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Acquisition and distribution of metal ions support a number
of biological processes. Here we show that respiratory growth of
and iron acquisition by the yeast Saccharomyces cerevisiae relies
on potassium (K�) compartmentalization to the trans-Golgi
network via Kha1p, a K�/H� exchanger. K� in the trans-Golgi
network facilitates binding of copper to the Fet3p multi-copper
ferroxidase. The effect of K� is not dependent on stable binding
with Fet3p or alteration of the characteristics of the secretory
pathway. The data suggest that K� acts as a chemical factor in
Fet3p maturation, a role similar to that of cations in folding of
nucleic acids. Up-regulation of KHA1 gene in response to iron
limitation via iron-specific transcription factors indicates that
K� compartmentalization is linked to cellular iron homeostasis.
Our study reveals a novel functional role of K� in the binding of
copper to apoFet3p and identifies a K�/H� exchanger at the
secretory pathway as a new molecular factor associated with
iron uptake in yeast.

Diverse biological pathways, such as energy generation, tran-
scription regulation, and neurotransmission, are dependent on
ionic concentration gradients across the membranes and on
metal-containing proteins. Organisms have evolved delicate
mechanisms for uptake, distribution, utilization, and detoxifi-
cation of such ions (1– 6). Defect in homeostasis of these spe-
cies is implicated in numerous disorders, such as growth retar-
dation, neurodegeneration, and cancer (7–12).

Channels, transporters, and ion pumps at the plasma mem-
brane and in subcellular organelles determine ionic cellular
distribution, which is critical for maintenance of membrane
potential, pH control, osmolality, transport of nutrients, and
protein activity (1, 13–16). For example, cations, such as K�,
Na�, and Mg2�, interact with negatively charged phosphate in

DNA and RNA and thus affect folding, dynamics, and protein-
nucleic acid interactions (17–19). This illustrates an example of
howionscanaffectmacromolecularstructureandfunctioninde-
pendent of site-specific binding. Comparable effects of ions on
proteins have not been reported, however.

It is estimated that one-third of the proteome contains at
least one metal ion or metal-containing prosthetic group as the
catalytic and/or structural cofactor (2). For instance, oxidative
phosphorylation and many other mitochondrial functions rely
on metalloproteins containing iron, heme, Fe-S cluster, copper,
manganese, and/or zinc. Iron acquisition, synthesis of heme
and Fe-S clusters, and incorporation of these cofactors into the
subunits of the respiratory chain complexes is vital for normal
growth and development (8, 20 –22). Insufficient iron acquisi-
tion is a widespread problem in virtually all organisms (8 –9).
Ferroxidases in fungi, algae, and humans are multi-copper-con-
taining enzymes that cooperate with cell surface iron transport-
ers to translocate iron across the plasma membrane (23, 24).
This indicates that copper is required for respiration via main-
taining iron homeostasis as well as functioning as a cofactor of
the complex IV. Despite significant research progress in iden-
tification of molecular factors involved in iron and copper
homeostasis, there are gaps in our understanding of the path-
ways and mechanisms.

To gain greater insight into copper and iron homeostasis in
support of mitochondrial function, we selected and character-
ized a yeast strain displaying respiration deficiency that can be
rescued by surplus copper or iron. Thorough characterization
of the metal metabolism in this strain indicates that potassium
(K�) compartmentalization to the trans-Golgi network (TGN)2

via a K�/H� exchanger promotes binding of copper to
apoFet3p ferroxidase. This occurs without stable binding of K�

to Fet3p or alteration of normal characteristics of the TGN.
KHA1 transcription is up-regulated under iron deficiency, indi-
cating active control by iron status of K� compartmentaliza-
tion. These results suggest a novel function for K� in copper
enzyme activation and identify Kha1p, a K� transporter in the
TGN, as a new molecular factor involved in copper and iron
homeostasis.
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Experimental Procedures

Yeast Strains, Culture Conditions, and Growth Assays—
BY4741 wild-type (WT) control Saccharomyces cerevisiae
strain and isogenic strains possessing indicated gene deletion
(25) were obtained from Open Biosystems. Cells were cultured
at 30 °C in the synthetic complete (SC) media (2% (w/v) dex-
trose, 0.2% (w/v) amino acid mixture, 0.67% (w/v) yeast nitro-
gen base) lacking uracil for plasmid selection (SC-ura), YPD
media (1% (w/v) yeast extract, 2% (w/v) Bacto-peptone, 2%
(w/v) dextrose)), and non-fermentable YPEG media (1% (w/v)
yeast extract, 2% (w/v) Bacto-peptone, 2% (w/v) ethanol, 3%
(w/v) glycerol) as indicated at each experiment. Solid media
contains 1.5% (w/v) agar.

Selection of Yeast Mutants Displaying Copper and Iron-res-
cued Respiratory Deficiency—A collection of BY4741 strains
possessing individual gene deletion by homologous recombina-
tion of the KanMX4 cassette (25) (Open Biosystems) was rep-
lica plated on non-fermentable YPEG media supplemented
with the copper chelator bathocuproine disulfonate (BCS, 10
�M). This allowed us to identify strains displaying complete or
subtle defect in respiratory growth in conjunction with copper
metabolism. Copper- and iron-dependent respiration defi-
ciency was determined by culturing cells on plates with addi-
tional supplementation of CuSO4 (10 �M final concentration)
or FeSO4 (20 �M final concentration). Fitness of the strains
under a fermentable growth condition was determined using
the media containing glucose. The deleted gene of each strain
was identified by PCR amplification of the region containing a
gene-specific barcode (25) followed by sequencing of the PCR
products.

Plasmids—KHA1 coding sequence obtained by PCR was
inserted into the HindIII and XhoI sites in the p416-TEF vector
(26) for TEF2 gene promoter-mediated constitutive expression
in yeast. For construction of a C-terminal fusion of an epitope
or fluorescent protein, a NotI restriction enzyme site was gen-
erated in the PCR primer before the stop codon. A DNA frag-
ment encoding triple hemagglutinin epitope (HA), enhanced
yellow fluorescent protein (YFP), or red fluorescent protein
(RFP) was inserted into the NotI site. The same approach was
employed to express YFP-fused Fet3p. For C-terminal c-myc
epitope tagging of Ccc2p (Ccc2-myc), a reverse PCR primer
included the c-myc sequence before the stop codon. FET3 fused
with the sequence containing c-myc epitopes (Fet3p-myc) was
integrated into its genomic locus by homologous recombina-
tion (27), which allowed expression of c-myc tagged FET3 by its
own promoter. Functional integrity of these proteins fused with
an epitope or fluorescent protein was assessed by functional
complementation assays using yeast strains possessing knock-
out of corresponding gene.

For �-galactosidase reporter assays, PCR-amplified KHA1
promoter (700 bp) was inserted into the EcoRI and PstI sites of
the pCM64-lacZ vector (28). pCM64-FET3-lacZ and pCM64-
CTR1-lacZ reporter plasmids (29, 30) determined FET3 and
CTR1 gene expression, respectively. A reporter plasmid con-
taining unfolded protein response elements (UPRE) was
described previously (31). p316GALlcc1 plasmid contains a
gene encoding laccase of Pycnoporus coccineus (32).

Fet3p and Glutathione S-Transferase (GST) Purification—
Methods for purification of Fet3p lacking its C-terminal trans-
membrane domain was prepared as described (33) as was
apoFet3p (34). GST was expressed in BY4741 yeast strain using
p415-GPD vector (26) and purified using glutathione (GSH)-
agarose (Thermo Scientific).

Oxidase Activity Assays of Fet3p—Fet3p oxidase activities
were measured by in-gel and spectrophotometric assays using
p-phenylenediamine dihydrochloride as a substrate (35, 36).
Cells expressing c-myc-tagged Fet3p under the control of its
own promoter were cultured to mid-log phase in YPD or SC
media with and without supplementation of iron chelator
bathophenanthroline disulfonate (BPS) (Sigma) (80 �M) and
copper chelator BCS (Sigma) (50 �M). BPS enhances expression
of Fet3p to easily detectable levels. BCS-induced copper limita-
tion allowed us assess of the roles of cellular factors in assem-
bling copper into apoFet3p. Cells were washed twice with
K�-free buffer and broken by vortexing (8 � 1 min) with glass
beads in Tris-HCl buffer (50 mM, pH 7.4) containing protease
inhibitor mixture (Roche Applied Science), phenylmethanesul-
fonyl fluoride (PMSF, 1 mM) (Sigma), and BCS (50 �M). BCS
was added to prevent copper loading to apoFet3p during cell
lysis. After removing unbroken cells and glass beads by centrif-
ugation at 300 � g for 3 min, membrane fractions were obtained
by centrifugation (21,000 � g, 15 min). The samples were resus-
pended in the same buffer containing Triton X-100 (1%, v/v) on
ice for 30 min with vortexing every 5 min and then cleared by
centrifugation (21,000 � g, 20 min). Protein concentration was
measured by the bicinchoninic acid (BCA) assay method using
a kit (Pierce). Samples obtained from a FET3 gene knock-out
yeast strain and copper-deficient cells producing apoFet3p
were used as negative controls.

pH Measurement of Subcellular Compartment—pH luorin, a
pH-sensitive fluorescent protein, was used to measure the pH
of the lumen of the TGN and cytosol (37, 38). Yeast strains
were transformed with p416Met25, p416Met25-pHluorin, and
p416Met25-pH-Gef1E230A plasmids (38), expressing empty
vector, a cytosolic pH-sensitive fluorescent protein, and a pH-
sensitive fluorescent protein fused with non-functional Gef1p
to target it to the lumen of the TGN, respectively. Validation of
pH sensitivity, subcellular localization, and detail protocols for
pH measurement using these proteins were published previ-
ously (37, 38). Cells at mid-log phase were collected by centrif-
ugation (1000 � g, 5 min) and resuspended in PBS (50 mM, pH
7.0). Fluorescent signals of the cells in response to two excita-
tions (407 nm, 488 nm) were measured using a fluorescence-
activated cell sorter (FACS) (Beckman). After background cor-
rection using empty vector transformed cells, the ratio of
fluorescent emissions at the indicated excitations were deter-
mined. The pH was calculated using a calibration curve of each
pH-sensitive protein using the methods described previously
(37, 38).

In Vitro Copper Binding to ApoFet3p—Membrane protein
extracts containing apoFet3p were obtained using a CCC2
deleted strain; CCC2 encodes a copper transporter that delivers
copper to the secretory pathway. CuSO4 preincubated with 1
mM ascorbate was added to the samples (30 �g of yeast mem-
brane protein in Tris-HCl buffer (50 mM, pH 7.4)) for 30 min on
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ice with gentle agitation every 5 min. Fet3p oxidase activities
were measured as described above. To determine the effects of
K� and/or Na� on copper binding to apoFet3p, samples were
resuspended in the buffer supplemented with K2SO4 or
Na2SO4. pH effects on copper metallation of apoFet3p were
measured using MES buffer (50 mM, pH 5.5 and 6.0) and phos-
phate buffer (50 mM, pH 6.0, 6.5, 7.0, and 7.5).

Western Blotting—After washing cells twice with Tris-HCl
buffer (50 mM Tris, pH 7.4) by centrifugation, total and mem-
brane protein extracts were prepared by breaking cells with
glass beads in the same buffer containing protease inhibitor
mixture (Complete Mini, Roche Applied Science), PMSF (1
mM), and Triton X-100 (1%, v/v). Protein concentrations were
measured using a BCA kit (Pierce). Cell lysates were denatured
in a SDS sample buffer containing dithiothreitol (DTT) (100
mM) at 60 °C for 15 min, separated by SDS-PAGE, and then
transferred to a nitrocellulose membrane. HA, c-myc, FLAG,
YFP, or RFP-fused proteins were detected by chemilumines-
cence using corresponding antibodies (Rockland, 600-401-384,
400-406, 381, 200-301-383, 600-401-215, 200-301-379, respec-
tively) and horseradish peroxidase-conjugated anti-rabbit IgG
(Santa Cruz, J2915) or anti-mouse IgG (Santa Cruz, H0415)
antibodies. Phosphoglycerate kinase 1 (Pgk1p) was probed
using anti-Pgk1p antibodies (Molecular Probes, 459250) to
determine equal loading.

Subcellular Fractionation—Cell lysates were loaded onto a
linear sucrose gradient prepared by subsequently layering 10,
20, 35, or 60% (v/v) sucrose to form a 9-l step gradient (39).
Samples were subjected to centrifugation using a Beckman
SW41 Ti Rotor (200,000 � g, 14 h). Fractions (500 �l each) were
collected from the top of the gradient.

Limited Trypsin Proteolysis—Purified holo-Fet3p, apoFet3p,
and GST in the Tris-HCl buffer (50 mM, pH 7.4) were co-incu-
bated with or without CuSO4 (10 �M, preincubated with 1 mM

ascorbate) and 50 mM K2SO4 on ice for 30 min. Proteolysis by
trypsin (1–5 �g/ml, Sigma) was conducted at 37 °C for 30 min.
The addition of soybean trypsin inhibitor (Fluka BioChemika,
0.2 �g/ml) for 15 min on ice stopped the reaction. Proteolysis
patterns were visualized by SDS-PAGE followed by silver
staining.

Prediction of K� Binding Sites in Fet3p—Putative K� ion
binding sites were identified in the crystal structure of Fet3p
(PDB code 1ZPU) using the ion-binding site prediction pro-
gram Vale (40). Default parameters for K�, derived from small
molecule crystal structures, were used for the ion radius (1.33
Å), a grid spacing of 0.1 Å and selecting sites with either 4 or 5
ligating atoms (the number typically observed in structures
with K� binding sites). The output from Vale is a list of putative
binding sites in Protein Data Bank format; this list was super-
imposed onto the input structure allowing for visualization of
the predicted binding sites. Structural models of K� binding to
Fet3p were generated using UCSF Chimera software (41).

Site-directed Mutagenesis—The FET3 coding sequence lack-
ing the transmembrane domain (amino acids 1–555) was
amplified by PCR using genomic DNA of BY4741 strain and
cloned into the p416-GPD vector (26) for TDH3 gene promot-
er-mediated constitutive expression of Fet3p(1–555) in a fet3�
strain. One FLAG epitope sequence was inserted before the

stop codon. The residues Glu-487, Asn-49, Asp-501, or Ser-
161/Glu-162 was substituted to alanine by the primer overlap
extension method (39). Total protein extracts were prepared by
breaking cells with glass beads in the Tris-HCl buffer (50 mM,
pH 7.4) containing protease inhibitor mixture (Roche Applied
Science), and phenylmethanesulfonyl fluoride (PMSF, 1 mM)
(Sigma). Secreted Fet3(1–555) species were collected by con-
centrating the culture media using spin columns (Amicon-Ul-
tra-15) followed by washing the columns using Tris-HCl buffer
(50 mM, pH 7.4).

Measurement of Metal Levels—The levels of major physio-
logical metals were measured by inductively coupled plasma
mass spectrometry (Agilent Model 7500cs, Santa Clara, CA)
(39). Data were normalized to cell number or protein
concentration.

Measurement of 86Rb�—86Rb� (PerkinElmer Life Sciences)
uptake into subcellular compartments was measured using the
method described previously (42). 86Rb� uptake was normal-
ized to cell number.

Determination of the Effects of K� on Cu� Solubilization—
The BCS-Cu� complex exhibits an absorbance at 490 nm (43).
To determine if K� can affect the binding of Cu� to BCS, K2SO4
(0 –200 mM) was added in Tris-HCl buffer (50 mM, pH 7.4)
along with CuSO4 (25 �M) and dihydroascorbic acid (0.1–1
mM). The reaction was initiated by adding BCS (0 –200 mM).
Samples were incubated at room temperature for 10 min and
the appearance of the Cu�-BCS complex was measured at 490
nm.

Quantitative PCR—WT and fet3� cells were co-cultured
with BPS (80 �M) in the SC media overnight. Cells were then
re-inoculated (A600 0.1) into the fresh media containing iron
chelator BPS (80 �M) for two consecutive 12-h cultures. This
iron limitation induced known iron deficiency-responsive
genes, such as FET3. Total RNA was subjected to cDNA syn-
thesis followed by quantitative PCR using primer sets that are
specific for KHA1 and PGK1.

�-Galactosidase Assays—�-Galactosidase activities were
measured as described previously (44). Enzyme activities were
converted to Miller units [(A420)/(reaction time, min) (assay
volume, ml) (A600 of cells in the culture)].

Laccase Assays—A yeast S. cerevisiae plasmid containing a
laccase gene of P. coccineus (32) was transformed into wild type,
kha1�, and vma1� strains. Laccase activities were measured as
described previously (32).

Superoxide Dismutase (SOD) Assay—Activities of yeast
Sod1p were determined by an in-gel assay measuring nitrite
formation from hydroxylamine in the presence of a superoxide
anion generation system (45).

Gel Filtration Chromatography of Fet3p—Purified apoFet3p
(500 �g) in the Tris-HCl buffer (50 mM, pH 7.4) was mixed with
K2SO4 (100 mM final concentration) and ascorbate (1 mM final
concentration) and incubated on ice for 30 min, which is the
same condition for in vitro copper reconstitution assays and
limited trypsin proteolysis of Fet3p. The samples were loaded
onto a Sephadex G-100 column (1.5 � 30 cm) and then eluted
(0.5 ml/min) with Tris-HCl buffer. Fractions (1 ml each) were
subjected to a protein assay and inductively coupled plasma
mass spectrometry for detecting Fet3p and K�, respectively.
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Statistical Analysis—Data are presented as the means � S.D.,
and statistical comparisons of control and experimental groups
were performed using Student’s t test. p � 0.05 was considered
to be significant.

Results

Kha1p Is a New Molecular Factor Involved in Respiratory
Growth and Iron and Copper Homeostasis in Yeast—A collec-
tion of S. cerevisiae strains carrying individual gene knockouts
(25) was screened by monitoring a growth defect on non-fer-
mentable carbon media (YPEG) supplemented with the copper
chelator, BCS (10 �M). In addition to identifying known genes
involved in copper and iron homeostasis, this approach also
identified the KHA1 gene, which encodes a predicted monova-
lent cation-H� exchanger (Fig. 1A). Although KHA1 does not
have any previously identified role in respiration or the metab-
olism of copper or iron, either copper or iron supplementation
in the growth media rescued respiration deficiency of kha1�
cells (Fig. 1A). The similar degree of growth between WT con-
trol and kha1� cells on media containing glucose indicated a
specific role for KHA1 in respiratory growth (Fig. 1A). KHA1
deletion leads to reduction in steady state cellular levels of iron
without a significant change of copper, zinc, or magnesium (Fig.
1B). Expression of FET3 was higher in kha1� cells relative to
WT cells (Fig. 1C), reflecting the cellular iron deficiency fol-
lowed by up-regulation of the iron uptake system. The similar
copper levels (Fig. 1B) coupled to no significant change in
expression of CTR1 (Fig. 1C), which encodes the major high
affinity copper importer (5), suggested that copper uptake into
kha1� cells was at wild type levels. Nevertheless, overexpres-
sion of KHA1 partially rescued the growth defect of a strain
lacking CTR1 but not one lacking the FTR1 iron importer (Fig.
1D). These results collectively suggest that Kha1p is involved in
acquisition of iron and the utilization of copper in support of
respiratory growth.

K� Accumulation in the Secretory Pathway via Kha1p—
KHA1 encodes a predicted monovalent cation (K� and/or Na�)
and H� exchanger (46). Although this family of proteins has
been identified from many organisms ranging from bacteria to
humans (13, 15–16, 46), the physiological role of Kha1p has not
been defined. Previous studies suggested that Kha1p might
serve as a K� efflux transporter (47), which localized to the
Golgi (48, 49) or mitochondria (50). Cells expressing Kha1p
fused with RFP (Kha1p-RFP) display fluorescence associated
with vesicle-like compartments (Fig. 1E). We examined
whether Kha1p co-localized with Fet3p and Ccc2p, two known
molecular factors involved in copper metabolism. The majority
of Fet3p fused with YFP (Fet3p-YFP) is detected at the cell
surface in WT cells; however, Fet3p accumulates in the secre-
tory pathway in cells lacking Ftr1p due the lack of Fet3p-Ftr1p
complex formation (51). A significant overlap in subcellular
distribution between Fet3p-YFP and Kha1p-RFP was observed
in ftr1� cells (Fig. 1E). Localization of Kha1p-RFP in the secre-
tory pathway was further confirmed by subcellular fraction-
ation followed by Western blotting of Kha1p and Ccc2p fused
with RFP and c-myc epitope, respectively (Fig. 1F). Kha1-RFP,
Fet3-YFP, and Ccc2p-Myc are fully functional as determined by

complementation of phenotypes of cells carrying deletions of
the corresponding genes (data not shown).

KHA1 deletion decreased cellular K� levels; in contrast, Na�

levels were not affected (Fig. 1G). Uptake into subcellular mem-
brane-bound compartments of 86Rb� as a tracer for K� (42)
was significantly reduced in kha1� cells relative to control WT
cells (Fig. 1G). In addition, K� but not Na� rescued the respi-
ratory deficiency of kha1� cells (Fig. 1H). These results collec-
tively suggest that Kha1p plays a role in K� accumulation in the
secretory pathway. S. cerevisiae expresses other intracellular
monovalent cation transporters, including Vnx1p and Nhx1p
in the vacuole and late endosome, respectively (16); however,

FIGURE 1. Kha1p is a new molecular factor involved in respiratory growth
and homeostasis of copper, iron, and potassium. A, growth of WT control
and kha1� strains on non-fermentable YPEG media (EtOH/Gly) containing
ethanol and glycerol as carbon sources and fermentable media (Glu) contain-
ing glucose with and without CuSO4 or FeSO4 supplementation at the indi-
cated concentration. B, cellular metal levels were measured, normalized to
cell number, and presented as % of those in WT cells. C, WT and kha1� cells
expressing iron or copper-responsive reporter (FET3-lacZ and CTR1-lacZ,
respectively) were subjected to �-galactosidase assays. D, growth of ctr1�
and ftr1� cells with and without KHA1 overexpression was monitored on
EtOH/Gly media supplemented with CuSO4 or FeSO4. E, RFP-fused Kha1p
(Kha1-RFP) and YFP-fused Fet3p (Fet3-YFP) were expressed in ftr1� cells to
visualize Kha1p and Fet3p. F, subcellular fractionation of cells expressing
Kha1-RFP and c-myc epitope tagged Ccc2p. Samples were subjected to West-
ern blotting. G, cellular K� and Na� were measured using inductively coupled
plasma mass spectrometry. Cells were permeabilized with saponin and incu-
bated with 86Rb for 10 min. Endomembrane compartmentalized 86Rb was
measured using a �-counter. Metal levels were normalized to cell number. H,
cell growth was monitored on the YPEG media supplemented with K2SO4 or
Na2SO4. I, growth of yeast strains on YPEG and fermentable YPD media. All
growth assays were conducted at least twice with two different clones. Aver-
age � S.D. (n � 6) is presented. One (*) and two (**) asterisks indicate p � 0.05
and p � 0.01, respectively.
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deletion of VNX1 and NHX1 did not impair respiratory growth
(Fig. 1I).

pH of the Secretory Pathway and Fet3p Secretion Are Not
Affected by KHA1 Gene Deletion—Given that Kha1p is a pre-
dicted K�-H� exchanger, Kha1p deficiency might lead to
changes in the physicochemical characteristics of the secretory
pathway (e.g. pH, vesicle trafficking, and fusion). This could
affect copper metabolism, Fet3p maturation, and/or cell sur-
face expression of the Fet3p-Ftr1p iron uptake complex. To
assess these possibilities, we examined the pH of the secretory
pathway and cytosol using a pH-sensitive green fluorescent
protein (GFP) as reporter (37) (Fig. 2A). In-frame fusion of this
GFP to a non-functional Gef1p chloride channel delivered this
reporter to the lumen of the TGN (38). Calibration curves for
determining pH (Fig. 2B) were obtained as previously described
(37, 38). The pH of the cytosol and TGN of the cells were found
to be 7.00 � 0.82 and 6.22 � 0.67, respectively (Fig. 2C), both
within the normal range (52). No pH difference between WT
and kha1� cells was observed, suggesting that Kha1p is not a
major factor in maintenance of the pH in the secretory com-
partments. In addition, there was no significant change in sub-
cellular distribution of Fet3p in kha1� cells (Fig. 2D), suggest-
ing that secretion of Fet3p was not altered. This data were
supported also by subcellular fractionation of Fet3p (data not
shown).

We next examined whether in kha1� cells the secretory
pathway exhibited stress characteristics. Protein folding or
maturation defects lead to protein retention and a subsequent
unfolded protein response (UPR) (53). Fet3p in ftr1� cells is a
target of this quality control system (51). Deletion of subunit A
of vacuolar H�-ATPase (vma1�) for instance induces UPR
(54), which was confirmed by UPR reporter assays (Fig. 2E).
The kha1� cells did not manifest UPR, however (Fig. 2E). These
results indicate that kha1� cells do not display any defect in the

basic function and physiochemical characteristics of the secre-
tory pathway.

Kha1p Is Required for Expression of Active Fet3p—In line with
iron deficiency (Fig. 1B) and the up-regulation of FET3 expres-
sion (Fig. 1C), Fet3p levels in kha1� cells were �2-fold higher
than that in WT cells (Fig. 3A, middle panel, third lane). How-
ever, Fet3p oxidase activities were 	20% that of the activity
expressed by WT (Fig. 3A, upper panel, third lane). This indi-
cated that most of the Fet3p in kha1� cells is nonfunctional.
However, kha1� cells had normal activities of the cytosolic,
copper-requiring enzyme, Sod1p (Fig. 3B). Surplus K� (100 mM

K2SO4) or copper (25 �M CuCl2) in the growth media resulted
in dramatic recovery of Fet3p activity and returned expression
levels to normal (Fig. 3, C, second lane, and D, fourth lane),
suggesting the hypothesis that K� deficiency in kha1� cells
leads to inefficient copper incorporation into apoFet3p.

Although �10 proteins in mammals acquire copper in the
secretory pathway, Fet3p is the only known secreted cupropro-
tein in the S. cerevisiae. We thought to determine the specificity
of K� by expressing secretory cuproproteins of humans in
kha1� yeast. However, neither active human superoxide dis-
mutase 3 (hSOD3) nor ceruloplasmin was expressed in WT

FIGURE 2. No significant change in the functions of the secretory pathway
in Kha1p-dificient cells. A–C, measurement of pH of the Golgi vesicles and
cytosol. Cells were transformed with a plasmid expressing a pH-sensitive flu-
orescent protein at the cytosol or at the lumen of the TGN. A, visualization of
subcellular distribution of the pH sensors by fluorescent microscopy. B, a cal-
ibration curve reflecting the ratio of emission intensity at the indicated pH.
Data represent the average of cells in A600 � 1. C, pH at the cytosolic or lumen
of the TGN was determined by using the calibration curve. D, no difference in
subcellular distribution of Fet3p fused with YFP (Fet3-YFP) in WT control and
kha1� cells. E, KHA1 gene knock-out did not lead to unfolded protein
response. WT, kha1�, and vma1� cells were transformed with a reporter plas-
mid of unfolded protein response. Cells cultured in SC media were subjected
to �-galactosidase assays. Data represent the average � S.D. (n � 4). The
asterisk (*) indicates p � 0.05 compared with WT control cells.

FIGURE 3. Reduced Fet3p activity in kha1� cells and its recovery by sur-
plus copper or K� in the growth media. A, C, and D, chromosomal FET3 in
WT control and kha1� cells was fused with c-myc epitope. Whole cell extracts
were subjected to Fet3p oxidase assays and Western blotting using anti-myc
antibodies. The numbers indicate relative oxidase activities (n � 4). The
experiments were conducted without and with supplementation of K2SO4
(100 mM) (C) or CuSO4 (25 �M) (D) in the media for 30 min before collecting
cells. B, KHA1 knock-out does not affect Sod1p activities. WT and kha1�
strains were cultured at mid-log phase in YPD media with and without sup-
plementation of copper chelator, BCS. Total cell lysates were subjected to
in-gel Sod1p activity assays. E, enzymatic activities of a laccase of P. coccineus
in the yeast S. cerevisiae. Representative figures of at least four colonies are
presented. The white hollow around the growing cells reflects laccase activities.
The data represent the average � S.D. (n � 4). One (*) and two (**) asterisks
indicate p � 0.05 and p � 0.01, respectively, compared with WT cells express-
ing empty vector or without K� and copper co-culture.
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cells (data not shown). On the other hand, a gene encoding
P. coccineus laccase was expressed in WT and kha1� cells. Cop-
per supplementation to the growth media was necessary for
visualization of laccase activities as has been reported (32). The
color change around the cells growing on substrate-containing
solid media reflected this activity (Fig. 3E). The similar size of
the activity zone associated with WT cells in comparison to
kha1� ones indicated that KHA1 gene deletion did not affect
laccase maturation. As expected a strain lacking VMA1, which
encodes a subunit of the V-type ATPase that plays a critical role
secretory pathway pH regulation, manifested a defect in laccase
maturation (Fig. 3E). These results suggest that Kha1p and K�

play specific roles in the maturation of Fet3p.
K� Promotes Binding of Copper to ApoFet3p—We hypothe-

sized that K� transported into the lumen of the secretory path-
way may facilitate insertion of copper ions into apoFet3p. The
catalytic domain of Fet3p was expressed in S. cerevisiae and
purified (33). ApoFet3p was obtained by extracting copper ions
from the purified Fet3p (34) to the level below one copper per
Fet3p. Given that Fet3p contains four copper atoms (24), the
apoFet3p samples displayed negligible oxidase activity (Fig. 4A,
first lane). Co-incubation of purified apoFet3 with CuSO4 (5
�M, reduced to Cu� by ascorbate) followed by oxidase assays
showed that K� is not essential for copper insertion into Fet3p
under this experimental condition (Fig. 4A, second lane). K�

concentration in the cytosol is 	150 mM. Given the fact that
Kha1p serves to support a K� compartmentalization, we sur-
mise that the K� concentration in the TGN should be similar or
higher than it is in the cytoplasm. Although K� up to 200 mM

did not affect holo-Fet3p activity (Fig. 4D), K� significantly
enhanced the copper-dependent apoFet3p activation (Fig. 4A,
fourth lane). Measurement of copper in Fet3p displayed an
anticipated correlation between copper incorporation and oxi-
dase activities of Fet3p (Fig. 4B). In contrast to the effect of K�,
Na� did not stimulate the copper-dependent Fet3p activation
(Fig. 4C). The K� effect was independent of pH (data not
shown).

We thought that Fet3p might require K� for its activity sim-
ilar to other K�-containing enzymes (14). However, the crystal
structure of Fet3p gives no evidence of stably bound K� (55).
Also, no significant level of K� could be detected in purified
holo-Fet3p by inductively coupled plasma mass spectrometry
(data not shown). Similarly, gel filtration of mixtures of Fet3p
and K� as in Fig. 4A could not detect K� in the fractions con-
taining Fet3p (data not shown). These results collectively indi-
cate that K� does not stably bind to Fet3p nor serve as a cofac-
tor for Fet3p activity.

We hypothesized that K� might affect the conformation of
apoFet3p in a manner that promoted copper binding. To
address this, purified apoFet3p was subjected to partial trypsin

FIGURE 4. K� promotes binding of copper cofactors to apoFet3p. A, purified apo- and holo-Fet3p (5 �g) was incubated with or without K2SO4 (100 mM) and
CuSO4 (5 �M). Fet3p oxidase activities were measured using an in-gel assay method. B, purified apo- and holo-Fet3p (120 �g) was processed as described in A,
and loosely bound or unbound copper was removed by dialysis. Total copper content of Fet3p was measured. Single (*) and double (**) asterisks indicate p �
0.05 and p � 0.01, respectively, relative to the control condition (no CuSO4 and K2SO4). C, purified apoFet3p (5 �g) and CuSO4 (5 �M) were incubated with
Na2SO4 at the indicated concentrations. Fet3p oxidase activities were measured. D, purified holo-Fet3p (5 �g) was incubated with and without K2SO4 at the
indicated concentrations and CuSO4 (5 �M). Fet3p oxidase activities were measured. E, apoFet3p co-incubated with K2SO4 (100 mM) and CuSO4 (5 �M) was
subjected to limited trypsin proteolysis. Samples were separated by SDS-PAGE and visualized by silver staining. Data represent the average � S.D. and/or
representative figure of at least three independent experiments.
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proteolysis after incubating with and without K� and/or cop-
per. SDS-PAGE of the samples followed by silver staining
showed different Fet3p fragmentation patterns when the pro-
tein was co-incubated with K� (Fig. 4E, third lane). However,
copper without K� did not appear to have a significant effect
(Fig. 4E, fourth lane). The fragmentation patterns in the pres-
ence of both K� and copper (Fig. 4E, fifth lane) likely reflect
maturation of a portion of apoFet3 to the holo-form as shown
by activity assay (Fig. 4A). The same experiments conducted for
GST (data not shown) indicated that the K� effects observed in
Fet3p are specific, and K� does not change trypsin activities.
Therefore, although K� is neither stably associated with Fet3p
nor required for holo-Fet3p activities, K� appears to promote
incorporation of copper into apoFet3p by functioning as
a structural modifier through a transient and/or weak
interaction(s).

Site-directed Substitution of Specific Residues in Fet3p Abro-
gates the K� Effect—Although our data did not support stable
binding of K� to Fet3p, we predicted potential K� sites in Fet3p
(40) and modeled K� binding based on the Fet3p structure
(PDB code 1ZPU) (41) (Fig. 5).

Site-directed substitution of residues Glu-487, Asn-49,
Asp-501, and Ser-161/Glu-162 of each potential K� site
revealed that substitution of Glu-487 or Asn-49 with alanine
(Ala) abolished the K� effect on Fet3p maturation (Fig. 6).
Expression levels of Fet3p possessing the mutation(s) were
comparable with those of wild type control; however, all except
Fet3p(D501A) showed significantly lower oxidase activities
(Fig. 6A). In vitro maturation assays using secreted Fet3p
showed further activation of wild-type Fet3p in a copper- and
K�-dependent manner, indicating that a significant portion of

Fet3p is in the apo-form (Fig. 6B, top panel). Copper activated
Fet3p(E487A) and Fet3p(N49A) (Fig. 6, B, second and third
panels, C, and D); however, K� did not promote copper-in-
duced activation of these Fet3p mutants (Fig. 6, B, second and
third panels, and D). This suggests that Glu-487 and Asn-49 are
important residues for K�-dependent Fet3p maturation. Glu-
487 is the outer sphere to the trinuclear copper cluster (Fig. 5, A
and B) and donates a proton during OOO bond cleavage in the
enzyme’s reduction of dioxygen to water (24). Asn-49 is at the
surface (Fig. 5A). Fet3p(D501A) showed a similar pattern to
that of WT (Fig. 6, A–C). Fet3p(S161A/E162A) displayed near
non-detectable activity under all experimental conditions
(Fig. 6, A–C), indicating inactivation by the mutations.
These two residues are involved in an extensive hydrogen
bond network (Fig. 5D). The substitutions may disrupt the
local structure. Collectively, these results suggest that spe-
cific residues of Fet3p mediate the K� effects on facilitating
copper binding to Fet3p.

Iron Deficiency Up-regulates KHA1 Expression—Given the
role of Kha1p in maturation of Fet3p, iron deficiency might
induce KHA1 expression to promote Fet3p maturation fol-
lowed by iron uptake. Aft1p and Aft2p are major transcription
factors involved in expression control of genes involved in iron
acquisition, including FET3 (29, 56). Indeed, KHA1 mRNA lev-
els are higher in cells co-cultured with an iron chelator (Fig.
7A). Its promoter region (within 
700 bp) contains three pre-
dicted Aft1/2p response elements (Fig. 7B) similar to those
found in the promoters of other iron-regulated genes (29). Con-
struction of �-galactosidase reporters with and without site-
directed mutation of AC(
158 and 
157) to TG (Fig. 7C) fol-
lowed by reporter assays showed up-regulation of KHA1 in iron

FIGURE 5. Prediction of K� binding sites in Fet3p. Fet3p (PDB code 1ZPU) residues predicted to be involved in K� binding are shown in ball and stick
representation. Carbon atoms are colored in pink, nitrogen atoms are in dark blue, and oxygen atoms are in red. Bound copper atoms are represented as light
blue spheres. The figures were generated using UCSF Chimera software. A, four predicted K� sites, containing Glu-487, Asn-49, Asp-501, and Ser-161/Glu-662,
are indicated in the catalytic domain of Fet3p. The K� coordination sites containing Glu-487 (B), Asn-49 (C), or Ser-161/Glu-662 (D) are enlarged. The solid gray
lines (D) indicate hydrogen bond networks.

Potassium-promoted Binding of Copper to ApoFet3p

9802 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 18 • APRIL 29, 2016



deficiency induced by growth in the presence of an iron chela-
tor or deletion of either KHA1 or FET3 (Fig. 7D). This iron-de-
pendent induction of KHA1 was dependent on Aft1p and the
Aft1/2p response elements (Fig. 7D). KHA1 gene induction is
severely compromised (	15% of WT cells) in the absence of
Aft2p (Fig. 7D). These results are consistent with the conclu-
sion that KHA1 is a target of Aft1/2p and support the hypoth-

esis that Kha1p-mediated K� compartmentalization is a com-
ponent of iron homeostasis in yeast.

Discussion

Identification of a K�/H� exchanger as a molecular factor
involved in respiratory growth of yeast and characterization of
its function and regulation provides new insights into the

FIGURE 6. Specific residues in Fet3p are responsible for K� effects on biogenesis of functional Fet3p. The catalytic domain of Fet3p tagged with a flag
epitope was constitutively expressed in fet3� yeast cells. Glu-487, Asn-49, Asp-501, or Ser-161/Glu-162 were substituted to alanine (Ala). A, total cell lysates
(Cell) and secreted Fet3p (Media) were subjected to in-gel Fet3p oxidase assays and Western blotting using anti-FLAG antibodies. Blots were stained to
determine equal loading. Signal intensities reflecting Fet3p oxidase activities were normalized to Fet3p expression levels and then presented as relative levels
of WT control. B, equal amounts of culture media containing secreted Fet3p were incubated with CuSO4 (1.5 �M) and/or K2SO4 (50 mM) to induce Fet3p
maturation in vitro. C, equal amounts of collected culture media were incubated with CuSO4 to induce holo-Fet3p formation in vitro. Fet3p oxidase activities
were normalized to Fet3p protein levels and then presented as relative activities of those without copper addition. The numbers underneath the figures (average
of four experiments) indicate the relative levels of Fet3p oxidase activities (A–C). The asterisks (*) indicate p � 0.05 relative to the result of WT (A) or control (no
copper and/or K�) (B and C). Pound symbol (#) indicate p � 0.05 relative to samples co-incubated with 1.5 �M CuSO4 (B) or samples containing copper without
K� (C) (second lane of each panel). D, oxidase activities of the catalytic domain of WT control and E487A Fet3p in cell lysates were measured using a spectro-
photometry method. Background activities for p-phenylenediamine oxidation in cells expressing an empty vector were subtracted. The average � S.D. (n � 4)
is presented. Asterisks (*), pounds symbols (#), and NS indicate p � 0.05, p � 0.01, and no significant difference, respectively.
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mechanisms underlying iron acquisition. K�-promoted activa-
tion of the Fet3p ferroxidase by copper illustrates a previously
unrecognized role of K� and its organellar transporter in the
maturation of this enzyme, which is essential to high affinity
iron uptake in yeast.

Alkali cations and metal ions affect protein function and sta-
bility through site-specific binding (14, 34). However, our ele-
mental analysis of purified holo-Fet3p did not detect stably
bound K�, which is consistent with a previous report on crystal
structure of Fet3p (55). K� did not affect the oxidase activities
of holo-Fet3p either. Nevertheless, apoFet3p manifests confor-
mational differences in the presence of K� as determined by
limited trypsin proteolysis, and specific residues in Fet3p medi-
ate the effect of K� on copper activation of apoFet3p. In this
regard, the roles of cellular cations in the folding and dynamics
of nucleic acids is likely relevant (17–19). Because DNA and
RNA are negatively charged polyelectrolytes, cations function
as counter ions to reduce the electrostatic repulsion that might
interfere with their folding. The possibility of the similar effects
of ions on proteins has not yet been ascertained. Fet3p pos-
sesses Glu and Asp residues 8.0% and 5.5%, respectively; thus,
Fet3p is not particularly abundant in negatively charged resi-
dues. However, the copper sites in Fet3p are found among clus-
ters with negative charged residues, including Asp-94, Glu-185,
Asp-409, Asp-458, and Glu-487, along with copper binding His
residues (24). K� may preset the copper sites for copper binding
via electrostatic interactions. Determination of K�-induced
conformational dynamics of Fet3p would shed new light on
K�-protein interactions and the roles for the identified residues
in maturation and activities of Fet3p.

Our study reveals a novel role of subcellular K� compart-
mentalization in Fet3p maturation; this mechanism adds to the
previously reported correlation between the proton (H�) gra-
dient in the secretory pathway and iron uptake in yeast. Thus,
the V-type ATPase and 2Cl
/1H� antiporters (Gef1p in yeast,
and CLC4 in mammals) are required for pH control of the

secretory pathway and iron uptake as well (38, 57– 60). The
acidic pH and H� gradient of the secretory compartment(s) is
critical for supporting the functions of this organelle (54, 61).
The positive electrical potential across the membrane, which is
generated by H� accumulation due to V-type ATPase function,
could be neutralized by Cl
 transported by a 2Cl
/1H�

exchanger. The significance of organellar acidification and HCl
formation has been linked to diverse cellular processes, includ-
ing iron homeostasis, vesicular trafficking, protein degradation,
and bone resorption (61– 63). This H� gradient is required for
Kha1p-mediated K� transport into the lumen of the TGN via
the K�/H� exchange mechanism. Therefore, perturbation of
iron metabolism in cells lacking V-type ATPase or Gef1p chlo-
ride channel could be attributed, at least partially, to the failure
of K� transport into the TGN.

In addition to Kha1p, yeast expresses two other organellar
transporters of monovalent cations (K� and/or Na�). Nhx1p
plays a role in the regulation of cellular pH, vesicle trafficking,
and vacuole fusion (46). Vnx1p also is involved in the regulation
of cellular pH (16). Despite the similar modes of action and
functions of these transporters, our results indicate that Kha1p
does not affect secretory pathway pH, nor the pH of the cytosol.
However, Kha1p function relies on a proton gradient across the
secretory compartment membrane. The specific role for
Kha1p-mediated compartmentalization of K� in iron homeo-
stasis is further supported by the regulation of KHA1 expres-
sion via iron-specific transcription regulators. Thus, Kha1p
could be a unique member of this protein family that might be
conserved in other organisms. Identification and characteriza-
tion of the counterpart(s) of Kha1p in humans, animals, and
plants is ongoing in the hope of gaining a better understanding
of iron, copper, and K� homeostasis and their functional inter-
action(s) in higher eukaryotes.

Our data provide no evidence in support of the hypothesis
that K� promotes the binding of copper to other copper-con-
taining enzymes. It is worth emphasizing that iron deficiency
induces KHA1 expression via iron-responsive transcription
regulators. The system for K� compartmentalization to the
secretory pathway, therefore, could be evolved specifically for
efficient acquisition of iron. No significant growth defect of
kha1� cells under conditions of surplus media iron also sup-
ports this argument. Nevertheless, further experiments could
reveal possible K� effects on the maturation of proteins in other
organisms.
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FIGURE 7. Iron deficiency up-regulated KHA1 expression. A, WT control
cells cultured with (�) and without (
) iron (Fe) chelator BPS in the SC media
were subjected to quantitation of KHA1 mRNA. B, three predicted Aft1p and
Aft2p response elements at the promoter (within 
700 bp). GGGTG core
sequences are indicated along with one 5� and two 3� nucleotides. C, sche-
matic presentation of lacZ reporter of KHA1 with site-directed mutations of
AC (
158 and 
157) to TG. D, The indicated strains expressing KHA1-lacZ
reporter were cultured with or without BPS iron chelator and subjected to
�-galactosidase assays. The average � S.D. (n � 4) is presented. Single (*) and
double (**) asterisks indicate p � 0.05 and p � 0.01, respectively, relative to
the results of the same strain cultured in control media (no iron chelator). The
pound symbol (#) indicates p � 0.05 relative to WT strain cultured in the same
media.
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