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Of mice and men: novel insights regarding constitutive and
recruitable brown adipocytes
KL Townsend1,3 and Y-H Tseng1,2

Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing
differentiation of brown adipocytes in white fat depots through a process termed ‘browning’. Sympathetic innervation of brown and
white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating
adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine
or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in
understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat
depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical
perspective on the discovery of ‘browning’. We also provide an overview of constitutive BAT vs rBAT in mouse and human.
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Obesity represents a major risk factor for the development of
several of our most common medical conditions, including type 2
diabetes mellitus, dyslipidemia, non-alcoholic fatty liver, cardio-
vascular disease and even some cancers.1 Increased adiposity is
the main characteristic of obesity; however, not all fat depots are
created solely for energy storage.2 Adipocytes found in white
adipose tissue (WAT) contain a single large lipid droplet and have
well-characterized roles in fuel storage and immune-endocrine
functions. By contrast, brown adipose tissue (BAT) is specialized
for energy expenditure. Adipocytes in BAT contain many small,
multilocular lipid droplets, and are tightly packed with mito-
chondria. In addition, BAT is highly vascularized and densely
innervated by the sympathetic nervous system (SNS). BAT
uniquely expresses uncoupling protein 1 (UCP1), which is localized
to the inner mitochondrial membrane, and acts to uncouple
oxidative phosphorylation from ATP production, resulting in the
electron gradient being dissipated as heat in a process termed
thermogenesis.3–6 In response to cold, or other stimuli such as diet
or activation of β3-adrenergic receptors (ADRB3), thermogenesis is
activated as a result of increased sympathetic input to BAT.7,8

In addition to thermogenesis, recent studies have demonstrated
that BAT is involved in triglyceride clearance9 and glucose
disposal,10 and is a source of adipokines (which we call ‘BATokines’
for BAT adipokines8), including FGF21,11,12 Irisin/FNDC5(refs. 13,14)

and interleukin-6(ref. 15); (reviewed in Villarroya et al.16). Following
the rediscovery of functionally active BAT in adult humans,17–23

brown fat has become an exciting area for obesity research.
Given BAT’s immense capacity for energy expenditure and its
newly recognized effects on fatty acid and glucose metabolism,
there is great hope that BAT’s energetic capacity may be tapped
by various medical interventions as a means to increase
whole-body energy expenditure and reduce adiposity.8,24,25

Undoubtedly, improved knowledge about the regulation of brown
fat formation, activation and communication with the central
nervous system (CNS) are required to make such therapeutic
approaches conceivable.

Although interscapular BAT is the major brown fat depot in
mice and is constitutively expressed (constitutive BAT, cBAT),
multilocular and UCP1-positive brown fat cells can be found in
different anatomical locations as well. These ‘inducible’ or
‘recruitable’ brown fat cells (recruitable brown adipose tissue,
rBAT),26 also known as ‘beige’27 or ‘brite’28 adipocytes, are found
to be highly enriched in WAT and skeletal muscle in obesity-
resistant strains of mice.29–31 Physiological stimuli, such as cold
exposure and sympathetic activation, are also known to induce
brown adipogenesis in white fat depots.32 This phenomenon,
known as ‘browning’, has been described in WAT, especially in the
subcutaneous depot and after cold exposure or CNS manipula-
tions that increased sympathetic outflow to these white fat
depots.33,34 Similarly, when mice are given chronic daily injections
of CL 316,243, an ADBR3 agonist, subcutaneous WAT also
undergoes ‘browning’ and body temperature rises.35 In addition
to SNS input, cBAT sends sensory nerve afferents to the CNS,
which also are involved in the regulation of thermogenesis.36

BROWNING AND cBAT VS rBAT: HISTORICAL PERSPECTIVES
AND CURRENT FINDINGS
The process of browning of white fat was first described in the
1984 FEBS paper by Young et al.,37 who wrote ‘…during a
preliminary study of the effects of cold acclimation on female
BALB/c mice, we noticed some brown areas in the perigenital fat
pad. Since this observation was contrary to the popular view of
distinct white and brown fat regions, we decided to set up this
study so that morphological and biochemical criteria could be
used to differentiate between white and brown adipocytes…’
These brown areas were close to blood vessels and had UCP1
(assessed by radioimmunoassay). The cells were centrally
nucleated with multilocular lipid droplets and a high concentra-
tion of mitochondria (measured by electron microscopy), and the
tissue displayed high activities of mitochondrial enzymes.37 This
finding was confirmed in 1986 using a cat model,38 and was
followed up by several other observations,39–41 including studies
in animals after treatment with ADBR3 agonists.42,43
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More recently, browning has been described as being induced
by numerous factors,27,44 including cardiac-derived natriuretic
peptides,45 action of central and peripheral SIRT1,46,47 central
brain-derived neurotrophic factor action, as well as brain-derived
neurotrophic factor induced by animals being housed in an
enriched environment,48 central and possibly peripheral orexin
action,49 muscle-derived irisin,13 heart-derived natriuretic peptides,45

liver- and BAT-derived FGF2150,51 and bone morphogenetic proteins
(BMPs)\transforming growth factor beta (TGFβ),35,52–55 among
others. Other triggers shown to induce browning are as follows:
overexpression of perilipin in WAT,56 addition of a PGC1α adenovirus
to human white preadipocytes,57 prolactin receptor knockout,58

exercise,59 knockdown of neuropeptide Y in the dorsomedial
hypothalamus60 and vascular endothelial growth factor-A over-
expression in WAT.61 New signaling pathways have been implicated
in the process of brown adipogenesis in WAT, including retinalde-
hyde dehydrogenase,62 4E-BP1,63 Rb,64 RIP140,65 LiverXRa,66

FoxC2,67 TIF2,68 p107,69 TNFαR70 and others. MicroRNAs (miRs) have
also been linked with the control of brown adipogenesis, such as mir-
193b-365,71 mir-196a,72 mir-133,73 miR-106b-93(ref. 74) and mir-155.75

Likely, these miRs have a role in regulating gene expression of
transcription factors involved in controlling the brown adipocyte
fate during cellular differentiation (reviewed in Trajkovski and
Lodish76), and could also represent an aspect of epigenetic
regulation of brown adipogenesis.
Whether the browning observed in the studies outlined above

is the result of de novo adipogenesis of precursor cells into brown
adipocytes and whether mature white adipocytes may transdiffer-
entiate directly into mature brown adipocytes are theories still up
for debate. Transdifferentiation is characterized by the presence of
paucilocular UCP1+ adipocytes appearing in white fat,77–79 and
has been described as early as 1966 by Hull and Segall.80 They
suggested that white and brown adipocytes are essentially two
forms of the same tissue, potentially representing a metabolic
flexibility to either produce heat or store lipids, depending on the
needs of the body.80 In support of this notion, UCP1-positive
brown adipocytes were found in inguinal WAT between 10 and
21 days of age in mice maintained at room temperature, but these
cells disappeared by 60 days of age.81 Interestingly, these cells
could re-emanate upon cold exposure or could be suppressed by
undernutrition from birth to 21 days post natal, suggesting a high
degree of plasticity. A recent lineage-tracing study purported to
reveal that mature adipocytes are capable of making a bi-
directional switch: from mature white to mature brown adipocytes
during cold exposure, and back again during re-warming.82

However, the cells pictured retain some multilocular morphology
and low leptin expression even after re-warming; thus, the cell
type with apparent plasticity in response to changes in environ-
mental temperature may represent a distinct ‘recruitable’ cell that
does not, in fact, return to a truly white, unilocular adipocyte state
with low levels of UCP1 and few mitochondria. Furthermore, it is
interesting that these transdifferentiating cells occur in pockets,
which may represent their close proximity to both sympathetic
innervation and vascular supply, in order to mediate their flexibility
in gene expression and thermogenic potential. It is certainly likely
that sympathetic neurites undergo their own plasticity in response
to numerous bouts of cold exposure, and may innervate and
activate a slightly different group of precursor cells with each bout.
On the other hand, numerous studies have demonstrated that

the appearance of brown adipocytes in WAT depots is the result of
de novo adipogenesis. Precursor cells expressing stem cell
antigen-1 and platelet-derived growth factor receptor-α in the
abdominal fat pad similarly exhibit the dual potential to
differentiate into either rBAT or WAT.35,83 Interestingly, the stem
cell antigen-1-positive cells isolated from cBAT and WAT express
distinct molecular signatures and respond differently to inductive
cues.35 Of the PDGFRα cells in WAT, a CD24+ population was
identified that loses expression of CD24, as it more fully commits

to the adipocyte lineage.84 Subtypes of precursor cells that can
differentiate into brown adipocytes from white fat depots have
been identified, including those expressing CD137, Tmem26 and
Tbx1,85 but these cells have not been directly monitored in vivo as
they undergo adipogenesis. A recent publication utilizing the
AdipoChaser mouse, a doxycycline-inducible, mature adipocyte-
specific tracing system, developed to answer the question of
whether rBAT arises from a lineage distinct from white
adipocytes.86 The AdipoChaser mouse was pulse-chased to
indelibly label mature adipocytes, enabling the discovery that
most of the rBATs appear in subcutaneous WAT in response to
cold or treatment with β3-adrenergic agonists as the result of de
novo adipogenesis, rather than preexisting white adipocytes.
Brown adipogenesis also occurs in situations with a reduction in

autophagy in Myf5+ precursor cells (with a deletion of Atg7, a key
gene for autophagy), which then increases rBAT.87 This is
intriguing, given that autophagy is a situation responsive to
nutrient status and is involved in lipid metabolism (reviewed in
Christian et al.88). Targeting Myf5+ adipocyte precursors is
significant, given the findings in mice that the Myf5+ lineage
contributes to the development of the interscapular, or cBAT,
whereas Myf5− cells largely comprise white fat depots and the
rBAT compartment.89 Deletion of the type 1 bone morphogenetic
protein receptor BMPR1A from Myf5+ cells results in a severe
paucity of cBAT with a resulting compensation of rBAT in WAT
depots.90 As a result, the knockout mice could maintain proper
body temperature as adults and are resistant to high-fat diet-
induced obesity. These data highlight the existence of a
physiological system for thermoregulation and energy home-
ostasis by modulating total BAT-mediated thermogenic capacity.
Mechanistically, this is likely due to feedback from the impaired
cBAT to brain, and a resulting increase of SNS input to WAT in
order to drive brown adipogenesis and rBAT development.
Alternatively, the cross talk between cBAT and rBAT could be
mediated by secreted factors presumably produced by residual
cBAT in the Myf5-BMPR1A knockout mice. The understanding of
fat depot cross talk is in its infancy, although it is known that
sympathetic denervation of one WAT depot will influence
norepinephrine turnover in the intact depots of WAT and BAT,
but will not affect depot weights.91 Likely, this occurs via CNS
integration of sensory afferents from adipose depots.92 More
research is needed to better understand how adipose depots
communicate with each other via CNS and SNS intermediaries.
Interestingly, ablation of the PI3K signaling inhibitor phosphatase

and tensin homolog in Myf5+ precursors leads to a remodeling of
adipose tissues in the body with increased adiposity of WAT and
BAT, especially in the neck and shoulder regions.93 As a result, the
cBAT in the interscapular region was more lipid laden. This study
also revealed that a subset of cells in white fat depots, such as
interscapular WAT and retroperitoneal WAT, in fact comprises a mix
of Myf5− and Myf5+ precursors.93 Given the difficulty in comparing
WAT and BAT depots across different studies, owing to variations in
nomenclature and anatomical dissections, as well as differences
conferred by mouse strain (reviewed in Yadav and Rane94), it will
likely be important for the field to develop a recognized
characterization of mouse fat depots. Such an advance would
accommodate our growing knowledge about the differences
among white fat depots and their relative response to browning,
including new insights stemming from lineage-tracing studies
(reviewed in Sanchez-Gurmaches and Guertin95).
Several new concepts have arisen in the study of rBAT,

including whether the brown adipocytes interspersed between
muscle fibers also contribute to anti-obesity effects,31,35 and
whether preadipocytes directly sense cold temperature and
thereby turn on a thermogenic program or differentiate into
brown adipocytes. A recent study demonstrated that 3T3-F442A
cells exposed to cold temperatures in vitro exhibit a mild increase
in UCP1 gene expression.96 It is interesting to note that single-

Constitutive and recruitable brown fat
KL Townsend and Y-H Tseng

S16

International Journal of Obesity Supplements (2015) S15 – S20 © 2015 Macmillan Publishers Limited



celled organisms such as the bacterium Escherichia coli can
directly sense and respond to environmental temperature.97 Such
behavior suggests the possibility that CNS–SNS-independent
pathways may exist for cell autonomous temperature sensation.

HUMAN VS MOUSE BAT
To date, there have been few studies in humans to identify non-
cold-temperature means of activating BAT or increasing its mass,
but a multitude of rodent studies have revealed many potential
options for this purpose. Although the function of BAT appears
similar between rodents and humans, making mice a useful model
species, there are a few important distinctions. Rodents, such as
laboratory mice, have a different distribution of BAT vs humans
(Figure 1), which in mice includes a large, discrete interscapular
pad that is similar to what is observed in human babies.98,99 In
adult humans, BAT is mainly clustered around the neck, clavicle
and spinal cord.18,19,21 Mice contain other smaller depots of BAT,
such as around the kidneys, cervical spine and heart,100 as well as
the rBAT found in white fat and skeletal muscle.101 Humans also
possess various small BAT depots including around organs such as
kidney and heart, and in other subcutaneous depots such as
under the arms.98,102 Whether or not humans can boost their
available BAT mass was previously unclear, but two recent studies
have demonstrated that cold acclimation in humans, after
repeated daily cold exposure, elevates BAT volume and activity,
and increases energy expenditure.103,104

In additional, mice are often housed at a room temperature that
is not thermoneutrality for them, forcing them to undergo
thermogenesis at room temperature in order to maintain

their body temperature. Such an adaptation renders their
BAT chronically activated. Humans, on the other hand, live at
thermoneutrality in addition to heating their homes and wearing
clothing, which likely maintains BAT at a lower level of activation.
Another difference between rodent and human BAT has to do

with the second population of brown adipocytes, the inducible or
rBAT (brite or beige) as described above, which can be found in
white fat depots or in the muscle of mice. These cells develop
from a different lineage than the cBAT found in the interscapular
region (reviewed in Townsend and Tseng8), and are recruitable in
the sense that SNS stimulation (in the form of β-adrenergic
agonists or cold exposure) or activation of signaling pathways
(such as those reviewed in the sections above) can induce the
presence of these brown adipocytes. It is believed that these cells
can then heighten the energy expenditure of the whole animal.
On the other hand, human BAT is now believed to be comprised
of either cBAT (as is found in human babies’ interscapular region99

and the neck,105 or supraclavicular region106 of adults), or human
BAT comprises rBAT (as is found in the clavicular region85 and the
retroperitoneal, intra-abdominal and other regions.107) The con-
stitutive and recruitable types of brown adipocytes display a
different gene expression signature,85,100 but whether there is a
functional difference in addition to a different lineage for these
two types of adipocytes remains to be determined.
BAT mass in rodents is ~ 0.4–1% of body weight (Townsend and

Tseng, unpublished dissection data, and Geisler108), whereas in
humans it is estimated at ~ 0.02% of body weight,108 and thus
humans have relatively less BAT than rodents. Small mammals
may utilize BAT to oxidize up to 90% of daily fuel intake; BAT has
been shown to account for the majority uptake of ingested

Similarities and Differences Between Mouse and Human BAT

Anatomy of BAT depots
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Figure 1. Mouse vs human BAT. Anatomical and other similarities, and differences between mouse and human BAT.
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glucose and the most cold-stimulated triglyceride clearance.109,110

Lipogenesis in BAT may account for 40% of the total in cold-
exposed rats.111 In humans, it has been estimated that a few
grams of BAT may increase daily energy expenditure from 6 to
20%.112,113 Regardless of the differences in the amount or
anatomical locations of brown fat between rodents and humans,
both human and rodent BAT possesses great capacity for
thermogenesis, and serves as an important site for glucose and
fatty acid metabolism (described above and Ouellet et al.114).
Although adipose tissues express numerous subtypes of the

adrenergic receptor, ADBR3 has a more limited distribution in mice
and is most highly expressed in BAT and WAT, thereby making it the
most likely adrenergic receptor isoform to mediate sympathetic
effects on energy expenditure in murine adipose tissues.115 On the
other hand, humans have more widespread expression of ADBR3,
including in adipose tissues, urinary bladder, smooth muscle and
gut.116 In humans, the blockade of β-adrenergic receptors by
propranolol before cold exposure does not inhibit cold-induced
thermogenesis, suggesting that skeletal muscle uncoupling down-
stream of the β2-receptor may be the culprit.117 In mice, the triple
β-receptor knockout is cold intolerant and obese.118,119 It was
recently demonstrated that the β1-receptor in mice mediates most
of the cold- and diet-induced thermogenesis,120 further supporting
the involvement of multiple adrenergic receptors in regulating
adipose tissue energy expenditure in response to catecholamine
release from sympathetic nerve terminals.
In rodents, ADRB3 agonists effectively activate BAT, leading to

weight loss and improved insulin sensitivity.43,121,122 However, the
effect of these compounds in humans appears negligible, which
has been attributed to reduced ligand-binding ability or bioavail-
ability to human ADRB3.123,124 (After submission of the original
manuscript, a new study demonstrated that mirabegron, a
highly specific β3-adrenergic receptor agonist, can stimulate
human brown fat thermogenesis (Cypess et al., Cell Metab 2015;
21: 33–38)) Furthermore, the cross-reactivity of these agonists to
β1 or β2 adrenergic receptors may lead to unwanted cardiovas-
cular side effects in humans.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
New knowledge about the presence and activity of human BAT
represents an exciting opportunity to exploit physiological path-
ways for increasing thermogenesis and energy expenditure as a
potential therapeutic target for human obesity. Using mouse
models, several novel pathways regulating BAT and WAT energy
expenditure have been identified. The ability to utilize human
subjects to obtain a better understanding of BAT function and
activity is also improving. Considering the similarities and
differences between mouse and human BAT, together these
studies should provide important translational work to enable
development of new therapeutics targeting BAT for the treatment
of obesity and other metabolic diseases. The field is moving
toward identification of cell types and molecular pathways
mediating the development of rBAT in WAT depots. Such studies
could determine whether these cells are identical in thermogenic
function to cBAT,125 or whether different fat depots give rise to
different subtypes of rBAT cells through mechanisms such as de
novo adipogenesis or transdifferentiation. Finally, it remains to be
resolved whether increasing rBAT will alone suffice to increase
energy expenditure and restore metabolic health to obese
humans, but given the data outlined here, the prospect is a
promising one.
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