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Clan CD cysteine peptidases, a structurally related group of
peptidases that include mammalian caspases, exhibit a wide
range of important functions, along with a variety of specificities
and activation mechanisms. However, for the clostripain family
(denoted C11), little is currently known. Here, we describe the
first crystal structure of a C11 protein from the human gut bac-
terium, Parabacteroides merdae (PmC11), determined to 1.7-Å
resolution. PmC11 is a monomeric cysteine peptidase that com-
prises an extended caspase-like �/�/� sandwich and an unusual
C-terminal domain. It shares core structural elements with clan
CD cysteine peptidases but otherwise structurally differs from
the other families in the clan. These studies also revealed a well
ordered break in the polypeptide chain at Lys147, resulting in a
large conformational rearrangement close to the active site. Bio-
chemical and kinetic analysis revealed Lys147 to be an intramo-
lecular processing site at which cleavage is required for full acti-
vation of the enzyme, suggesting an autoinhibitory mechanism
for self-preservation. PmC11 has an acidic binding pocket and a
preference for basic substrates, and accepts substrates with Arg
and Lys in P1 and does not require Ca2� for activity. Collec-
tively, these data provide insights into the mechanism and activ-
ity of PmC11 and a detailed framework for studies on C11 pep-
tidases from other phylogenetic kingdoms.

Cysteine peptidases play crucial roles in the virulence of bac-
terial and other eukaryotic pathogens. In the MEROPS pepti-
dase database (1), clan CD contains groups (or families) of cys-
teine peptidases that share some highly conserved structural
elements (2). Clan CD families are typically described using the
name of their archetypal, or founding, member and also given
an identification number preceded by a “C,” to denote cysteine
peptidase. Although seven families (C14 is additionally split
into three subfamilies) have been described for this clan, crystal
structures have only been determined from four: legumain
(C13) (3), caspase (C14a) (4), paracaspase (C14b(P) (5), meta-
caspase (C14b(M) (6), gingipain (C25) (7), and the cysteine pep-
tidase domain (CPD) of various toxins (C80) (8). No structural
information is available for clostripain (C11), separase (C50), or
PrtH-peptidase (C85).

Clan CD enzymes have a highly conserved His/Cys catalytic
dyad and exhibit strict specificity for the P1 residue of their
substrates. However, despite these similarities, clan CD forms a
functionally diverse group of enzymes: the overall structural
diversity between (and at times within) the various families pro-
vides these peptidases with a wide variety of substrate specific-
ities and activation mechanisms. Several members are initially
expressed as proenzymes, demonstrating self-inhibition prior
to full activation (2).

The archetypal and arguably most notable family in the clan
is that of the mammalian caspases (C14a), although clan CD
members are distributed throughout the entire phylogenetic
kingdom and are often required in fundamental biological pro-
cesses (2). Interestingly, little is known about the structure or
function of the C11 proteins, despite their widespread distribu-
tion (1) and its archetypal member, clostripain from Clostrid-
ium histolyticum, first reported in the literature in 1938 (9).
Clostripain has been described as an arginine-specific pepti-
dase with a requirement for Ca2� (10) and loss of an internal
nonapeptide for full activation; lack of structural information
on the family appears to have prohibited further investigation.
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As part of an ongoing project to characterize commensal
bacteria in the microbiome that inhabit the human gut, the
structure of C11 peptidase, PmC11, from Parabacteroides mer-
dae was determined using the Joint Center for Structural
Genomics (JCSG)4 HTP structural biology pipeline (11). The
structure was analyzed, and the enzyme was biochemically
characterized to provide the first structure/function correla-
tion for a C11 peptidase.

Experimental Procedures

Cloning, expression, purification, crystallization, and struc-
ture determination of PmC11 were carried out using standard
JCSG protocols (11) as follows.

Cloning—Clones were generated using the polymerase
incomplete primer extension (PIPE) cloning method (12). The
gene encoding PmC11 (SP5111E) was amplified by polymerase
chain reaction (PCR) from P. merdae genomic DNA using Pfu-
Turbo DNA polymerase (Stratagene), using I-PIPE primers that
included sequences for the predicted 5� and 3� ends (shown
below). The expression vector, pSpeedET, which encodes an
amino-terminal tobacco etch virus protease-cleavable expres-
sion and purification tag (MGSDKIHHHHHHENLYFQ/G),
was PCR amplified with V-PIPE (Vector) primers. V-PIPE and
I-PIPE PCR products were mixed to anneal the amplified DNA
fragments together. Escherichia coli GeneHogs (Invitrogen)
competent cells were transformed with the I-PIPE/V-PIPE
mixture and dispensed on selective LB-agar plates. The cloning
junctions were confirmed by DNA sequencing. The plasmid
encoding the full-length protein was deposited in the PSI:Biol-
ogy Materials Repository at the DNASU plasmid repository
(PmCD00547516). For structure determination, to obtain sol-
uble protein using the PIPE, method the gene segment encod-
ing residues Met1-Asn22 was deleted because these residues
were predicted to correspond to a signal peptide using SignalP
(13).

Protein Expression and Selenomethionine Incorporation—
The expression plasmid for the truncated PmC11 construct
was transformed into E. coli GeneHogs competent cells and
grown in minimal media supplemented with selenomethionine
and 30 �g ml�1 of kanamycin at 37 °C using a GNF fermentor
(14). A methionine auxotrophic strain was not required as sel-
enomethionine is incorporated via the inhibition of methionine
biosynthesis (15, 16). Protein expression was induced using
0.1% (w/v) L-arabinose and the cells were left to grow for a
further 3 h at 37 °C. At the end of the cell culture, lysozyme was
added to all samples to a final concentration of 250 �g ml�1 and
the cells were harvested and stored at �20 °C, until required.
Primers used in this section are as follows: I-PIPE (forward):
CTGTACTTCCAGGGCGAGACTCCGGAACCCCGGACA-
ACCCGC; I-PIPE (reverse): AATTAAGTCGCGTTATTCAT-

AAACTGCCTTATACCAGCCGAC; V-PIPE (forward): TAA-
CGCGACTTAATTAACTCGTTTAAACGGTCTCCAGC; and
V-PIPE (reverse): GCCCTGGAAGTACAGGTTTTCG-
TGATGATGATGATGAT.

Protein Purification for Crystallization—Cells were resus-
pended, homogenized, and lysed by sonication in 40 mM Tris
(pH 8.0), 300 mM NaCl, 10 mM imidazole, and 1 mM Tris(2-
carboxyethyl)phosphine hydrochloride (TCEP) (Lysis Buffer 1)
containing 0.4 mM MgSO4 and 1 �l of 250 unit/�l�1 of benzo-
nase (Sigma). The cell lysate was then clarified by centrifugation
(32,500 � g for 25 min at 4 °C) before being passed over Ni2�-
chelating resin equilibrated in Lysis Buffer 1 and washed in the
same buffer supplemented with 40 mM imidazole and 10% (v/v)
glycerol. The protein was subsequently eluted in 20 mM Tris
(pH 8.0), 150 mM NaCl, 10% (v/v) glycerol, 1 mM TCEP, and 300
mM imidazole, and the fractions containing the protein were
pooled.

To remove the His tag, PmC11 was exchanged into 20 mM

Tris (pH 8.0), 150 mM NaCl, 30 mM imidazole, and 1 mM TCEP
using a PD-10 column (GE Healthcare), followed by incubation
with 1 mg of His-tagged tobacco etch virus protease per 15 mg
of protein for 2 h at room temperature and subsequent over-
night incubation at 4 °C. The sample was centrifuged to remove
any precipitated material (13,000 � g for 10 min at 4 °C) and the
supernatant loaded onto Ni2�-chelating resin equilibrated with
20 mM Tris (pH 8.0), 150 mM NaCl, 30 mM imidazole, and 1 mM

TCEP and washed with the same buffer. The flow-through and
wash fractions were collected and concentrated to 13.3 mg
ml�1 using Amicon Ultra-15 5K centrifugal concentrators
(Millipore).

Crystallization and Data Collection—PmC11 was crystal-
lized using the nanodroplet vapor diffusion method using stan-
dard JCSG crystallization protocols (11). Drops were com-
prised of 200 nl of protein solution mixed with 200 nl of
crystallization solution in 96-well sitting-drop plates, equili-
brated against a 50-�l reservoir. Crystals of PmC11 were grown
at 4 °C in mother liquor consisting of 0.2 m NH4H2PO4, 20%
PEG-3350 (JCSG Core Suite I). Crystals were flash cooled in
liquid nitrogen using 10% ethylene glycol as a cryoprotectant
prior to data collection and initial screening for diffraction was
carried out using the Stanford Automated Mounting system
(17) at the Stanford Synchrotron Radiation Lightsource (SSRL,
Menlo Park, CA). Single wavelength anomalous dispersion data
were collected using a wavelength of 0.9793 Å, at the Advanced
Light Source (ALS, beamline 8.2.2, Berkeley, CA) on an ADSC
Quantum 315 CCD detector. The data were indexed and inte-
grated with XDS (18) and scaled using XSCALE (18). The dif-
fraction data were indexed in space group P21 with a � 39.11,
b � 108.68, c � 77.97 Å, and � � 94.32°. The unit cell contained
two molecules in the asymmetric unit resulting in a solvent
content of 39% (Matthews’ coefficient (Vm) of 2.4 Å3 Da�1).

Structure Determination—The PmC11 structure was deter-
mined by the single wavelength anomalous dispersion method
using an x-ray wavelength corresponding to the peak of the
selenium K edge. Initial phases were derived using the
autoSHARP interface (19), which included density modifica-
tion with SOLOMON (20). Good quality electron density was
obtained at 1.7-Å resolution, allowing an initial model to be

4 The abbreviations used are: JCSG, Joint Center for Structural Genomics; PIPE,
polymerase incomplete primer extension; TCEP, Tris(2-carboxyethyl)-
phosphine; AMC, 7-amino-4-methylcoumarin; PDB, Protein Data Bank; Bis-
Tris, 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol; Z,
benzyloxycarbonyl; FMK, fluoromethyl ketone; CTD, C-terminal domain;
Bz-R-AMC, benzoyl-L-Arg-4-methylcoumaryl-7-amide; Z-GGR-AMC, benzyl-
oxycarbonyl-Gly-Gly-Arg-AMC; BOC-VLK-AMC, t-butyloxycarbonyl-Val-
Leu-Lys.
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obtained by automated model building with ARP/wARP (21).
Model completion and refinement were iteratively performed
with COOT (22) and REFMAC (23, 24) to produce a final model
with an Rcryst and Rfree of 14.3 and 17.5%, respectively. The
refinement included experimental phase restraints in the form
of Hendrickson-Lattman coefficients, TLS refinement with one
TLS group per molecule in the asymmetric unit, and NCS
restraints. The refined structure contains residues 24 –375 and
28 –375 for the two molecules in the crystallographic asymmet-
ric unit. Structural validation was carried using the JCSG Qual-
ity Control Server that analyzes both the coordinates and data
using a variety of structural validation tools to confirm the ste-
reochemical quality of the model (ADIT (25), MOLPROBITY
(26), and WHATIF 5.0 (27)) and agreement between model and
data (SGCHECK (28) and RESOLVE (29)). All of the main-
chain torsion angles were in the allowed regions of the Ram-
achandran plot and the MolProbity overall clash score for the
structure was 2.09 (within the 99th percentile for its resolu-
tion). The atomic coordinates and structure factors for PmC11
have been deposited in the Protein Data Bank (PDB) with the
accession code 3UWS. Data collection, model, and refinement
statistics are reported in Table 1.

Structural Analysis—The primary sequence alignment with
assigned secondary structure was prepared using CLUSTAL

OMEGA (30) and ALINE (31). The topology diagram was pro-
duced with TOPDRAW (32) and all three-dimensional struc-
tural figures were prepared with PyMol (33) with the electro-
static surface potential calculated with APBS (18) and
contoured at �5 kT/e. Architectural comparisons with known
structures revealed that PmC11 was most structurally similar to
caspase-7, gingipain-K, and legumain (PBD codes 4hq0, 4tkx,
and 4aw9, respectively). The statistical significance of the struc-
tural alignment between PmC11 and both caspase-7 and gin-
gipain-K is equivalent (Z-score of 9.2) with legumain giving a
very similar result (Z-score of 9.1). Of note, the �-strand topol-
ogy of the CDP domains of Clostridium difficile toxin B (family
C80; TcdB; PDB code 3pee) is identical to that observed in the
PmC11 �-sheet, but the Z-score from DaliLite was notably less
at 7.6. It is possible that the PmC11 structure is more closely
related to the C80 family than other families in clan CD, and
appear to reside on the same branch of the phylogenetic tree
based on structure (2).

Protein Production for Biochemical Assays—The PmCD00547516
plasmid described above was obtained from the PSI:Biology
Materials Repository and used to generate a cleavage site
mutant PmC11K147A and an active-site mutant PmC11C179A

using the QuikChange Site-directed Mutagenesis kit (Strat-
agene) as per the manufacturer’s instructions using the follow-
ing primers: K147A mutant (forward): CAGAATAAGCTGG-
CAGCGTTCGGACAGGACG, and K147A mutant (reverse):
CGTCCTGTCCGAACGCTGCCAGCTTATTCTG; C179A
mutant (forward): CCTGTTCGATGCCGCCTACATGGCA-
AGC, and C179A mutant (reverse): GCTTGCCATGTAGGC-
GGCATCGAACAGG. The expression plasmids containing
PmC11 were transformed into E. coli BL21 Star (DE3) and
grown in Luria-Bertani media containing 30 �g ml�1 of kana-
mycin at 37 °C until an optical density (600 nm) of �0.6 was
reached. L-Arabinose was added to a final concentration of 0.2%
(w/v) and the cells incubated overnight at 25 °C.

Compared with the protein production for crystallogra-
phy, a slightly modified purification protocol was employed
for biochemical assays. Initially, the cells were resuspended
in 20 mM sodium phosphate (pH 7.5), 150 mM NaCl (Lysis
Buffer 2) containing an EDTA-free protease inhibitor mixture
(cOmplete, Roche Applied Science). Cells were disrupted by
three passages (15 KPSI) through a One-Shot cell disruptor
(Constant Systems) followed by centrifugation at 20,000 � g for
20 min at 4 °C. The supernatant was collected and sterile-fil-
tered (0.2 �m) before being applied to a 5-ml HisTrap HP col-
umn (GE Healthcare) equilibrated in Lysis Buffer 2 containing
25 mM imidazole, and the protein was eluted in the same buffer
containing 250 mM imidazole. The peak fractions were pooled
and buffer exchanged into the assay buffer (20 mM Tris, 150 mM

NaCl, pH 8.0) using a PD-10 column. When required, purified
PmC11 was concentrated using Vivaspin 2 30-K centrifugal
concentrators (Sartorius). Protein concentration was routinely
measured using Bradford’s reagent (Bio-Rad) with a BSA
standard.

Fluorogenic Substrate Activity Assays—The release of the
fluorescent group AMC (7-amino-4-methylcoumarin) from po-
tential peptide substrates was used to assess the activity of
PmC11. Peptidase activity was tested using 20 �g of PmC11 and

TABLE 1
Crystallographic statistics for PDB code 3UWS
Values in parentheses are for the highest resolution shell.

Data collection
Wavelength (Å) 0.9793
Space group P21
Unit cell dimensions a, b, c (Å); �° 39.11, 108.68, 77.97; � � 94.32°
Resolution range (Å) 28.73–1.70 (1.79–1.70)
Unique reflections 70,913
Rmerge

a on I (%) 10.2 (49.0)
Rmeas

b on I (%) 11.0 (52.7)
Rpim

c on I (%) 4.1 (19.2)
I/�I 15.6 (4.6)
Wilson B (Å2) 15.9
Completeness (%) 99.6 (99.8)
Multiplicity 7.3 (7.5)

Model and refinement
Reflections (total/test) 70,883/3,577
Rcryst/Rfree

d (%) 14.3/17.5
No. protein residues/atoms 700/5612
No. of water/EDO molecules 690/7
ESUe based on Rfree (Å) 0.095
B-values (Å2)

Average isotropic B (overall) 20.0
Protein overall 18.8
All main/side chains 16.7/20.8
Solvent/EDO 29.4/35.6

RMSDg

Bond lengths (Å) 0.01
Bond angles (°) 1.6

Ramachandran analysis (%)
Favored regions 97.0
Allowed regions 3.0
Outliers 0.0

a Rmerge � 	hkl	i�Ii(hkl) � 
I(hkl)��/	hkl 	i(hkl).
b Rmeas � 	hkl[N/(N-1)]1/2	i�Ii(hkl) � 
I(hkl)��/	hkl	iIi(hkl).
c Rpim (precision-indicating Rmerge) � 	hkl[(1/(N-1)]1/2 	i�Ii (hkl) � 
I(hkl)��/	hkl	i

Ii(hkl) (43), where n is the multiplicity of reflection hkl, and Ii(hkl) and 
I(hkl)�
are the intensity of the ith measurement and the average intensity of reflection
hkl, respectively (44).

d Rcryst and Rfree � 	�Fobs� � �Fcalc�/	�Fobs� for reflections in the working and test
sets, respectively, where Fobs and Fcalc are the observed and calculated structure-
factor amplitudes, respectively. Rfree is the same as Rcryst but for 5% of the total
reflections chosen at random and omitted from structural refinement.

e ESU is the estimated standard uncertainties of atoms.
f The average isotropic B includes TLS and residual B components.
g RMSD, root-mean-square deviation.
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100 �M substrate (unless otherwise stated) in assay buffer to
a final reaction volume of 200 �l and all samples were incu-
bated (without substrate) at 37 °C for 16 h prior to carrying
out the assay. The substrate and plate reader were brought to
37 °C for 20 min prior to the addition of the PmC11 and samples
prepared without PmC11 were used as blanks (negative con-
trols). The curves were plotted using the blank-corrected fluo-
rescence units against the time of acquisition (in min). The
assays were carried out in black 96-well flat-bottomed plates
(Greiner). AMC fluorescence was measured using a PHERAstar
FS plate reader (BMG Labtech) with excitation and emission
wavelengths of 355 and 460 nm, respectively.

To investigate the substrate specificity of PmC11, substrates
Z-GGR-AMC, Bz-R-AMC, Z-GP-AMC, Z-HGP-AMC, Ac-
DEVD-AMC (all Bachem), BOC-VLK-AMC, and BOC-K-
AMC (both PeptaNova) were prepared at 100 mM in 100%
dimethyl sulfoxide. The amount of AMC (micromoles) released
was calculated by generating an AMC standard curve (as
described in Ref. 34) and the specific activity of PmC11 was
calculated as picomoles of AMC released per min per mg of the
protein preparation.

The reaction rates (Vmax) and Km values were determined for
mutants PmC11K147A and PmC11C179A by carrying out the
activity assay at varying concentrations of Bz-R-AMC between
0 and 600 �M. The blank-corrected relative fluorescence units
were plotted against time (min) with �FU/T giving the reaction
rate. The Km and Vmax of PmC11 and PmC11K147A against an
R-AMC substrate were determined from the Lineweaver-Burk
plot as described (34), calculated using GraphPad Prism6 soft-
ware. All experiments were carried out in triplicate.

Effect of VRPR-FMK on PmC11—To test the effect of the
inhibitor on the activity of PmC11, 25 �M Z-VRPR-FMK (100
mM stock in 100% dimethyl sulfoxide, Enzo Life Sciences), 20
�g of PmC11, 100 �M R-AMC substrate, 1 mM EGTA were
prepared in the assay buffer and the activity assay carried out as
described above. A gel-shift assay, to observe Z-VRPR-FMK
binding to PmC11, was also set up using 20 �g of PmC11, 25 �M

inhibitor, 1 mM EGTA in assay buffer. The reactions were incu-
bated at 37 °C for 20 min before being stopped by the addition
SDS-PAGE sample buffer. Samples were analyzed by loading
the reaction mixture on a 10% NuPAGE BisTris gel using MES
buffer.

Effect of Cations on PmC11—The enzyme activity of PmC11
was tested in the presence of various divalent cations: Mg2�,
Ca2�, Mn2�, Co2�, Fe2�, Zn2�, and Cu2�. The final concen-
tration of the salts (MgSO4, CaCl2, MnCl2, CoCl2, FeSO4,
ZnCl2, and CuSO4) was 1 mM and the control was set up with-
out divalent ions but with addition of 1 mM EGTA. The assay
was set up using 20 mg of PmC11, 1 mM salts, 100 �M R-AMC
substrate, and the assay buffer, and incubated at 37 °C for 16 h.
The activity assay was carried out as described above.

Size Exclusion Chromatography—Affinity-purified PmC11
was loaded onto a HiLoad 16/60 Superdex 200 gel filtration
column (GE Healthcare) equilibrated in the assay buffer. The
apparent molecular weight of PmC11 was determined from cal-
ibration curves based on protein standards of known molecular
weights.

Autoprocessing Profile of PmC11—Autoprocessing of PmC11
was evaluated by incubating the enzyme at 37 °C and removing
samples at 1-h intervals from 0 to 16 h and placing into SDS-
PAGE loading buffer to stop the processing. Samples were then
analyzed on a 4 –12% NuPAGE (Thermo Fisher) Novex BisTris
gel run in MES buffer.

Autoprocessing Cleavage Site Analysis—To investigate whether
processing is a result of intra- or inter-molecular cleavage, the
PmC11C179A mutant was incubated with increasing concentra-
tions of activated PmC11 (0, 0.1, 0.2, 0.5, 1, 2, and 5 �g). The
final assay volume was 40 �l and the proteins were incubated at
37 °C for 16 h in the PmC11 assay buffer. To stop the reaction,
NuPAGE sample buffer was added to the protein samples and
20 �l was analyzed on 10% NuPAGE Novex BisTris gel using
MES buffer. These studies revealed no apparent cleavage of
PmC11C179A by the active enzyme at low concentrations of
PmC11 and that only limited cleavage was observed when the
ratio of active enzyme (PmC11: PmC11C179A) was increased to
�1:10 and 1:4.

Results

Structure of PmC11—The crystal structure of the catalytically
active form of PmC11 revealed an extended caspase-like
�/�/� sandwich architecture comprised of a central nine-
stranded �-sheet, with an unusual C-terminal domain
(CTD), starting at Lys250. A single cleavage was observed in the
polypeptide chain at Lys147 (Fig. 1, A and B), where both ends of
the cleavage site are fully visible and well ordered in the electron
density. The central nine-stranded �-sheet (�1–�9) of PmC11
consists of six parallel and three anti-parallel �-strands with
413221115161728291 topology (Fig. 1A) and the overall
structure includes 14 �-helices with six (�1–�2 and �4 –�7)
closely surrounding the �-sheet in an approximately parallel
orientation. Helices �1, �7, and �6 are located on one side of
the �-sheet with �2, �4, and �5 on the opposite side (Fig. 1A).
Helix �3 sits at the end of the loop following �5 (L5), just pre-
ceding the Lys147 cleavage site, with both L5 and �3 pointing
away from the central �-sheet and toward the CTD, which
starts with �8. The structure also includes two short �-hairpins
(�A–�B and �D–�E) and a small �-sheet (�C–�F), which is
formed from two distinct regions of the sequence (�C precedes
�11, �12 and �9, whereas �F follows the �D-�E hairpin) in the
middle of the CTD (Fig. 1B).

The CTD of PmC11 is composed of a tight helical bundle
formed from helices �8 –�14 and includes strands �C and �F,
and �-hairpin �D–�E. The CTD sits entirely on one side of the
enzyme interacting only with �3, �5, �9, and the loops sur-
rounding �8. Of the interacting secondary structure elements,
�5 is perhaps the most interesting. This helix makes a total of
eight hydrogen bonds with the CTD, including one salt bridge
(Arg191-Asp255) and is surrounded by the CTD on one side and
the main core of the enzyme on the other, acting like a linchpin
holding both components together (Fig. 1C).

Structural Comparisons—PmC11 is, as expected, most struc-
turally similar to other members of clan CD with the top hits in
a search of known structures being caspase-7, gingipain-K, and
legumain (PBD codes 4hq0, 4tkx, and 4aw9, respectively)
(Table 2). The C-terminal domain is unique to PmC11 within
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clan CD and structure comparisons for this domain alone does
not produce any hits in the PDB (DaliLite, PDBeFold), suggest-
ing a completely novel fold. As the archetypal and arguably
most well studied member of clan CD, the caspases were used

as the basis to investigate the structure/function relationships
in PmC11, with caspase-7 as the representative member. Six of
the central �-strands in PmC11 (�1–�2 and �5–�8) share the
same topology as the six-stranded �-sheet found in caspases,

FIGURE 1. Crystal structure of a C11 peptidase from P. merdae. A, primary sequence alignment of PmC11 (Uniprot ID A7A9N3) and clostripain (Uniprot ID
P09870) from C. histolyticum with identical residues highlighted in gray shading. The secondary structure of PmC11 from the crystal structure is mapped onto
its sequence with the position of the PmC11 catalytic dyad, autocatalytic cleavage site (Lys147), and S1 binding pocket Asp (Asp177) highlighted by a red star, a
red downturned triangle, and a red upturned triangle, respectively. Connecting loops are colored gray, the main �-sheet is in orange, with other strands in olive,
�-helices are in blue, and the nonapeptide linker of clostripain that is excised upon autocleavage is underlined in red. Sequences around the catalytic site of
clostripain and PmC11 align well. B, topology diagram of PmC11 colored as in A except that additional (non-core) �-strands are in yellow. Helices found on
either side of the central �-sheet are shown above and below the sheet, respectively. The position of the catalytic dyad (H, C) and the processing site (Lys147)
are highlighted. Helices (1–14) and �-strands (1–9 and A-F) are numbered from the N terminus. The core caspase-fold is highlighted in a box. C, tertiary structure
of PmC11. The N and C termini (N and C) of PmC11 along with the central �-sheet (1–9), helix �5, and helices �8, �11, and �13 from the C-terminal domain, are
all labeled. Loops are colored gray, the main �-sheet is in orange, with other �-strands in yellow, and �-helices are in blue.

TABLE 2
Summary of PDBeFOLD (45) superposition of structures found to be most similar to PmC11 in the PBD based on DaliLite (46)
The results are ordered in terms of structural homology (QH), where %SSEPC-X is the percentage of the SSEs in the PmC11 that can be identified in the target X (where X �
caspase-7 (47), legumain (3), gingipain (48), and TcdB-CPD (49); % SSEX-PC is the percentage of SSEs in X (as above) that can be identified in PmC11 (as above); % sequence
ID is the percentage sequence identity after structural alignment; Nalign is the number of matched residues; and r.m.s. deviation the root mean squared deviation on the C�
positions of the matched residues.

Enzyme Family
PDB
code QH Z-score %SSEPC-X %SSEX-PC % Seq. ID Nalign RMSD (Å) NStrands

PmC11 C11 3UWS 1.00 33.4 100 100 100 352 0.00 9
Caspase-7 C14A 4HQ0 0.16 4.3 38 79 14 162 3.27 6
Legumain C13 4AW9 0.13 5.5 31 53 13 161 2.05 6
TcdB-CPD C80 3PEE 0.10 4.9 28 50 12 138 3.18 9
Gingipain C25 4TKX 0.07 5.4 28 27 12 153 2.97 10
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with strands �3, �4, and �9 located on the outside of this core
structure (2) (Fig. 1B, box). His133 and Cys179 were found at
locations structurally homologous to the caspase catalytic dyad,
and other clan CD structures (2), at the C termini of strands �5
and �6, respectively (Figs. 1, A and B, and 2A). A multiple
sequence alignment of C11 proteins revealed that these resi-
dues are highly conserved (data not shown).

Five of the �-helices surrounding the �-sheet of PmC11 (�1,
�2, �4, �6, and �7) are found in similar positions to the five
structurally conserved helices in caspases and other members
of clan CD, apart from family C80 (2). Other than its more
extended �-sheet, PmC11 differs most significantly from other
clan CD members at its C terminus, where the CTD contains a
further seven �-helices and four �-strands after �8.

Autoprocessing of PmC11—Purification of recombinant
PmC11 (molecular mass � 42.6 kDa) revealed partial pro-
cessing into two cleavage products of 26.4 and 16.2 kDa, related
to the observed cleavage at Lys147 in the crystal structure (Fig.
2A). Incubation of PmC11 at 37 °C for 16 h, resulted in a fully
processed enzyme that remained as an intact monomer when
applied to a size-exclusion column (Fig. 2B). The single cleav-
age site of PmC11 at Lys147 is found immediately after �3, in
loop L5 within the central �-sheet (Figs. 1, A and B, and 2A).
The two ends of the cleavage site are remarkably well ordered in
the crystal structure and displaced from one another by 19.5 Å
(Fig. 2A). Moreover, the C-terminal side of the cleavage site
resides near the catalytic dyad with Ala148 being 4.5 and 5.7 Å
from His133 and Cys179, respectively. Consequently, it appears
feasible that the helix attached to Lys147 (�3) could be respon-
sible for steric autoinhibition of PmC11 when Lys147 is cova-
lently bonded to Ala148. Thus, the cleavage would be required
for full activation of PmC11. To investigate this possibility, two
mutant forms of the enzyme were created: PmC11C179A (a cat-
alytically inactive mutant) and PmC11K147A (a cleavage-site
mutant). Initial SDS-PAGE and Western blot analysis of both
mutants revealed no discernible processing occurred as com-
pared with active PmC11 (Fig. 2C). The PmC11K147A mutant
enzyme had a markedly different reaction rate (Vmax) com-
pared with WT, where the reaction velocity of PmC11 was 10
times greater than that of PmC11K147A (Fig. 2D). Taken
together, these data reveal that PmC11 requires processing at
Lys147 for optimum activity.

To investigate whether processing is a result of intra- or
intermolecular cleavage, the PmC11C179A mutant was incu-
bated with increasing concentrations of processed and acti-

vated PmC11. These studies revealed that there was no appar-
ent cleavage of PmC11C179A by the active enzyme at low
concentrations of PmC11 and that only limited cleavage was
observed when the ratio of active enzyme (PmC11:
PmC11C179A) was increased to �1:10 and 1:4, with complete
cleavage observed at a ratio of 1:1 (Fig. 2E). This suggests that
cleavage of PmC11C179A was most likely an effect of the increas-
ing concentration of PmC11 and intermolecular cleavage. Col-
lectively, these data suggest that the pro-form of PmC11 is
autoinhibited by a section of L5 blocking access to the active
site, prior to intramolecular cleavage at Lys147. This cleavage
subsequently allows movement of the region containing Lys147

and the active site to open up for substrate access.
Substrate Specificity of PmC11—The autocatalytic cleavage

of PmC11 at Lys147 (sequence KLK∧A) demonstrates that the
enzyme accepts substrates with Lys in the P1 position. The sub-
strate specificity of the enzyme was further tested using a vari-
ety of fluorogenic substrates. As expected, PmC11 showed no
activity against substrates with Pro or Asp in P1 but was active
toward substrates with a basic residue in P1 such as Bz-R-AMC,
Z-GGR-AMC, and BOC-VLK-AMC. The rate of cleavage was
�3-fold greater toward the single Arg substrate Bz-R-AMC
than for the other two (Fig. 2F) and, unexpectedly, PmC11
showed no activity toward BOC-K-AMC. These results con-
firm that PmC11 accepts substrates containing Arg or Lys in P1
with a possible preference for Arg.

The catalytic dyad of PmC11 sits near the bottom of an open
pocket on the surface of the enzyme at a conserved location in
the clan CD family (2). The PmC11 structure reveals that the
catalytic dyad forms part of a large acidic pocket (Fig. 2G), con-
sistent with a binding site for a basic substrate. This pocket is
lined with the potential functional side chains of Asn50, Asp177,
and Thr204 with Gly134, Asp207, and Met205 also contributing to
the pocket (Fig. 2A). Interestingly, these residues are in regions
that are structurally similar to those involved in the S1 binding
pockets of other clan CD members (shown in Ref. 2).

Because PmC11 recognizes basic substrates, the tetrapeptide
inhibitor Z-VRPR-FMK was tested as an enzyme inhibitor and
was found to inhibit both the autoprocessing and activity of
PmC11 (Fig. 3A). Z-VRPR-FMK was also shown to bind to the
enzyme: a size-shift was observed, by SDS-PAGE analysis, in
the larger processed product of PmC11 suggesting that the
inhibitor bound to the active site (Fig. 3B). A structure overlay
of PmC11 with the MALT1-paracacaspase (MALT1-P), in
complex with Z-VRPR-FMK (35), revealed that the PmC11

FIGURE 2. Biochemical and structural characterization of PmC11. A, ribbon representation of the overall structure of PmC11 illustrating the catalytic site,
cleavage site displacement, and potential S1 binding site. The overall structure of PmC11 is shown in gray, looking down into the catalytic site with the catalytic
dyad in red. The two ends of the autolytic cleavage site (Lys147 and Ala148, green) are displaced by 19.5 Å (thin black line) from one another and residues in the
potential substrate binding pocket are highlighted in blue. B, size exclusion chromatography of PmC11. PmC11 migrates as a monomer with a molecular mass
around 41 kDa calculated from protein standards of known molecular weights. Elution fractions across the major peak (1– 6) were analyzed by SDS-PAGE on a
4 –12% gel in MES buffer. C, the active form of PmC11 and two mutants, PmC11C179A (C) and PmC11K147A (K), were examined by SDS-PAGE (lane 1) and Western
blot analysis using an anti-His antibody (lane 2) show that PmC11 autoprocesses, whereas mutants, PmC11C179A and PmC11K147A, do not show autoprocessing
in vitro. D, cysteine peptidase activity of PmC11. Km and Vmax of PmC11 and K147A mutant were determined by monitoring change in the fluorescence
corresponding to AMC release from Bz-R-AMC. Reactions were performed in triplicate and representative values � S.D. are shown. E, intermolecular processing
of PmC11C179A by PmC11. PmC11C179A (20 �g) was incubated overnight at 37 °C with increasing amounts of processed PmC11 and analyzed on a 10%
SDS-PAGE gel. Inactive PmC11C179A was not processed to a major extent by active PmC11 until around a ratio of 1:4 (5 �g of active PmC11). A single lane of 20
�g of active PmC11 (labeled 20) is shown for comparison. F, activity of PmC11 against basic substrates. Specific activity is shown � S.D. from three independent
experiments. G, electrostatic surface potential of PmC11 shown in a similar orientation, where blue and red denote positively and negatively charged surface
potential, respectively, contoured at �5 kT/e. The position of the catalytic dyad, one potential key substrate binding residue Asp177, and the ends of the
cleavage site Lys147 and Ala148 are indicated.
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dyad sits in a very similar position to that of active MALT1-P
and that Asn50, Asp177, and Asp207 superimpose well with the
principal MALT1-P inhibitor binding residues (Asp365, Asp462,
and Glu500, respectively (VRPR-FMK from MALT1-P with the
corresponding PmC11 residues from the structural overlay is
shown in Fig. 1D), as described in Ref. 5). Asp177 is located near
the catalytic cysteine and is conserved throughout the C11 fam-
ily, suggesting it is the primary S1 binding site residue. In the
structure of PmC11, Asp207 resides on a flexible loop pointing
away from the S1 binding pocket (Fig. 3C). However, this loop
has been shown to be important for substrate binding in clan
CD (2) and this residue could easily rotate and be involved in
substrate binding in PmC11. Thus, Asn50, Asp177, and Asp207

are most likely responsible for the substrate specificity of
PmC11. Asp177 is highly conserved throughout the clan CD
C11 peptidases and is thought to be primarily responsible for
substrate specificity of the clan CD enzymes, as also illustrated
from the proximity of these residues relative to the inhibitor
Z-VRPR-FMK when PmC11 is overlaid on the MALT1-P struc-
ture (Fig. 3C).

Comparison with Clostripain—Clostripain from C. histolyti-
cum is the founding member of the C11 family of peptidases
and contains an additional 149 residues compared with PmC11.
A multiple sequence alignment revealed that most of the sec-
ondary structural elements are conserved between the two
enzymes, although they are only �23% identical (Fig. 1A). Nev-
ertheless, PmC11 may be a good model for the core structure of
clostripain.

The primary structural alignment also shows that the cata-
lytic dyad in PmC11 is structurally conserved in clostripain (36)
(Fig. 1A). Unlike PmC11, clostripain has two cleavage sites
(Arg181 and Arg190), which results in the removal of a nonapep-
tide, and is required for full activation of the enzyme (37) (high-
lighted in Fig. 1A). Interestingly, Arg190 was found to align with
Lys147 in PmC11. In addition, the predicted primary S1-binding
residue in PmC11 Asp177 also overlays with the residue pre-
dicted to be the P1 specificity determining residue in clostripain
(38) (Asp229, Fig. 1A).

As studies on clostripain revealed addition of Ca2� ions are
required for full activation, the Ca2� dependence of PmC11 was
examined. Surprisingly, Ca2� did not enhance PmC11 activity
and, furthermore, other divalent cations, Mg2�, Mn2�, Co2�,
Fe2�, Zn2�, and Cu2�, were not necessary for PmC11 activity
(Fig. 3D). In support of these findings, EGTA did not inhibit
PmC11 suggesting that, unlike clostripain, PmC11 does not
require Ca2� or other divalent cations, for activity.

Discussion

The crystal structure of PmC11 now provides three-dimen-
sional information for a member of the clostripain C11 family
of cysteine peptidases. The enzyme exhibits all of the key struc-
tural elements of clan CD members, but is unusual in that it has
a nine-stranded central �-sheet with a novel C-terminal

FIGURE 3. PmC11 binds and is inhibited by Z-VRPR-FMK and does not
require Ca2� for activity. A, PmC11 activity is inhibited by Z-VRPR-FMK.
Cleavage of Bz-R-AMC by PmC11 was measured in a fluorometric activity
assay with (�, purple) and without (�, red) Z-VRPR-FMK. The relative fluores-
cence units of AMC released are plotted against time (min) (n � 3; �S.D.). B,
gel-shift assay reveals that Z-VRPR-FMK binds to PmC11. PmC11 was incu-
bated with (�) or without (�) Z-VRPR-FMK and the samples analyzed on a
10% SDS-PAGE gel. A size shift can be observed in the larger processed prod-
uct of PmC11 (26.1 kDa). C, PmC11 with the Z-VRPR-FMK from the MALT1-
paracacaspase (MALT1-P) superimposed. A three-dimensional structural
overlay of Z-VRPR-FMK from the MALT1-P complex onto PmC11. The position
and orientation of Z-VRPR-FMK was taken from superposition of the PmC11
and MALTI_P structures and indicates the presumed active site of PmC11.
Residues surrounding the inhibitor are labeled and represent potentially
important binding site residues, labeled in black and shown in an atomic
representation. Carbon atoms are shown in gray, nitrogen in blue, and oxygen
in red. C, divalent cations do not increase the activity of PmC11. The cleavage
of Bz-R-AMC by PmC11 was measured in the presence of the cations Ca2�,
Mn2�, Zn2�, Co2�, Cu2�, Mg2�, and Fe3� with EGTA as a negative control, and

relative fluorescence measured against time (min). The addition of cations
produced no improvement in activity of PmC11 when compared in the pres-
ence of EGTA, suggesting that PmC11 does not require metal ions for proteo-
lytic activity. Furthermore, Cu2�, Fe2�, and Zn2� appear to inhibit PmC11.
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domain. The structural similarity of PmC11 with its nearest
structural neighbors in the PDB is decidedly low, overlaying
better with six-stranded caspase-7 than any of the other larger
members of the clan (Table 2). The substrate specificity of
PmC11 is Arg/Lys and the crystal structure revealed an acidic
pocket for specific binding of such basic substrates. In addition,
the structure suggested a mechanism of self-inhibition in both
PmC11 and clostripain and an activation mechanism that
requires autoprocessing. PmC11 differs from clostripain in that
is does not appear to require divalent cations for activation.

Several other members of clan CD require processing for full
activation including legumain (39), gingipain-R (40), MARTX-
CPD (8), and the effector caspases, e.g. caspase-7 (41). To date,
the effector caspases are the only group of enzymes that require
cleavage of a loop within the central �-sheet. This is also the
case in PmC11, although the cleavage loop is structurally dif-
ferent to that found in the caspases and follows the catalytic His
(Fig. 1A), as opposed to the Cys in the caspases.

All other clan CD members requiring cleavage for full acti-
vation do so at sites external to their central sheets (2). The
caspases and gingipain-R both undergo intermolecular (trans)
cleavage and legumain and MARTX-CPD are reported to per-
form intramolecular (cis) cleavage. In addition, several mem-
bers of clan CD exhibit self-inhibition, whereby regions of the
enzyme block access to the active site (2). Like PmC11, these
structures show preformed catalytic machinery and, for a sub-
strate to gain access, movement and/or cleavage of the blocking
region is required.

The structure of PmC11 gives the first insight into this class
of relatively unexplored family of proteins and should allow
important catalytic and substrate binding residues to be iden-
tified in a variety of orthologues. Indeed, insights gained from
an analysis of the PmC11 structure revealed the identity of the
Trypanosoma brucei PNT1 protein as a C11 cysteine peptidase
with an essential role in organelle replication (42). The PmC11
structure should provide a good basis for structural modeling
and, given the importance of other clan CD enzymes, this work
should also advance the exploration of these peptidases and
potentially identify new biologically important substrates.
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