this equilibrium is mostly neglected in studies
of human cardiac fibrillation. Few clinical studies have
defined the rate response (restitution) of repolarization or
conduction leading up to or during fibrillation, and fewer
still incorporate these concepts dynamically into mapping.

The relevance of dynamic equilibrium to clinical
fibrillation is shown in Fig. 1, illustrating mechanisms
enabling a trigger to initiate human AF. In Fig. 1A, a
single ectopic beat initiates human AF during dramatic
oscillations of left atrial action potential duration (APD)
(Narayan et al. 2002, 2008b, 2011a). Figure 1B show that
APD oscillations can be explained by rate response of
electrical recovery – i.e. restitution curves of APD against
diastolic interval (DI, time between successive activations)
(Franz et al. 1988; Franz, 2003). APD shortens with DI,
but in this case its slope of > 1 enabled an early beat (i.e.
short DI) to amplify subsequent APD shortening, which
amplified DI lengthening for the next beat and so on.
Such APD alternans has been shown in animal models
(Elzinga et al. 1981), and has been shown in patients to
enable initiation of AF in proportion to arrhythmic risk
(Fig. 1) (Narayan et al. 2002, 2008b, 2011a), ventricular
tachycardia (Koller et al. 2005; Narayan et al. 2007) and
VF (Karagueuzian et al. 1993; Gelzer et al. 2008).

Conduction velocity is also rate dependent, and
Fig. 1C shows that triggers (in this case, tachycardia)
may dramatically slow conduction imminently before
AF initiation. Thus, the dynamic equilibrium of APD
(repolarization) dispersion and conduction slowing can
enable a trigger to produce spiral-wave re-entry and
initiate human AF (Fig. 1D) (Schricker et al. 2014).

This concept can also explain the arrhythmic impact
of interventions. For instance, cholinergic stimulation (an
AF trigger) shortens APD (Po et al. 2005), flattens APD
restitution in canine atria (Burashnikov & Antzelevitch,
2005) and slows conduction (Shumaker et al. 1993) –
particularly if spatially non-uniform. Mines’s concept
of dynamic equilibrium therefore provides a useful
model for dissecting tractable components of cardiac
fibrillation.

Mapping cardiac fibrillation using dynamics of
activation and recovery, and using electrograms

Fibrillation is a rapid spatiotemporally varying arrhythmia
that operates at the limits of activation and recovery.
Ideally, therefore, mapping of fibrillation should identify
activation and recovery at high temporal resolution and at
multiple spatial sites without contamination (cross-talk)
from adjacent sites. Figure 2 summarizes the concept
of cross-talk between an electrode and its reference
(Fig. 2A). In spatially coherent rhythms such as flutter
where atrial regions activate 1:1 (Fig. 2B), cross-talk may
have limited impact such as altering activation onset
time, but as adjacent regions start to reflect unrelated,

C© 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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out-of-phase (incoherent) wavefronts in fibrillation
(Figs 2C and 3) the impact of cross-talk is more dramatic
and may not only alter activation onset times but even
spuriously introduce signals or obscure local activation
(Fig. 3).

Optical mapping of voltage-sensitive dyes currently
provides the highest spatial resolution of both activation
and recovery, with minimal cross-talk. The approach
illuminates the biological field with light to excite
voltage-sensitive dyes, that fluoresce in proportion to
membrane potential, i.e. optical action potentials (OAPs)
(Fig. 4). Successive images thus map propagation
of activation (wavefront) and recovery (waveback).
Crucially, optical maps show minimal cross-talk –
activity is represented by visually defined pixels relatively
uninfluenced by remote regions. Limitations of optical
mapping include the need to immobilize tissue, to mini-
mize absorption of reflected light (e.g. by blood) and
toxicity of fluorescent dyes. As a result, optical mapping

is not yet clinically feasible, although proof of concept
studies in small animals suggest that this may be on the
horizon (Lee et al. 2012).

In clinical studies, activation and recovery (action
potentials) can be measured from an extracellular mono-
phasic action potential (MAP) catheter. Activation and
repolarization measurements from MAPs are validated
against intracellular recordings (Franz et al. 1990), reflect
minimal far-field activity (Knollmann et al. 2002), and
their dynamics provide insights into human AF (Fig. 1)
(Narayan & Franz, 2007; Narayan et al. 2011b) or VF
(Swartz et al. 1993). However, challenges in repeatedly
recording MAPs at multiple sites in humans has limited
this approach to a small number of experienced centres
(Kim et al. 2002; Watanabe et al. 2002; Narayan & Franz,
2007).

In the clinical setting, for practical reasons, cardiac
fibrillation is thus mostly mapped from electrograms –
voltage–time series at one electrode relative to an adjacent
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(bipolar) or remote (unipolar) electrode. Electrogram
analyses developed for coherent rhythms provide high
temporal resolution that is easily repeated at multiple
spatial sites. What is frequently overlooked in fibrillatory
electrograms, however, is their dramatic potential for
intra-chamber cross-talk (Narayan et al. 2011b). In Fig. 3C,
bipolar AF electrograms include unclear components

of local (desired) activity and far field (undesired)
activity. Accordingly, AF electrograms may not be sensitive
nor specific for local activation on adjacent MAPs –
indeed, electrograms may even be absent at times when
MAPs show clear local activation due to directionality
and/or algebraic cancellation (Fig. 3) (Narayan et al.
2011b). Moreover, action potentials encode information

Bipolar catheter

Recording Field

A B C
Atrial Flutter Atrial Fibrillation

Single coherent wavefront

Electrode 1

Electrode 2

RESULTING ELECTROGRAM

Similar Electrogram for Quite

Different Spatial Patterns

Multiple waves/foci

Varying vectors, timing

Figure 2. Quantitative analysis of electrogram
morphology
A, poles of a catheter (bipolar – close, unipolar –
distant) record from distinct mapping fields. B,
electrograms reflect single wavefront of an
organized rhythm (e.g. atrial flutter). C, fibrillation,
characterized by an uncertain number of
wavefronts of uncertain rate, relative timing
(phase) and spatial size in undefined recording
fields. Summation of these waves may produce
variable electrograms from the same
spatiotemporal mechanism, or similar electrograms
from variable mechanisms. Accordingly, ‘qS’, ‘rR’,
or other electrogram rules in fibrillation are not
specific for any particular mechanism. The same
argument may apply to unipolar electrograms,
which summate across wider regions of tissue.
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Figure 3. Limitations of electrogram based activation mapping in AF
A, poles of a clinical bipolar electrode may record unrelated wavefronts in AF. B, fluoroscopic view of co-localized
MAP, bipolar catheters in human atrium. C, MAP in human right atrium indicate local activation (small vertical
bars) from far field (asterisks). Notably, bipolar signals (in red) can indicate actual local activation (true positives),
show no deflection (false negatives) and show signals that reflect far-field electrograms (false positives). (Modified
from Narayan et al. 2011b.)
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about activation and recovery while electrograms focus
on activation, with the activation recovery interval
measurable only during tightly controlled conditions
(Haws & Lux, 1990) that are absent during fibrillation.

Fibrillatory electrograms are typically analysed using
rules developed for organized rhythms (Allessie et al.
2010; Houben et al. 2010; Lee et al. 2014) (Figs 2 and
3), yet resulting maps may be less accurate as rhythms
progress from coherent (e.g. flutter) towards non-spatially
coherent fibrillation. Unipolar electrograms may be more
accurate than bipolar, since adjacent (non-coherent)
activity is not subtracted (Steinhaus, 1989; Ndrepepa et al.
1995) although, conversely, they summate larger fields.
Figure 5A shows challenges in interpreting unipolar
electrograms in AF, which have not been proven to
represent local or far field activity by validation from

optical maps. This may dramatically influence the results
from AF maps.

Optical mapping reveals localized sources for
fibrillation (hierarchical model) across species
including humans

Localized driving sources for fibrillation were post-
ulated by Mines and Sir Thomas Lewis, then shown
computationally (Krinksy, 1966). Spiral waves (rotors)
have shown been to drive disordered activity in physical
systems such as the Belousov–Zhabotinsky reaction
(Winfree, 1972). Rotors have since been shown to be
fibrillatory sources in ventricular tissue using optical
mapping of fluorescent dyes (Davidenko et al. 1992;
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Witkowski et al. 1998), and have also been shown to drive
AF in animal models (Mansour et al. 2001) and humans
(Narayan et al. 2012d; Hansen et al. 2015).

It is notable that optical mapping studies almost
uniformly show that rotors sustain fibrillation, across
model systems and species including humans, and sustain
disorganized activity through a process termed fibrillatory
conduction (Table 1). An optically mapped rotor is
illustrated in Fig. 4. A rotor can be defined as a core or
phase singularity (see below) from which spiral waves

emanate at high speed to cause disorganization in
surrounding tissue (Pandit & Jalife, 2013). This dis-
organization (fibrillatory conduction) may be due to
factors such as steep APD restitution (Franz et al. 1988)
conduction slowing (Kléber & Rudy, 2004) or tissue
anisotropy (Valderrábano et al. 2001).

Optical imaging is well suited to map fibrillation
because it simultaneously maps activation and recovery at
high spatial resolution, with minimal cross-talk and at high
temporal resolution. Mathematical analyses are typically
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timing and shape; the second matched well in timing but not in shape. Timing and shape both influence activation
and phase maps. (From Schilling et al. 2000.) See text for further details.
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used to facilitate the quantification of organization within
fibrillatory maps. Phase analysis developed by Gray et al.
was first used to show organized reentrant sources in
ventricular fibrillation (Gray et al. 1998) (Fig. 3B). Phase
represents the progression of tissue from activation onset
through repolarization over time, which varies spatially
and temporally during fibrillation. Spatial points around
which phase exhibits a full rotation (i.e. –π to +π) have
indeterminate phase and are termed singularities. Phase
mapping is now validated across species for atrium and
ventricle (Vaidya et al. 1999; Chen et al. 2000b; Zaitsev
et al. 2003; Noujaim et al. 2007).

This work has catalysed pivotal advances in under-
standing cardiac fibrillation. In recent decades, many
studies have defined how spiral waves arise and drive
fibrillation, attach to tissue heterogeneities such as fibrosis
(Ikeda et al. 1997; Lim et al. 2006), and how organization
breaks down at these edges into unstable fibrillatory
activity (Pandit & Jalife, 2013). Rotors may also be detected
by other techniques. For instance, periodicity indices
such as dominant frequency after Fourier transform, have
shown stable gradients in activation consistent with a
rotor source (Zaitsev et al. 2000; Wu, 2002; Everett et al.
2004).

Rotors are traditionally considered distinct from
functional reentry (leading circle) or anatomical reentry
(Comtois et al. 2005), since rotors form due to extreme
conduction slowing at the wave tip causing rotation
around an ‘unexcited, yet eminently excitable’ core (Pandit
& Jalife, 2013). However, spiral waves are well known
to anchor to heterogeneities such as fibrosis and scar
(Lin et al. 2008), and optical mapping of human AF
shows stable endocardial micro-reentry that sustain AF
and precess near regions of micro-fibrosis where localized
ablation terminates AF (Hansen et al. 2015; Zhao et al.
2015). Mechanisms enabling the termination of AF by
localized ablation are the subject of ongoing study (Rappel
et al. 2015). Thus, the distinction between functional and
structural reentry may continue to blur in human cardiac
fibrillation (Zaman & Narayan, 2015).

In summary, the vast majority of studies in fibrillation
that analysed action potentials – initially in animal
ventricles, recently in human atria using optical maps –
reveal localized sources that drive disorganization.

Clinically identified mechanisms for human atrial
fibrillation

Any proposed mechanistic model for human AF
must explain clinical observations in patients including
ablation. These include stable gradients of AF rate
(Filgueiras-Rama et al. 2012) and transient linking of
activation (Gerstenfeld et al. 1992) within the fibrillating
atria. Mechanisms must also explain how limited ablation
may on occasion terminate persistent AF (Herweg et al.

2003), as increasingly reported by mechanism-targeted
mapping (Shivkumar et al. 2012; Narayan et al.
2012a) yet, paradoxically, why extensive empirical
ablation may not improve outcomes compared to more
conservative approaches (Wynn et al. 2014; Verma et al.
2015).

Optical mapping has heightened the mechanistic debate
in human AF. Optical mapping shows that AF in human
right and left atria can be sustained by stable endocardial
sources at micro-fibrotic regions and terminated by local
ablation (Fig. 3C) (Hansen et al. 2015; Zhao et al. 2015).
While these data agree with the wider optical mapping
literature (Table 1) and some clinical studies showing
localized sources, they disagree with the majority of clinical
reports that support disorganized mechanisms without
sources. The next few sections will attempt to reconcile
these differences.

The vast majority of mapping studies in human AF over
two decades have analysed unipolar (Allessie et al. 2010)
or bipolar electrograms (Lee et al. 2014) rather than action
potentials (MAP or optical data) (Table 1). In 24 patients
with longstanding persistent AF and valvular disease at
surgery, Allessie et al. analysed electrograms from atrial
plaques and stated ‘ . . . in over 4000 maps of persistent
AF . . . failed to find any rotors or foci that could explain
the persistence of AF’ (Allessie et al. 2010). Potential
criticisms of this work are that no interventions were
tested, the authors simultaneously mapped < 10% of each
atrium (areas > 100 cm2 in Jadidi et al. (2013)) so could
not exclude sources in remaining atrium, and the authors
used electrogram analyses that are challenging (Figs 2, 3
and 5A). More recently, this group reported rotational
activity in AF (Fig. 5B) (Lau et al. 2015), focusing on
the limitations of analysing complex signals. Notably,
Fig. 3 illustrates how challenging it may be to analyze
signals in AF. Accordingly, some studies that failed to
identify sources using wide-area mapping are difficult
to interpret showing, for example, very long (slow)
cycle lengths of 250–500 ms (frequency 2–4 Hz) in
patients with AF, suggesting analytic errors and the use of
bipolar analyses (Shannon’s entropy) on unipolar signals
(Benharash et al. 2015). Another study of electrograms
from epicardial plaques also found rotational circuits,
albeit transient (Walters et al. 2015), yet with reproducible
vectorial propagation in 62% of cases over prolonged peri-
ods that contradict the complexity and lack of rotational
circuits in earlier electrogram studies (Allessie et al.
2010).

A novel approach for clinical mapping of AF termed
focal impulse and rotor mapping (FIRM) has been
designed to circumvent some limitations of traditional
electrogram analyses. FIRM records endocardial signals
simultaneously from widely sampled clinical electro-
des, most practically a basket catheter. Computational
analyses are then performed using monophasic APD
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and conduction restitution data applied to electrograms
in human AF to physiologically filter far-field signals
(‘noise’), before phase analysis to identify activation
patterns (Narayan et al. 2006, 2011b, 2012b; Krummen
et al. 2012). Figure 5C shows a stable endocardial AF rotor
mapped at a typical FIRM case, that precesses in 1–2 cm2

areas, controls surrounding activity (Narayan et al. 2013),
may be multiple (two to four) in each patient and can be
eliminated by localized ablation with high long-term AF
elimination compared to conventional ablation (Narayan
et al. 2014; Miller et al. 2014). One major limitation of
FIRM is that although baskets are currently the most
practical catheter inserted percutaneously to provide
wide-area contact recordings, basket design should be
improved to increase resolution and contact. New designs
(Lin et al. 2014) may improve upon earlier catheters. It
is interesting to note that FIRM mapping results bear
many similarities to human optical mapping studies of
AF (Hansen et al. 2015; Zhao et al. 2015) (Table 1).

Figure 5D shows an approach that records from a
modified ECG (body surface vest) to mathematically
infer unipolar epicardial electrograms, then applies phase
to reveal AF drivers (Haissaguerre et al. 2014). These
drivers are reported as ‘unstable’ – but cluster in
reproducible regions for prolonged times where they can
be successfully ablated (Haissaguerre et al. 2014). It is
unclear why these results differ from other studies of
human AF, i.e. whether wavefront instability in ECGI
reflects variable epicardial activity from stable endocardial
rotors (Fig. 3C) (Hansen et al. 2015), or potentially
technical factors from the inverse solution. Indeed, inverse
solution virtual electrograms in AF may not reflect contact

electrograms (Fig. 5E) (correlation values as low as 0.27,
average 0.87 in Schilling et al. (2000); Earley et al. 2006),
and projecting epicardial circuits to the chest wall many
centimetres away may magnify instability (Rodrigo et al.
2014).

Validation of mapping results in fibrillation is the sub-
ject of intense study. Traditionally, termination of an
arrhythmia by ablation proves mechanism, but this is
more difficult in AF where hundreds of lesions are often
applied, and because clinically successful ablation may not
acutely terminate AF (Elayi et al. 2010). Nevertheless, there
are increasing reports of termination of persistent AF by
localized ablation at a predicted location (Shivkumar et al.
2012; Narayan et al. 2012d; Miller et al. 2014; Haissaguerre
et al. 2014) that was previously rare. This observation
supports localized sources for AF and is difficult to
explain by non-hierarchical ‘random’ mechanisms; it
has stimulated studies on how localized ablation may
terminate AF (Rappel et al. 2015) and why termination of
AF by ablation may not predict long-term success (Calkins
et al. 2012).

In summary, whereas the action potential encodes
information about activation and recovery, the electro-
gram focuses on activation. It is thus not surprising that
different mapping approaches produce divergent results as
the density of adjacent non-coherent wavefronts increases,
i.e. in fibrillation. Future studies that compare mapping
approaches in clinical AF, particularly against optical
maps, will help to further reconcile differences in observed
mechanisms. A particularly important direction is to test
whether ‘rules’ such as a ‘qS’ deflection indicating a focal
source are accurate in AF when validated by MAP or
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optical data, and more importantly to improve algorithms
for future mapping. Improved catheter designs may better
represent local activation, and thus complement such
algorithms.

Mechanisms in human ventricular fibrillation

There are obvious challenges to mapping human VF,
and studies have therefore focused on early VF (Wiggers
stage I) prior to defibrillation, or patients on circulatory
support. Nevertheless, within these limitations, fibrillatory
mechanisms are well studied. At a tissue level, reentry in
VF may depend on analogous processes to AF, including
APD oscillations in animals with VF (Choi et al. 2001;
Pastore et al. 2006) and patients at risk for VF (Koller et al.
2005; Narayan et al. 2008a) and in VF (Nash et al. 2006a).
Dynamic conduction slowing has also been shown as a
mechanism for the propensity to human VF in endocardial
clinical (Narayan et al. 2008a) and Langendorff-perfused
(Nanthakumar et al. 2007) studies.

In parallel with recent studies of human AF, studies of
VF have attempted to identify hierarchical mechanisms
(localized sources) (Fig. 6). Figure 6A and B shows FIRM
mapping of human VF prior to defibrillation, in which
computational electrogram filtering using human APD
and conduction restitution data revealed VF rotors in
patients. Such rotors often arose in scar border zone
(Hayase et al. 2013; Krummen et al. 2014, 2015), and
proof of concept reports show that ablation of VF rotors
(in sinus rhythm) was able to eliminate clinical VF
on long-term follow up (Hayase et al. 2013; Krummen
et al. 2014, 2015). Using other mapping approaches,
Fig. 6C shows an epicardial rotor after 16.8 s of VF, and
Fig. 6D indicates a transmural rotor (scroll wave) in early
VF using a combined phase map of endocardial and
epicardial electrograms (Nash et al. 2006b; Nair et al.
2011).

Structural factors may potentially distinguish the
mechanisms for VF and AF, because complex ventricular
architecture may anchor rotors, destabilize reentry or
facilitate intramural mechanisms (Nash et al. 2006b; Nair
et al. 2011) as shown in simulations (Rogers, 2002). Trans-
mural rotation of ventricular fibres from the epicardium to
the endocardium (rotational anisotropy) (Thomas, 1957)
may destabilize scroll waves to produce complex dynamics
and wavebreak (Rappel, 2001). In patients at risk for
sudden cardiac arrest, an ischaemic border zone may pre-
sent thick–thin transitions and gap junction remodelling,
which may also impact wavefront curvature and re-entry
(Macia et al. 2011; Ciaccio et al. 2014).

Thus, many studies of human VF support a hierarchical
model driven by sources, yet these mechanisms are less
well validated than for AF. First, it is less clear that
VF rotors always act as sources, since VF is typically

studied for short periods of time and long-term follow-up
studies from VF rotor ablation, while promising, are
presently anecdotal. Secondly, some ventricular studies
used techniques that alter the substrate such as recording
epicardial electrograms after sub-endocardial ablation
using Lugol’s solution (Lee et al. 1996). Future directions
in VF mapping include optical mapping studies to
better define the structure–function relationship between
organized and disorganized regions, and to validate diverse
mapping approaches to VF.

Conclusions and future directions

Knowledge in cardiac electrophysiology has progressed
significantly in recent decades, yet remarkably, the
fundamental mechanisms for human cardiac fibrillation
are still debated. One important concept in this debate is
that while fibrillation operates at the limits of dynamic
activation and recovery, few human studies consider this
physiology. Accordingly, mapping techniques that agree in
simple rhythms may diverge dramatically in AF. Optical
mapping typically shows localized rotors and sources
driving fibrillation while activation mapping of electro-
grams typically simply shows disorganization.

These mechanistic differences have profound clinical
implications. Therapy based upon the disorganized
model of AF is suboptimal, and cannot easily explain
abundant observations of AF modulation by localized
intervention or the failure of extensive empiric ablation
to improve outcomes. Conversely, novel clinical mapping
approaches, including FIRM that computationally
combines repolarization with activation data, recapitulate
many features of fibrillatory sources found in human
optical maps. Therapy based upon novel mechanistic
approaches to mapping have shown early promise and
randomized trials are underway.

Future directions include, ultimately, the development
of clinically useable optical imaging, which circumvents
dye-related toxicity in the beating heart at wavelengths
not absorbed by blood. In the interim, optical mapping
of human AF ex vivo should be used to validate and
compare current mapping modalities, to develop accurate
‘rules’ or algorithms to separate local from distant
information for the different recording fields of unipolar
or bipolar electrograms. Improved catheter designs
may better represent local activation, and complement
such algorithms. These approaches may ultimately lead
to computational mapping that digitally approximates
optical maps.

Recent literature in cardiac fibrillation is replete with
studies that are descriptive without mechanistic inter-
ventions. For the essential goal of advancing clinical
outcomes, it is critical that purely descriptive studies
are replaced by studies in which ablation and other

C© 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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interventions are used to establish mechanistic targets
for diagnosis and for novel therapies which may include
ablation, pacing, genetic or regenerative therapy.
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