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Abstract

Objective—Patients with hospital-acquired acute kidney injury (AKI) are at risk for increased 

mortality and further medical complications. Evaluating these patients with a prediction tool easily 

implemented within an electronic health record (EHR) would identify high risk patients prior to 

the development of AKI, and could prevent iatrogenically induced episodes of AKI and improve 

clinical management.

Methods—We used structured clinical data acquired from an EHR to identify patients with 

normal kidney function for admissions from August 1st, 1999 to July 31st, 2003. Using 

administrative, computerized provider order entry, and laboratory test data, we developed a 3-level 

risk stratification model to predict each of two severity levels of in-hospital AKI as defined by 

RIFLE criteria. The severity levels were defined as 150% or 200% of baseline serum creatinine. 

Model discrimination and calibration was evaluated using 10-fold cross-validation.

Results—Cross-validation of the models resulted in area under the receiver operating 

characteristic (AUC) curves of 0.75 (150% elevation) and 0.78 (200% elevation). Both models 

were adequately calibrated as measured by the Hosmer-Lemeshow goodness-of-fit test chi-squared 

values of 9.7 (p = 0.29) and 12.7 (p = 0.12), respectively.

Conclusions—We generated risk prediction models for hospital-acquired AKI using only 

commonly available electronic data. The models identify patients at high risk for AKI who might 

benefit from early intervention or increased monitoring.
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Background

Acute kidney injury (AKI), an acute sustained rise in serum creatinine, affects 1–5% of all 

hospitalized patients and 5–20% of patients requiring ICU care.1–3 The incidence of this 

condition has increased among the Medicare population over the last few decades in parallel 

with the rising epidemic of chronic kidney disease, diabetes, and hypertension.1, 4–7 The 

occurrence of AKI is associated with subsequent in-hospital mortality rates which range 

from 15% among general ward patients with isolated AKI to greater than 50% among 

patients in the ICU requiring dialysis. AKI episodes are commonly divided into community-

acquired and hospital-acquired sub-categories, each with approximately equal incidence but 

significant differences in etiology and prognosis.8, 9 Hospital-acquired AKI is potentially 

preventable when related to therapies such as administration of intravenous contrast dye or 

nephrotoxic medications.

In the last three decades, statistical models to predict adverse outcomes have been widely 

used to improve the quality of care,10, 11 provide institutional and physician quality 

scorecards,12, 13 risk stratify patients10, evaluate futility of care,14–16 and to provide 

individual patient prognostications. The majority of existing risk prediction models for AKI 

have focused on adverse outcomes that follow development of AKI.17 Two risk models have 

been developed to predict AKI following specific coronary arterial bypass grafting surgery 

and percutaneous coronary interventions using clinical registry data.18–21 Yet no models 

exist which predict future, in-hospital AKI in a general population of recently admitted 

patients.

Automated clinical decision support, such as clinical reminders for individual patient 

encounters and dashboards for population surveillance, has proven to be useful for well-

defined or relatively simple tasks. However, these tools are only as good as the underlying 

encoded medical knowledge supporting their use. Frequently, such knowledge requires 

information beyond that commonly collected in electronic health records (EHRs), which 

prevents or limits their use in such an environment. This problem is particularly prevalent for 

risk prediction tools, which in many cases are designed to be used at the bedside or using 

data that must be manually collected by health care providers.

We sought to develop risk models to predict the development of AKI among general patient 

hospitalizations in order to support future applications for bedside and population AKI 

surveillance. In order to enhance generalizability of the models, we restricted the available 

medical information to structured data obtained from basic EHR components (administrative 

data, computerized physician order entry, and laboratory tests).

Methods

Study Setting and Design

A retrospective cohort of 61,179 patients was collected by including all adult admissions to a 

tertiary care, academic hospital (Vanderbilt University Medical Center – VUMC) from 

August 1st, 1999 to July 31st, 2003 with a length of stay of at least two days. During the 

study period, all providers were required to prescribe medications through the inpatient 
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computerized physician order entry system. All laboratory tests were processed and 

recorded in a central laboratory and posted electronically. This study was approved by the 

institutional review board of VUMC.

Data Collection

Medication orders were collected from the log files of an inpatient computerized physician 

order entry system. An automated software scheduler generated the expected timing of dose 

administrations based on the frequency, priority, medication start date and time, and actual 

stop time (either scheduled stop or discontinuation related to hospital discharge or patient 

death). We validated the performance of the scheduler by manually reviewing 

administrations recorded in the paper-based Medication Administration Record and 

published these results separately.22 This study revealed no medications that were 

administered without being ordered, but there was a dose omission rate of 12.6% compared 

to the automated scheduler. On further analysis, 59% of those omissions were due to 

explainable issues such as the patient being off the floor, the drug not being available, or 

patient refusal.

Laboratory results were also obtained for each hospitalization. We included results recorded 

up to 24 hours before hospital admission and 24 hours following discharge to capture events 

which occurred during emergency care and immediate outpatient follow-up respectively. 

Laboratory results with attached comments indicating hemolysis, invalid laboratory 

procedures, or an inadequate sample were excluded.

Discharge diagnoses and codes were collected for each hospitalization from the 

administrative database. The diagnosis-related group adjusted length of stay for patients was 

calculated using the mean length of stay data by diagnosis-related group from Medicare 

published for the year in which the patient was admitted. Specific dates and times were 

converted to relative hours after hospital admission.

Cohort Exclusion Criteria

Using records from administrative and laboratory databases, we selected an analysis cohort 

of patients in an effort to exclude those who a) were missing data necessary for outcome 

determination, b) had evidence of moderate or severe chronic kidney dysfunction or c) were 

experiencing acute kidney injury at the time of hospital admission. Patients were excluded 

from the initial cohort if no serum creatinine measurements were available within the 48 

hours surrounding the time of admission or if there were no further serum creatinine 

measurements after 24 hours of hospitalization. Measurement of creatinine within the 48 

hour time window surrounding admission established an “admission baseline” that was used 

to calculate an estimated glomerular filtration rate (eGFR) using the 4-component 

Modification of Diet in Renal Disease equation.23 Patients were excluded with baseline 

eGFR’s less than 60 mL/min/1.73 m2. A summary of patient hospitalization exclusions are 

shown in Figure 1. The final analysis cohort consisted of 26,107 patient admissions. There 

were a total of 21,074 patients in this cohort, and 17,870 only had one admission.
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Study Definition of Acute Kidney Injury

The admission creatinine was calculated by averaging all creatinine values within the 48 

hours surrounding the time of admission. In some cases, the database includes creatinine 

values from Emergency Department care or from an outpatient clinic visit just prior to 

admission, and these values are also included in the admission average. Outpatient serum 

creatinine measurements performed outside the study institution or earlier than the time 

window surrounding baseline were not available for inclusion in the study.

The outcome of AKI was based upon the Risk and Injury categories of the Risk, Injury, 

Failure, Loss, and End-stage Kidney (RIFLE) classification criteria.24 AKI Risk was defined 

as at least two creatinine measurements greater than or equal to 150% of the baseline 

creatinine value. AKI Injury was defined as at least two creatinine measurements greater 

than or equal to 200% of the baseline creatinine value. All creatinine measurements 

subsequent to the first 24 hours of inpatient stay and up to 30 days of hospitalization were 

evaluated to determine if hospital-acquired AKI developed.

Acute Kidney Injury Risk Factors

A list of the primary risk factors for AKI was compiled after a literature review by the 

research team, which included a nephrologist (A. I.). To be eligible for inclusion in the risk 

prediction model, the variable had to be readily accessible via the EHR, be recorded prior to 

the onset of AKI, and be clinical plausible as an associated factor. Some data were excluded, 

such as International Classification of Diseases 9th revision codes (ICD-9), because they are 

recorded without time/date stamps, and the related event or condition could occur after the 

outcome. Variables available in the dataset and considered for inclusion were patient 

demographics, medication orders, and laboratory tests with date/time stamps prior to the 

outcome (Table 1). Medication orders were aggregated into therapeutic class and categorized 

as present or absent. Laboratory values were included to represent the potential presence of a 

comorbidity that is correlated with in-hospital AKI. For all laboratory data risk factors 

except the baseline creatinine, the mean values or the peak values were calculated using all 

data available prior to the development of the outcome. Clinical guidelines and research 

publications were used to select the laboratory test thresholds. Some laboratory test values 

were included because they are diagnostic for specific disease processes which cause AKI. 

Myocardial infarction was classified as either a peak muscle and brain creatine kinase (CK-

MB) value of three times the upper limit of normal or a peak Troponin-I (or Troponin-T) 

value at least two times the upper limit of normal.25, 26 Rhabdomyolysis was classified as a 

peak creatine phoshokinase (CK) value of at least five times the upper limit of normal in the 

absence of a diagnosis of myocardial infarction.27 Acute hepatitis was classified as a peak 

alanine aminotransferase (ALT) or aspartate aminotransferase (AST) value of greater than 

400 IU/L. Acute pancreatitis was classified as a peak lipase value of at least three times the 

upper limit of normal.28 Chronic liver disease was classified as either a mean ammonia level 

of greater than 40 mcg/dL or a mean AST/ALT ratio greater than 1.5. Elevated mean serum 

glucose was chosen to represent diabetes mellitus or insulin resistance and is associated with 

infectious risk which may precipitate AKI.
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Other laboratory values were included as being potentially predictive of AKI because 

abnormal values are associated with conditions which cause AKI. A mean AST/ALT ratio of 

greater than 1.5 is associated with liver disease. An elevated peak white blood cell count 

(WBC) or antibiotic orders are associated with bacterial infection. An elevated albumin-

corrected calcium value is associated with bone breakdown from malignancies or multiple 

myeloma. Advanced thrombocytopenia is associated with a number of causes of acute 

kidney injury, including disseminated intravascular coagulation, hemolytic-uremic 

syndrome, and heparin-induced thrombocytopenia, and was defined as less than 75% of the 

lower limit of normal for platelets. Direct administration records of contrast dye 

administration were unavailable, so orders for computed tomography scans with intravenous 

contrast were used as a surrogate for this exposure. Missing values among laboratory tests 

were captured as a separate category in each case, since information may be contained in the 

choice to not perform a particular test.

Statistical Analysis

Significance testing for the hospitalization characteristics was performed using Fisher’s 

exact test for binary variables and likelihood chi square testing for categorical variables. Two 

logistic regression models were developed for RIFLE AKI Risk and Injury outcomes. 

Performance for each of the models was evaluated with the area under the receiver operating 

characteristic curve (AUC) and the Hosmer-Lemeshow goodness-of-fit (HL-GOF) test.29, 30 

To estimate the model performance uncertainty and potential overfitting we used a 10 fold 

cross-validation with 95% confidence intervals (95% CI).31 This method splits the data into 

ten data sets each of 90% training data and 10% testing data, with a model fitted for each 

training data set, and applied to the testing data. Selection is random, but each observation is 

only used in the testing data one time. This method has been shown to be equivalent or 

superior to split training and test data in multiple studies.32 All development and validation 

of model was performed using SAS (Version 9.1, Cary, NC) with the GENMOD procedure 

with adjustment for repeated patient hospitalizations. Calibration plots were generated using 

the observed and expected event rates per deciles as defined by the Hosmer-Lemeshow ĉ 
statistic. The risk predictiveness curves were generated as described by Pepe and colleagues 

using summary statistics in SAS and plotted with Microsoft Excel 2007 (Redmond, WA).33

RESULTS

A summary of patient demographic factors, inpatient medication use rates, laboratory test 

ordering rates, and outcomes are listed in Table 2 for both the analysis cohort and the 

patients excluded from analysis. Comparison between the groups revealed significant 

differences in all categories between the groups. The inclusion cohort average admission 

creatinine was 0.81 (95% CI 0.81 – 0.82) and the average number of admission creatinines 

were 1.77 (95% CI 1.76–1.78).

Discrimination performance of the AKI Risk and AKI Injury models were evaluated by the 

AUC, which was 0.75 (0.73 – 0.76 95% CI) and 0.78 (0.76 – 0.79 95% CI), respectively. 

Calibration performance for each model was adequate (indicated by a p value > 0.05 on the 

HL-GOF test) with χ2 results of 9.7 (p = 0.29) and 12.7 (p = 0.12). Calibration assessment 
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by deciles is reported in Table 4. A high level of agreement between observed and expected 

outcome event rates was noted for both models across the full spectrum of patient risk. The 

risk predictiveness curves (Figure 2) also showed good calibration for both risk models, 

although the risk predictions in the 30–60% risk percentiles of the AKI Injury model were 

somewhat insensitive to the observed outcome rates. A few examples of thresholds will also 

be presented. For the AKI Risk model, the risk percentile threshold was 0.372 for 50% of 

the observed outcome incidence and 0.847 for 150% of the observed outcome incidence. For 

the AKI Injury model, the risk percentile threshold was 0.477 for 50% of the observed 

outcome incidence and 0.831 for 150% of the observed outcome incidence.

Most of the variables, which were selected on the basis of known association with in-

hospital AKI, were significantly associated with at least one of the two stages of AKI. 

Several showed no significant association including potassium sparing diuretics, acyclovir, 

cisplatin, ordering a computed tomography (CT) scan with contrast, angiotensin receptor 

blockers (ARB), rhabdomyolysis, acute pancreatitis, and leukocytosis. A summary of the 

patient correlation adjusted logistic regression risk models for the outcomes of AKI Risk and 

AKI Injury is shown in Table 3, and instructions for use of the models for risk prediction is 

described in the Appendix.

DISCUSSION

We created an AKI risk stratification model using computerized physician order entry and 

laboratory test data for patients admitted to a hospital with a baseline eGFR greater than 60 

mL/min/1.73 m2. Our model showed good cross-validation discrimination performance with 

adequate calibration. Discrimination was similar to other AKI models which have been 

created for more specific clinical scenarios with AUC values of 0.74 – 0.77 compared to 

0.72 – 0.81 for patients who have undergone coronary artery bypass grafting18–21 and 0.67 

for patients who have undergone percutaneous coronary interventions and were exposed to 

intravenous contrast.34 To our knowledge, this is one of the first general inpatient risk 

stratification tools for the prediction of hospital-acquired AKI, using recently defined 

consensus criteria. There remains controversy as to whether the Risk or Injury definitions 

described in the RIFLE criteria are representative of true AKI. A threshold of 150% of 

baseline creatinine may be overly sensitive, while a threshold of 200% fails to capture a 

portion of patients experiencing renal injury. We reported both levels of severity in this study 

in order to support use of either threshold.

AKI has numerous etiologies and contributing factors and risk stratification models must 

account for detailed knowledge of patients. Another barrier has been the perception that 

detailed acute and chronic clinical diagnosis information would be required to generate a 

risk stratification model with adequate performance. It is difficult to obtain these data for all 

patient admissions because they are commonly stored in free text in the EHR. Accessing the 

information requires manual chart review, which is infeasible for large patient cohorts, or 

sophisticated natural language processing methods, which are not widely used.

We selected medications and laboratory tests that were plausibly associated with AKI by 

prior research.35 The model revealed a number of medications that were significantly 
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associated with AKI including known nephrotoxins such as amphotericin B, 

aminoglycosides, cyclosporine, and non-steroidal anti-inflammatory medications. However, 

the indications for these prescriptions were not included and generally not available as coded 

data in our EHR. Thus, the odds ratios reported for the association between medications and 

AKI represent both the risk attributable to the medication directly as well as the risk 

attributable to the underlying condition for which the medication is prescribed. Angiotensin 

converting enzyme (ACE) inhibitors appeared to be protective for AKI, which is opposite to 

the physiologic expectation. It is possible that patients at perceived high risk of AKI had 

their ACE inhibitors discontinued upon admission, which could account for that finding. The 

lack of association with computed tomography orders may be related to orders for contrast 

that did not result in contrast administration during a radiology study. This limitation is 

being addressed in our local institution by modifying computerized physician order entry 

and operational processes to ensure contrast media are ordered as medications and dispensed 

by pharmacy. Both acute and chronic markers of hepatic disease were associated with 

elevated risk of AKI, but elevated lipase was not. Thrombocytopenia was associated with 

AKI in the model, and this finding can result from a number of clinical conditions, many of 

them known to be associated with AKI.

Risk stratification has particular utility for automated medical informatics applications such 

as providing thresholds for the activation of electronic health record clinical reminders and 

alerts and risk adjustment for post-marketing medication surveillance applications in 

hospitals. Examples include restricting clinical reminders to physicians to only those 

patients at high risk for the outcome. This improves the yield of such reminders, and 

minimizes reminder fatigue, both of which are known to reduce the impact of such 

interventions. Among post-marketing medication and medical device surveillance, such 

models are used to adjust for measured confounding in observational cohorts.36

There are a number of limitations in interpretation and use of the results of this study. This is 

a single center model, and external validation and/or recalibration in other institutions would 

improve generalizability.37 Secondly, we limited the analysis to patients who presented to 

the hospital with a minimum GFR of 60 mL/min/1.73 m2. While patients with reduced GFR 

are at increased risk for AKI, it is difficult to define which of these patients had hospital-

acquired AKI without adequate longitudinal assessment of kidney function. The MDRD 

equation is known to overestimate GFR among hospitalized patients and among those with a 

rising serum creatinine trend.38, 39 Thus, the study cohort may contain patients with mild or 

moderate kidney dysfunction, as the true outpatient baseline eGFR was not universally 

available. However, patients with normal or mildly elevated kidney function are the most 

likely to receive contrast dye or nephrotoxic medication administration. A third limitation 

includes the selection requirement that patients were hospitalized for greater than 48 hours 

and had multiple serum creatinine measurements. This was required because outpatient 

baseline creatinine values were not known (a common situation in inpatient care), and this 

allowed the establishment of an admission baseline for patients. As shown in Table 2, the 

patients in the resulting cohort are different than the all patient admission cohort, and the 

risk models should only be used among those patients meeting the inclusion criteria. The use 

of risk stratification models in clinical practice must be able to operate in such an 
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environment, since ordering a baseline and follow-up serum creatinine on all hospitalized 

patients is not feasible.

Overall, this study supports the utility of a model using computerized physician order entry 

and laboratory test results to risk-stratify general hospital admissions for development of 

AKI. The data requirements of these models allow them to be used in any institution using 

an electronic health records with computerized physician order entry and electronic 

laboratory reporting. The models performed well, and categorical risk stratification was able 

to identify a portion of patients with significantly elevated risk of acute kidney injury. Future 

work in this area will include efforts to improve model performance by incorporating 

medication dosing and bar coded medication administration data as well as implementing 

these models into clinical decision support in our local institution and prospectively 

evaluating their utility.
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APPENDIX

Prediction formula for the probability of an AKI event

The logistic regression model is defined as:

In this equation, each of the B variables is a beta coefficient for a variable in the model. B0 is 

a special case called the intercept, and represents the risk for the outcome in a case where all 

the risk factors are not present.

The following table describes each of the risk variables for the AKI Risk and AKI Injury 

model in beta coefficient form (which is the natural log of the odds ratio) with standard 

errors (SE). Please note that for each of the clinical associations except for creatinine (which 

is required) and a bacterial infection (which is assessed by antibiotic use), there are two 

variables, one is a binary variable for (known – below threshold/known – above threshold) 

and the other is a binary variable for (not missing/missing). Data that is missing is coded as 

known – below threshold for the other variable.

It is also important to note that this tool can use accruing data to calculate and re-calculate 

AKI risk during a hospitalization. Baseline creatinine is fixed in the admission time period, 

and the demographic imformation is also fixed, but any medication order results in the 

corresponding medication risk factor being flagged as true. In addition, laboratory values 

can accrue during the hospitalization. Laboratory rules are determined by evaluating each 

laboratory threshold against an aggregated value (either peak or mean) over the hospital 

course prior to an outcome.

AKI Risk AKI Injury

Risk Factor Beta Coefficient (SE) Beta Coefficient (SE)

INTERCEPT −4.13 −5.23

Demographics

  Female 0.20 0.20

  Age 36–45 0.01 0.12

  Age 46–55 0.14 0.16

  Age 56–65 0.24 0.12

  Age >=66 0.35 0.30

  Race (African American) −0.03 0.07
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AKI Risk AKI Injury

Risk Factor Beta Coefficient (SE) Beta Coefficient (SE)

  Race (Other) −0.05 0.36

  Race (Unknown) 0.23 0.28

Medications

  Amphotericin B 2.08 2.13

  Cyclosporine 1.10 0.74

  Loop Diuretics 0.73 0.81

  Thiazide Diuretics 0.41 0.64

  Aminoglycosides 0.43 0.40

  NSAID 0.12 0.21

  K-Sparing Diuretics 0.19 0.17

  Acyclovir −0.02 −0.41

  Cisplatin −0.48 −1.01

  CT Scan w/ contrast −0.08 −0.17

  ARB −0.04 −0.24

  ACE −0.22 −0.36

Clinical Condition Associations (Lab)

  Bacterial Infection (Any Antibiotic Use) 0.56 1.04

  Mean Admission Creatinine −0.32 −0.62

  Myocardial Infarction (Yes / Unknown) 0.10 / 0.10 0.37 / 0.10

  Rhabdomyolysis (Yes / Unknown) −0.02 / 0.01 −0.07 / −0.28

  Acute Hepatitis (Yes / Unknown) 0.50 / 0.03 0.62 / −0.12

  Acute Pancreatitis (Yes / Unknown) −0.17 / −0.11 −0.20 / −0.15

  Hyperammonemia 0.32 / −0.17 0.62 / 0.06

  AST/ALT Ratio > 1.5 0.62 / 0.01 0.55 / −0.13

  Thrombocytopenia 0.57 / −0.17 0.75 / 0.00

  Leukocytosis 0.00 / −0.03 0.09 / 0.27

  Hypercalcemia (corrected) 0.42 / 0.03 0.05 / 0.08

  Mean Glucose >250 mg/dL 0.99 0.94

  Mean Glucose 200–250 mg/dL 0.71 0.63

  Mean Glucose 150–200 mg/dL 0.49 0.33

  Mean Glucose Unknown 0.47 −0.17

Example: Calculation of the risk of AKI Injury for a Hispanic man aged 50 with a mean 

admission creatinine of 1.4. During the first 48 hours, the patient received a CT scan with 

contrast, an antibiotic that is not an aminoglycoside, an ACE inhibitor, a thiazide diuretic, 

and is given loop diuretics. Relevant laboratory tests reveal a mean glucose of 225, 

leukocytosis, and an albumin-corrected hypercalcemia. The remaining laboratory tests were 

normal, except that tests for myocardial infarction and rhabdomyolysis were not ordered. In 

the following equation, brackets identify the variable name and parentheses identify the 

variable value. The equation includes all of the other variables, but their values are 0, which 
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results in that beta coefficient * the variable value being equal to 0. For this patient: Z = 

−5.23*(always 1)[intercept] + 0.16*(1)[age 50] + 0.36*(1)[Hispanic] + −0.62*(1.4)

[Creatinine] + −0.17*(1)[CT Scan] + 1.04*(1)[antibiotic] + −0.36*(1)[ACE] + 0.64*(1)

[Thiazide] + 0.81*(1)[Loop diuretic] + 0.63*(1)[glucose 200–250] + 0.09*(1)[leukocytosis] 

+ 0.05*(1)[hypercalcemia] +0.10*(1)[MI] −0.28*(1)[Rhabdo]= −3.03. Probability of AKI 

Injury= 1 / ( 1 + exp(−(−3.03))) = 0.046 or 4.6%
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Figure 1. 
Summary of the patient cohort after each step of exclusion
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Figure 2. 
Risk predictiveness curves for the (a) AKI Risk model and the (b) AKI Injury model. Open 

circles display the observed outcome proportions within risk deciles. The solid horizontal 

line indicates the observed outcome incidence in the population. The dotted lines indicate 

the risk thresholds for rates that are (A) 50% and (B) 150% of the observed outcome 

incidence.
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Table 1

Primary Risk Factors in the Development of Acute Kidney Injury and summary of the candidate risk factors 

available in the clinical database. Items with direct data representation have no entry for Coded Data 

Approximation.

Clinical Risk Factor Source of Coded Data

Patient Demographics

  Age3 Administrative Data

  Gender Administrative Data

  Race Administrative Data

Medication Classes

  Angiotensin Converting Enzyme Inhibitors (ACE)40 Computerized Physician Order Entry

  Angiotensin Receptor Blockers (ARB) Computerized Physician Order Entry

  Aminoglycoside Antibiotics2, 40–43 Computerized Physician Order Entry

  Non-Steroidal Anti-Inflammatory Drugs (NSAID)43, 44 Computerized Physician Order Entry

  Amphotericin B (all formulations)45, 46 Computerized Physician Order Entry

  Cyclosporine40 Computerized Physician Order Entry

  Acyclovir40, 47 Computerized Physician Order Entry

  Cisplatin Computerized Physician Order Entry

  Diuretic Medications (CHF/hypovolemia/hypotension)3, 48–50 Computerized Physician Order Entry

  Radiocontrast Media2, 43, 51, 52 CPOE - Computed Tomography with contrast

Medical Conditions

  Acute Myocardial Infarction49, 50 Peak Troponin I > 2.0× ULN (OR)
Peak Troponin T > 2.0× ULN (OR)
Peak CK-MB > 3.0× ULN

  Rhabdomyolysis53 Peak CK > 5.0× ULN (AND)
(NOT) Acute Myocardial Infarction

  Acute Hepatitis Peak ALT >= 400 IU/L (OR) Peak AST >= 400 IU/L

  Acute Pancreatitis Peak Lipase > 3.0× ULN

  Bacterial Infection3, 52 Any Antibiotic Order (treatment of)

  Hypercalcemia Mean Albumin-Corrected Calcium > ULN

  Thrombocytopenia Nadir Platelets < 0.75× LLN

  Pre-existing hepatic disease Mean AST/ALT Ratio >= 1.5,
Mean Ammonia >= 40 mcg/dL

  Intravascular Volume Depletion54 Diuretic Medications (treatment of)

  Diabetes48, 52 Mean Glucose >= 150 mg/dL (AND) < 200 mg/dL,
Mean Glucose >= 200 mg/dL (AND) < 250 mg/dL,
Mean Glucose >= 250 mg/dL

ULN = Upper limit of normal laboratory value. LLN = Lower limit of normal laboratory value.
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Table 2

Characteristics of study cohort and prevalence of medications and laboratory values [footnote: use and 

laboratory test ordering were counted if present at any point during a hospitalization.

Demographics Excluded
N=35,072

Included
N=26,107

P

Age <0.001

  18–25 3,985 (11.4%) 2,365 (9.1%)

  26–35 4,992 (14.2%) 3,044 (11.7%)

  36–45 5,156 (14.7%) 4,382 (16.8%)

  46–55 5,194 (14.8%) 5,027 (19.3%)

  56–65 5,590 (15.9%) 4,614 (17.7%)

  >65 10,155 (29.0%) 6,675 (25.6%)

Female 14,605 (41.6%) 14,505 (55.6%) <0.001

Race 0.001

  White 25,518 (72.8%) 19,329 (74.0%)

  African American 5,612 (16.0%) 3,866 (14.8%)

  Other 686 (2.0%) 515 (2.0%)

  Unknown 3,256 (9.3%) 2,397 (9.2%)

Length of Stay (Mean) 5.67 (5.62 – 5.72) 8.12 (8.04 – 8.21) <0.001

DRG Length of Stay (Mean) 4.65 (4.63 – 4.67) 5.03 (5.01 – 5.06) <0.001

Medication Usage

  Any Antibiotic 24,799 (70.7%) 19,672 (75.4%) <0.001

  ACE Inhibitor 6,866 (19.6%) 5,828 (22.3%) <0.001

  Acyclovir 742 (2.1%) 1508 (5.8%) <0.001

  Angiotensin Receptor Blocker 1570 (4.5%) 866 (3.3%) <0.001

  Aminoglycoside 1,996 (5.7%) 2,501 (9.6%) <0.001

  Amphotericin B 192 (0.6%) 498 (1.9%) <0.001

  Cyclosporine 1,219 (3.5%) 578 (2.2%) <0.001

  Cisplatin 84 (2.4%) 303 (1.2%) <0.001

  Diuretics

    Loop 9,667 (27.6%) 10,239 (39.2%) <0.001

    Thiazide 2,905 (8.3%) 2,056 (7.9%) 0.068

    Potassium-Sparing 1,714 (4.9%) 1,559 (6.0%) <0.001

  NSAID 17,085 (48.7%) 11,622 (44.5%) <0.001

  Radiocontrast Dye 2,580 (7.4%) 4,610 (17.7%) <0.001

Laboratory Test Ordered

  Albumin 14,535 (41.4 %) 16,958 (65.0%) <0.001

  ALT 13,805 (37.3%) 14,561 (58.6%) <0.001

  AST 15,719 (44.8%) 17,690 (67.8%) <0.001

  Ammonia 790 (2.3%) 877 (3.4%) <0.001

  Ca 22,711 (64.8%) 23,149 (88.7%) <0.001
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Demographics Excluded
N=35,072

Included
N=26,107

P

  CKMB 7,488 (21.4%) 7310 (28.0%) <0.001

  CK 8163 (23.3%) 7877 (30.2%) <0.001

  Glucose 26898 (76.7%) 25834 (99.0%) <0.001

  Lipase 3022 (8.6%) 4224 (16.1%) <0.001

  Platelets 26408 (75.3%) 24527 (94.0%) <0.001

  TropI/TropT 5618 (16.0%) 5692 (21.8%) <0.001

  WBC 27743 (79.1%) 25178 (96.4%) <0.001

ACE = Angiotensin Converting Enzyme.
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Table 3

Risk Stratification Models. Each risk factor was listed as odds ratios for interpretation. See the appendix for 

instructions on use. Each of the conditions with values for Yes and Unknown were in reference to a normal 

result.

Effect AKI Risk (OR [95% CI]) AKI Injury (OR [95% CI])

Demographics

  Female 1.22 [1.07 – 1.4] 1.22 [1.02 – 1.47]

  Age

    18 to 35 1.00 1.00

    36 to 45 1.01 [0.81 – 1.25] 1.12 [0.85 – 1.48]

    46 to 55 1.15 [0.94 – 1.41] 1.17 [0.90 – 1.53]

    56 to 65 1.28 [1.04 – 1.57] 1.13 [0.85 – 1.49]

    >= 66 1.42 [1.17 – 1.73] 1.35 [1.04 – 1.75]

  Race

    White 1.00 1.00

    African American 0.97 [0.81 – 1.17] 1.07 [0.84 – 1.37]

    Other 0.96 [0.61 – 1.49] 1.44 [0.88 – 2.34]

    Unknown 1.26 [1.04 – 1.52] 1.33 [1.04 – 1.69]

Medication Class

  Amphotericin B 8.04 [6.19 – 10.46] 8.39 [6.16 – 11.42]

  Cyclosporine 2.99 [2.33 – 3.84] 2.10 [1.51 – 2.92]

  Loop Diuretics 2.08 [1.82 – 2.38] 2.24 [1.87 – 2.69]

  Thiazide Diuretics 1.51 [1.23 – 1.85] 1.89 [1.48 – 2.42]

  Aminoglycosides 1.53 [1.27 – 1.85] 1.49 [1.18 – 1.89]

  NSAID 1.12 [0.99 – 1.28] 1.24 [1.05 – 1.47]

  K-Sparing Diuretics 1.21 [0.97 – 1.51] 1.19 [0.90 – 1.57]

  Acyclovir 0.98 [0.77 – 1.25] 0.66 [0.48 – 0.91]

  Cisplatin 0.62 [0.33 – 1.15] 0.37 [0.13 – 1.05]

  CT Scan w/ Contrast 0.92 [0.79 – 1.08] 0.85 [0.69 – 1.04]

  ARB 0.96 [0.70 – 1.33] 0.78 [0.49 – 1.25]

  ACEI 0.80 [0.69 – 0.94] 0.70 [0.56 – 0.88]

Clinical Condition Associations (Lab)

  Mean Admission Creatinine 0.72 [0.51 – 1.03] 0.54 [0.33 – 0.87]

  Bacterial Infection (Any Antibiotic Use) 1.74 [1.45 – 2.10] 2.84 [2.09 – 3.84]

  Myocardial Infarction

    Yes 1.11 [0.85 – 1.44] 1.45 [1.05 – 1.99]

    Unknown 0.89 [0.62 – 1.29] 1.10 [0.71 – 1.71]

  Rhabdomyolysis

    Yes 0.98 [0.65 – 1.50] 0.93 [0.54 – 1.62]

    Unknown 1.00 [0.70 – 1.45] 0.75 [0.49 – 1.16]

  Acute Hepatitis
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Effect AKI Risk (OR [95% CI]) AKI Injury (OR [95% CI])

    Yes 1.65 [1.28 – 2.12] 1.86 [1.38 – 2.52]

    Unknown 1.03 [0.78 – 1.36] 0.89 [0.60 – 1.31]

  Acute Pancreatitis

    Yes 0.84 [0.64 – 1.11] 0.82 [0.59 – 1.15]

    Unknown 0.90 [0.73 – 1.10] 0.86 [0.67 – 1.12]

  Hyperammonemia

    Yes 1.38 [0.85 – 2.23] 1.86 [1.02 – 3.40]

    Unknown 0.85 [0.60 – 1.19] 1.06 [0.68 – 1.66]

  AST/ALT Ratio > 1.5

    Yes 1.86 [1.58 – 2.18] 1.73 [1.40 – 2.13]

    Unknown 1.01 [0.82 – 1.26] 0.88 [0.66 – 1.18]

  Thrombocytopenia

    Yes 1.76 [1.53 – 2.03] 2.11 [1.75 – 2.54]

    Unknown 0.84 [0.60 – 1.17] 1.00 [0.62 – 1.61]

  Leukocytosis

    Yes 1.00 [0.88 – 1.14] 1.09 [0.92 – 1.3]

    Unknown 0.97 [0.62 – 1.51] 1.25 [0.68 – 2.3]

  Hypercalcemia (Corrected)

    Yes 1.52 [1.06 – 2.18] 1.05 [0.62 – 1.79]

    Unknown 1.03 [0.84 – 1.26] 1.09 [0.83 – 1.42]

  Mean Glucose

    >250 2.68 [2.06 – 3.5] 2.57 [1.76 – 3.75]

    200 – 250 1.6 [0.82 – 3.12] 1.87 [1.37 – 2.57]

    150 – 199 1.00 [0.88 – 1.14] 1.39 [1.13 – 1.72]

    Unknown 0.97 [0.62 – 1.51] 0.85 [0.24 – 3.00]
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