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CONCEPTS & SYNTHESIS
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY

      INTRODUCTION 

 Researchers have long been fascinated by the possibil-
ity for ecosystems to have more than one stable state 
(May  1977 , Beisner et al.  2003 ). Such ecosystems have 
been observed in both natural (van de Koppel et al. 
 2001 ) and experimental (Chase  2003 ) settings. Systems 
with multiple (i.e., alternative) stable states can can 
abruptly shift from one stable state to another, some-
times with catastrophic consequences (Scheffer and 
Carpenter  2003 ), so understanding their properties is 
crucially important. 

 Unfortunately, the understanding of alternative stable 
states has been signifi cantly hampered by ambiguity 
about the term “stable.” Grimm and Wissel ( 1997 ) note 
that stability is “one of the most nebulous terms in the 
whole of ecology,” and they catalog 163 different defi -
nitions. Much of this confusion arises when researchers 
attempt to apply tools designed for the analysis of 
deterministic models to stochastic models. Fortunately, 
there is a well-developed mathematical framework, the 
Freidlin-Wentzell quasi-potential (Freidlin and Wentzell 
 2012 ), that provides a rigorous yet natural way to under-
stand alternative stable states in stochastic systems. 
In this paper, we explain how this tool can clarify much 
of the confusion about stability in ecological systems 
by translating intuitive concepts into quantifi able 
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mathematical properties. Through three examples, we 
show how the quasi-potential serves as a useful metric 
of stability, and allows for effective stability comparison 
between alternative stable states. The results from 
 quasi-potential analysis often contrast with those from 
standard stability analysis, and our examples explore 
these discrepancies. Furthermore, the quasi-potential 
allows for stability to be quantifi ed on a continuum 
that corresponds well with the system's dynamics, and 
it can be applied to any system state, regardless of 
whether that state is a deterministic equilibrium. Using 
the quasi-potential, a system can be decomposed into 
orthogonal components, and we explain how this decom-
position can be interpreted ecologically. Finally, the 
quasi-potential offers insight into the most probable 
paths a system will take in transitioning from one state 
to another. 

 Holling's foundational work on resilience and stability 
anticipated the quasi-potential's basic essence (Holling 
 1973 ); later, Tuljapurkar and Semura ( 1979 ) made the 
insight that Holling's intuitive ideas were connected to 
the mathematical work of Freidlin and Wentzell ( 1970 ). 
At that time, numerical methods were insuffi cient to 
allow for general, practical computation of quasi- 
potentials (see Ludwig  1975 ), so Tuljapurkar and Semura’s 
insight did not receive the recognition it deserved. 
In subsequent decades, the fl urry of research on alternative 
stable states largely overlooked this insight. Recently, 
the quasi-potential has been embraced by researchers 
analyzing models in other areas of biology, although it 
often appears under other names, and is disconnected 
from the Freidlin-Wentzell formulation (but see Zhou 
et al. 2012  ). These applications include gene regulatory 
networks (Zhou et al.  2012 , Lv et al.  2014 ), neural net-
works (Yan et al.  2013 ), and evolution (Wang et al. 
 2011 , Zhang et al.  2012 ). Very recently, it has been 
applied to a predator-prey system (Xu et al.  2014 ), and 
with countless other possibilities for application, we 
argue that the quasi-potential is poised to become a 
major quantitative tool in ecology. 

 This paper makes three novel contributions to the fi eld 
of ecology. First, it shows how the quasi-potential can 
clarify the confusing tangle of stability concepts that 
confront ecologists. Second, it demonstrates how the 
quasi-potential can be used to quantify stability in sys-
tems with alternative stable states, and how the results 
can be different from and often more useful than deter-
ministic methods. Finally, it shows how a new numerical 
algorithm for the computation of quasi-potentials 
(Cameron  2012 ) can be expanded for application to sys-
tems with multiple stables states, and highlights the utility 
of the quasi-potential for understanding such systems. 

 We use three well-established ecological models to 
illustrate these ideas. First, we show how traditional 
linear stability analysis fails to capture the salient features 
of a stochastic lake eutrophication model, and explain 
how the system's potential function provides more useful 
analytic insights. Next, we move to higher-dimensional 

systems, where potential functions rarely exist. We 
explore a consumer-resource model with alternative sta-
ble states that does not have a potential function. We 
explain how the quasi- potential is defi ned, and show 
its usefulness in analyzing this model. Finally, we explore 
another consumer-resource model with a stable limit 
cycle to demonstrate how the quasi-potential is useful 
when stable states are more complicated than point 
equilibria. We conclude by discussing the quasi-potential 
as a  unifying framework for existing notions of stability 
in stochastic systems.  

  EXAMPLE 1: LAKE EUTROPHICATION 

 Lake ecosystems are among the most well-studied 
examples of alternative stable states in ecology. A foun-
dational model by Carpenter et al. ( 1999 ) successfully 
describes the coexistence of a eutrophic state, corre-
sponding to high phosphorous concentration, and an 
oligotrophic state, corresponding to low phosphorous 
concentration. Later work by Guttal and Jayaprakash 
( 2007 ) showed how stochasticity can cause this system 
to switch between the two stable states, and we will 
use their model as a starting point for exploring the 
quantifi cation of stochastic stability. 

 The underlying deterministic model (i.e., the “deter-
ministic skeleton") describes how the nutrient (phos-
phorous) concentration  x  changes over time:

  (1)       

   c  is the nutrient infl ow rate and  s  is the nutrient loss 
rate (due to sedimentation, outfl ow, and sequestration 
in benthic plants). The last term represents nutrient 
recycling.  r  is the maximum recycling rate,   x0    is the 
half-saturation constant, and  q  specifi es the shape of 
the sigmoidal recycling curve. At  s  = 1,  r  = 1,   x0 = 1   , 
 q  = 8, and  c  = 0.53 (as in Guttal and Jayaprakash 
 2007 ), the system has alternative stable states: a low 
phosphorous oligotrophic state,   xL = 0.537   , and a high 
phosphorous eutrophic state,   xH = 1.491   , separated by 
an unstable equilibrium (a saddle),   xS = 0.971   . 

 The standard technique for studying systems like this 
one, is linear stability analysis. The eigenvalue of the 
linearized system at   xS    is   𝜆S = 1.032   , so it is an unstable 
equilibrium. The eigenvalues corresponding to   xL    and 
  xH    are   𝜆L = −0.899    and   𝜆H = −0.797   , respectively, so 
both   xL    and   xH    are stable equilibria. The more negative 
the eigenvalue, the faster the return to the equilibrium 
following a small perturbation;   𝜆L < 𝜆H,    so the linear 
analysis indicates that the oligotrophic state is more 
stable than the eutrophic state. 

  Ball-in-cup 

 An alternative approach to quantifying stability, and 
one that is fundamental to the theory of alternative 
stable states, is the “ball-in-cup" heuristic (Beisner et al. 
 2003 ). In this framework, the state of the system is 

dx

dt
= c−sx+r

xq

x
q

0+xq
.
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represented by the position of a ball rolling on a sur-
face. The ball rolls downhill, but is also subject to 
continual, stochastically varying perturbations. In the 
absence of perturbations, the ball will roll to the bottom 
of a valley. Such locations correspond to stable equi-
libria of the deterministic skeleton of the system (  xL    
and   xH    in our example); a system with alternative stable 
states has more than one valley. The “cup” is the area 
surrounding an equilibrium that is attracted to it; this 
is called its domain (or basin) of attraction. 

 The ball-in-cup framework is not just a useful met-
aphor – it can also yield a mathematical description. 
For the lake system, defi ne

  (2)       

( ξ  is a dummy variable for integration), so that the 
differential equation becomes:   dx

dt
= −U ′(x)   . The dynam-

ics of this system turn out to be equivalent to a ball-in-
cup system with surface specifi ed by the function  U . 
In analogy with the physics of the ball-in-cup metaphor, 
 U  is called the “potential function” or simply the “poten-
tial.” For the lake system, this surface has local minima 
at   xL    and   xH,    as shown in Fig.  1 a. 

  When random perturbations are present, the ball can 
be jostled from one basin of attraction to another. Note 
that stochasticity lies at the heart of the theory of alter-
native stable states. In a purely deterministic system, 
the ball would roll to an equilibrium and stay there. 
The presence or absence of other stable states would 
be irrelevant, because the ball would have no way of 
visiting them. Perhaps the surface could change over 
time, so that the basin of attraction occupied by the 
ball ceases to be a basin, and the ball rolls out to a 
different stable state. This situation corresponds to a 
bifurcation of the system's deterministic skeleton; the 
ball's transition requires the destruction of a stable state. 
In this paper, we are interested in how systems can 
transition between  coexisting  alternative stable states. 
Perturbations are required for the system to undergo 
these transitions; therefore, we argue that the appropriate 
framework for an alternative stable state model is a 
stochastic one. Furthermore, real ecological systems are 
always subject to random perturbations. In order to 
apply the ball-in-cup heuristic to a perturbed system, 
we next demonstrate an approach to incorporating sto-
chasticity into model  (1) .  

  Stochastic differential equation model 

 If the nutrient concentration varies randomly over 
time, the lake can shift from one stable state to the 
other. To study this scenario, we translate the original 
deterministic model into a stochastic differential equa-
tion. A brief explanation of stochastic differential equa-
tion models is provided in  Appendix S1: Section S1 , 
and more extensive accounts can be found in textbooks 
(e.g. Allen  2007 ). Here, we give an informal description 

of the major concepts, and use discrete-time analogies 
to avoid overly technical mathematical terminology. 

 To emphasize that nutrient concentration is now a 
stochastic process, and not just a deterministic function 
of time, we switch notation from  x ( t ) to  X ( t ). For each 
 t  > 0,  x ( t ) is a number, but  X ( t ) is a random variable, 
which can take on any of a set of possible values accord-
ing to probabilistic rules. A realization of the stochastic 
process is a deterministic function of time associated 
with a specifi c set of random events; this can be thought 
of as an observed time series, or the result of a single 
simulation run. 

 In the original model  (1) , the external input of nutrients 
occurs at a constant rate  c . In a small time interval  dt , 
the external input is  c   dt . In reality, this input is likely 
to vary randomly; this is commonly modeled by adding 

U(x)=− ∫
x

xH

f(𝜉) d𝜉,

 FIG. 1.               Lake eutrophication model (example 1). (a) The 
potential function for Eq.  (1) . The horizontal axis is the scaled 
nutrient (phosphorous) concentration and the vertical axis is the 
(dimensionless) potential. Gray disks are stable equilibria, and the 
white disk is an unstable (saddle) equilibrium. The dynamics of the 
system can be represented as a ball rolling on the surface specifi ed 
by the potential function. Note that the basin around   xH    is deeper 
than that around   xL   . (b) A realization of Eq.  (3) , which models 
nutrient concentration,  x , as a function of time,  t . Variables are 
scaled, so the units are dimensionless. Integration was performed 
with the Euler-Maruyama method and Δ t  = 0.005. The solid lines 
corresponds to stable equilibria   xL    (lower) and   xH    (higher) for the 
deterministic skeleton. The dashed line corresponds to the the 
saddle point   xS    of the deterministic skeleton. Note that the 
realization spends more time near   xH    than near   xL   . 
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a Gaussian white noise process,  dW ( t ) (“noise” is used 
synonymously with “stochastic” or “random”). At each 
 t  > 0,  dW ( t ) is a normally distributed random variable 
with mean zero and variance  dt . Since the values are 
independent of  t , this is simply written as  dW . The white 
noise process we describe here has no temporal auto-
correlation, and its frequency spectrum is uniform – the 
descriptor “white” is used in analogy with white light. 
The accumulated change obtained by adding  dW  over 
time yields a Wiener process, also known as Brownian 
motion. White noise is a useful starting point, but many 
applications require other types of noise; for example, 
colored noise might be used instead when perturbations 
are autocorrelated (e.g. Sharma et al.  2014 ). A discussion 
about generalizing the framework in this paper to dif-
ferent noise types is included in the  Limitations and 
Generalizations section . 

 If the constant input rate  c  is perturbed by a Gaussian 
white noise process with intensity  σ  (analogous to the 
standard deviation in discrete time systems), then the 
external input in a small interval  dt  is  c   dt  +  σ   dW . 
The change in nutrient concentration over this time 
interval is given by

  (3)       

  Again using Eq.  (2)  to defi ne the potential, this system 
can equivalently be written as

  (4)       

In terms of the ball-in-cup heuristic, the shape of the 
surface is specifi ed by the potential function  U , and this 
is independent of  σ . The noise intensity  σ  only contrib-
utes to the movement of the ball on this surface, as 
determined by the last term in Eq.  (4) . 

 We have described this model in terms of change over 
discrete time intervals, but it is also valid in the continuous 
time limit,  dt →0. For continuous time, which will be the 
focus of the rest of this paper,  (3)  is called a stochastic 
differential equation. The notation in the stochastic dif-
ferential equation  dX  = … is different than the deter-
ministic differential equation notation   dx

dt
=…   , because the 

former must be defi ned using integral equations (the 
realizations of  W ( t ) are not differentiable anywhere, so 
  dW

dt
   , and hence   dX

dt
   , would not make sense. We use the Itô 

integration scheme to defi ne stochastic differential equa-
tions in this paper; see  Appendix S1: Section S1 ).  

  Utility of the potential for understanding the stochastic 
lake eutrophication model 

 One approach to understanding the stochastic lake 
eutrophication model is to calculate realizations (i.e. 
simulations) of  (3)  for particular values of  σ . This 
approach is limited, because it requires setting a par-
ticular  σ ; we will see later that the potential function 
provides a more general way of studying system 
 dynamics. A realization with  σ  = 0.2 is shown in 

Fig.  1 b. All simulations in this paper were done with 
 Mathematica , and the code is available as a supple-
mentary fi le. The realization in Fig.  1 b, which is typical 
of realizations for this system with  σ  = 0.2, switches 
between the two stable states. It spends more time 
near   xH    than   xL   ; this suggests that the eutrophic (higher 
phosphorous) state is more stable than the oligotrophic 
(lower phosphorous) state for this set of parameter 
values. Note that this behavior is in contrast to the 
results of the linear stability analysis of the determin-
istic skeleton. It is, however, in agreement with what 
the potential function tells us about the system, as 
we will demonstrate below. 

 For  (3) , we fi nd that   U(xL) = 0.011   ,   U(xS) = 0.047   , 
and   U(xH) = 0   . Note that it is the relative, not the abso-
lute, values of the potential function that are important, 
so the minimum value of the potential can be set at 0. 
  U(xH) < U(xL)   , so the potential function indicates that 
the eutrophic state is more stable than the oligotrophic 
state. This corresponds to the intuitive notion that we 
obtained from examining realizations like the one in 
Fig.  1 b, but it contradicts the results from the linear 
stability analysis. This discrepancy arises because the 
linear stability analysis considers only an infi nitesimal 
neighborhood of an equilibrium. In the presence of 
continuous stochastic perturbations, the system will 
leave such an infi nitesimal neighborhood, and the linear 
analysis of the skeleton breaks down. The linear analysis 
provides information about the curvature of the poten-
tial surface at the bottom of basins of attraction, but 
this information is purely local, in that it does not take 
into account the larger geometry of the surface. 
Therefore, the potential function provides a more appro-
priate measure of stability for analyzing alternative 
stable states than linear stability analysis. 

 The potential function also relates to other important 
features of the stochastic system. The probability density 
function,  p ( x ,  t ), associated with the random variable  X  
in  (3)  describes the probability that  X ( t ) =  x . It is the 
solution to the Fokker-Planck equation:

  (5)       

  The steady-state solution,   ps(x) = lim
t→∞

p(x, t)   , is given by

  (6)       

where   Z = ∫∞0 exp
(
−

2U(x)

𝜎2

)
dx    is a normalization con-

stant. This equation shows that the steady-state prob-
ability density is maximized at the values of  x  that 
minimize  U , confi rming that the minima (valleys) in  U  
correspond to the most likely system states. 

 The potential can be used to gain insight about the 
time it takes the system to switch between alternative 
stable states. If   𝜏xH

xL
    is the expected time it takes a tra-

jectory starting at   xL    to reach   xH   , (i.e., the mean fi rst 
passage time), then (Kramers  1940 ):

dX=

(
c−X+

Xq

1+Xq

)
dt+𝜎 dW.

dX=−U ′(X) dt+𝜎 dW.

𝜕p(x,t)
𝜕t

=
𝜕

𝜕x

(
U ′(x)p(x,t)

)
+
𝜎2

2
𝜕2p(x,t)
𝜕x2

.

ps(x)=
1
Z

exp
(
−

2U(x)

𝜎2

)
,
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  (7)       

  Swapping   xH    for   xL    yields a comparable expression 
for the expected time to reach   xL    from   xH   . The asymp-
totic notation   (⋅)    describes the error of the approxi-
mation as  σ →0. The expected time for a trajectory to 
leave a basin of attraction around one of the stable 
states is thus largely dependent on the depth of that 
basin – the difference between peak  U  (which occurs 
at the saddle equilibrium,   xS   ) and the value of  U  at 
the stable equilibrium. 

 The eigenvalue obtained in linear stability analysis 
describes the curvature of the potential at an equilib-
rium, equal to the second derivative of  U ; it determines 
the prefactor that multiplies the exponential function 
in Eq.  (7) . For a fi xed valley depth, increased curvature 
is associated with decreased mean fi rst passage time. 
For instance, note that   𝜆L = −U′′(xL)   . As   xL    becomes 
more stable in the deterministic sense (i.e., as   𝜆L    becomes 
more negative), the curvature at   xL    increases, and the 
mean fi rst passage time decreases (similar statements hold 
for   xH   ). At fi rst glance, this seems counterintuitive – 
increasing stability is associated with decreased escape 
time – but it makes sense because, for a fi xed valley 
depth, increased curvature decreases the horizontal dis-
tance between equilibria. 

 Knowledge about the potential function thus provides 
information about the steady-state probability distribu-
tion, mean fi rst passage times, and transition frequen-
cies, motivating its use as a stability metric (Wang et al. 
 2011 , Zhou et al.  2012 ). The potential function is 
 especially useful because it does not depend on the 
noise intensity  σ  (in contrast to the steady-state prob-
ability distribution and mean fi rst passage times; see 
 Appendix S1: Section S4 ).   

  EXAMPLE 2: CONSUMER AND RESOURCE WITH 
 ALTERNATIVE STABLE STATES 

 If the potential is so good at quantifying biological-
ly-relevant model behaviors, why isn’t it routinely applied 
in ecology? Unfortunately, in most cases, there will not 
exist a function  U  that satisfi es the mathematical defi nition 
of a potential (see  Appendix S1: Section S2 ). Systems 
that have such a function are called “gradient systems.” 
One-dimensional systems are always gradient systems, but 
systems with more than a single state variable almost 
never are. For non-gradient systems, we cannot use a 
potential function to quantify stability, as we did in the 
fi rst example. It is for this reason that ecologists typically 
rely on approaches like linear stability analysis instead; 
although these approaches give more limited biological 
insights, they are more widely applicable mathematically. 
In what follows, we show how to generalize the potential 
for non-gradient systems, thus allowing us to apply the 

many desirable features of potential analysis to a much 
broader range of ecological systems. 

 For an ecological example of a two-dimensional 
non-gradient system, we turn to a model of phytoplankton 
and zooplankton populations. Let  R  be the phytoplank-
ton (resource) population density and  C  the zooplankton 
(consumer) population density. Using the deterministic 
skeleton of a standard plankton consumer-resource model 
(Steele and Henderson  1981 , Collie and Spencer  1994 ), 
we obtain the stochastic differential equations

  (8)       

  Here   W1    and   W2    are independent Wiener processes. 
The resource has logistic growth in the absence of con-
sumers, with maximum growth rate  α  and carrying 
capacity  β . Consumption of resources is represented by 
a sigmoidal Type III functional response.  δ  is the max-
imum consumption rate, and  κ  controls how quickly 
the consumption rate saturates.  γ  determines the con-
version from resources to consumers. The consumers 
have a quadratic mortality term with coeffi cient  µ , 
which represents the negative impacts of intraspecifi c 
competition.   𝜎1    and   𝜎2    are the noise intensities for the 
resource and consumer populations, respectively. 

 The additive form of the stochastic terms in this model 
represent random inputs and losses of resources and 
consumers. In situations where inherent growth param-
eters (e.g.,  α  or  γ ) are stochastic, other forms of sto-
chasticity would be appropriate. We will deal with 
additive noise here; the more general case is considered 
in  Appendix S1: Section S6 . 

 We will analyze  (8)  with parameters set at  α  = 1.54, 
 β  = 10.14,  γ  = 0.476,  δ  =  κ  = 1, and  µ  = 0.112509. 
A phase plot of the deterministic skeleton is shown 
in Fig.  2 a. The deterministic skeleton of this system has 
fi ve equilibria:   e0 = (0, 0)   ,   eA = (1.405, 2.808)   , 
  eB = (4.904, 4.062)   ,   eS = (4.201, 4.004)   ,   eP = (𝛽, 0)   . 

  A linear stability analysis shows that   e0    is an unstable 
equilibrium and   eP    is a saddle point.   eA    and   eB    are 
stable equilibria, and   eS    is a saddle point that lies 
between them. Equilibria and their stability are sum-
marized in Fig.  2 a. 

 The eigenvalues of the Jacobian are −0.047 ± 0.458 i  
at   eA    and −0.377 and −0.093 at   eB   . For   eA    the real part 
of the eigenvalue with largest real part is −0.047, and 
for   eB    it is −0.093; therefore, the stability analysis con-
cludes that   eB    is more stable, because this value is more 
negative than it is for   eA   . 

 A realization of the stochastic system (  𝜎1 = 𝜎2 =0.05   , 
Fig.  2 c) shows switching between the two stable states. 
It is typical of most realizations we generated, in that 
it spends more time near   eA    (dotted white lines) than 
  eB    (dashed black lines). This realization, which had 
initial condition   

(
x0, y0

)
=(1, 2)   , spent 87% of its time 

𝜏
xH

xL
=

2𝜋√
U′′

(xL)|U′′
(xS)|

exp
(

2

𝜎
2

(
U(xS)−U(xL)

))

×(1+(𝜎)) .

dR=

(
𝛼R

(
1−

R

𝛽

)
−

𝛿R2C

𝜅+R2

)
dt+𝜎1 dW1

dC=

(
𝛾R2C

𝜅+R2
−𝜇C2

)
dt+𝜎2 dW2.
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in the basin of attraction corresponding to   eA   . Intuitively, 
it seems that   eA    should be classifi ed as more stable than 
  eB   , but as in Example 1, this is not what was obtained 
via the standard linear stability analysis. 

 Recall that realizations are of limited utility for sta-
bility analysis, because each value of  σ  will produce 
different dynamics and different steady-state probability 
distributions (see  Appendix S1: Section S4  and  Fig. S1 ). 
The potential is defi ned independently of  σ , and hence 
would be ideal for providing more general insights than 

 σ -specifi c realizations. Of course, we do not have a 
potential function  U  for this or any other non-gradient 
system and hence cannot compare   U(eA)    and   U(eB)   . 
Instead, we turn to the Freidlin-Wentzell quasi-poten-
tial, which generalizes the notion of a potential.  

  GENERALIZING THE POTENTIAL 

 For higher-dimensional models, we need to introduce 
a bit of new notation. We can write an  n -dimensional 

 FIG. 2 .              (a) Stream plot for the deterministic skeleton of the consumer-resource model in example 2. Unstable equilibria are white 
disks and stable equilibria are gray disks. The unstable equilibrium   eP    is not shown, but would appear on the  x -axis to the right of 
where the graph is truncated. Variables are scaled, so the units are dimensionless. Lines and arrows show the direction of trajectories 
for Eq.  (8)  in the absence of noise. (b) Similar stream plot for the deterministic skeleton of the consumer-resource model in example 
3. The white disk is an unstable equilibrium and the gray line is a stable limit cycle. (c) A realization of Eq.  (8)  for example 2. 
Integration was performed with the Euler-Maruyama method and Δ t  = 0.025. Resource population density is black and consumer 
population density is gray. The dotted white lines correspond to the equilibrium   eA   , and the dashed black lines to the equilibrium   eB   . 
(d) A realization of Eq.  (15)  for example 3, with  σ  = 0.8. Integration was performed with the Euler-Maruyama method and 
  Δt = 5×10−4   . Resource population density is black and consumer population density is gray. 
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system of stochastic differential equations with additive 
noise as

  (9)       

  X =
(
X1, … , Xn

)
    is a column vector of state variables 

and   W =
(
W1, … , Wn

)
    is a column vector of  n  inde-

pendent Wiener processes. We use the lowercase nota-
tion   x =

(
x1, … , xn

)
    to indicate a point in phase space 

(as opposed to a stochastic process).  f  is the deter-
ministic skeleton of the system. It is a vector fi eld: 
for every point  x ,  f ( x ) specifi es the direction that a 
deterministic trajectory will move.  σ  is the noise inten-
sity. More general ways of incorporating noise are 
considered in  Appendix S1: Section S6 . 

 Following the same general approach as in example 1, 
the Fokker-Planck equation for a two dimensional 
 version of  (9) , with   X =

(
X1, X2

)
   ,   x =

(
x1, x2

)
    and 

  f =
(
f1, f2

)
   , is

  (10)       

  In the gradient case in Example 1, the steady-state 
solution of the Fokker-Planck equation was of the form 
 (6)  (replacing  x  with  x  and obtaining  Z  via integration 
over the positive quadrant). Here, there is no function 
 U  to play that role, but using the same general approach, 
assume that there is a function  V ( x ) such that

  (11)       

where  k  is a constant. When noise intensity is small, 
we can obtain an approximation for  V  (using asymptotic 
expansion; see  Appendix S1: Section S4 ). This approx-
imation, denoted by   V0(x)   , satisfi es

  (12)       

where the gradient operator ∇ takes a scalar function  ψ  

as an input, and returns a vector,   ∇𝜓 =

(
𝜕𝜓

𝜕x1
, 𝜕𝜓

𝜕x2
, … , 𝜕𝜓

𝜕xn

)
   , 

that is the multi-dimensional analogue of the derivative. 

Intuitively, if one thinks of  ψ ( x ) as specifying the height 
of a landscape at a particular point  x , then −∇ ψ ( x ) 
points in direction of the steepest descent (as water 
would fl ow). 

 Equation  (2)  is the static Hamilton-Jacobi equation. 
Interestingly,   V0    has key properties that make it a useful 
analog of a potential in a gradient system. First,   V0    is 
independent of the noise intensity  σ , just as the potential 
function  U  was in the gradient case. Second, if  x ( t ) is 
trajectory of the deterministic skeleton of  (9) , then

  (13)       

and   d
dt

(
V0 (x(t))

)
= 0    only where   ∇V0 = 0   . Thus   V0    is a 

Lyapunov function for the deterministic system, which 

is an important feature for the ball-in-cup metaphor. 
If   V0(x)    specifi es an two-dimensional surface, then, in 
the absence of perturbations, trajectories will always 
move “downhill.” Again, this parallels the role that  U  
played in the gradient systems. Third, we can interpret 
the relationship between  f  and the surface   V0   .  f  is the 
deterministic skeleton that causes trajectories to move 
across the landscape, and   −∇V0    is the component of  f  
that causes trajectories to move downhill. The remaining 
component of  f , which we denote by  Q  and call the 
“circulatory” component, is defi ned as

  (14)       

  V0    satisfi es the Hamilton-Jacobi equation, so 
  Q ⋅∇V0 = f ⋅∇V0+∇V0 ⋅∇V0 =0   , hence   ∇V0    and  Q  are 
perpendicular at every point. This motivates the label 
“circulatory” – in the absence of other forces,  Q  would 
cause trajectories to circulate around level sets of   V0   . 

 The function   V0    generalizes the potential function to 
non-gradient systems and extends to  n -dimensional sys-
tems. Interestingly,   V0    is a scalar multiple of a function 
called the Freidlin-Wentzell quasi-potential. The quasi- 
potential has extremely important properties, which we 
explore in the next section before applying all of these 
ideas to example 2.  

  THE FREIDLIN-WENTZELL QUASI-POTENTIAL 

 Freidlin and Wentzell ( 2012 ) analyzed stochastic dif-
ferential equations using a large deviation principle, 
which is an asymptotic law determining the probabilities 
of different trajectories. These concepts can be best 
interpreted by imagining the state of the system (the 
position of the ball, or the current combination of 
population densities) being randomly perturbed within 
a “force fi eld” imposed by the deterministic skeleton. 
Suppose the system starts at the stable state   eA    and 
travels to another state  x . To complete this journey, 
the populations will need to do some “work” against 
the force fi eld (i.e., they need to go “uphill”); this 
work is provided by random perturbations. Trajectories 
that require the least amount of work (require the least 
extreme stochastic perturbations) are the most likely. 
Suppose that   θ  ( t ) specifi es a path, parameterized by  t , 
that goes from the stable equilibrium   𝜃(0)= eA    to another 
state   θ  ( T )= x .  T  is total time it takes the populations 
to move along this path from   eA    to  x . The amount 
of work required for the populations to follow a given 
path can be quantifi ed by a functional   ST    called the 
action (see  Appendix S1: Section S2  for details). 

 In order to determine the amount of work it takes to 
get to some state  x , one must minimize the action over 
all possible paths from   eA    to  x , and all path durations 
 T  > 0. The minimum action is called the  quasi-potential, 
denoted   ΦeA

(x)   . The quasi-potential depends on the start-
ing point   eA   ; when there are multiple stable states, the 
corresponding quasi-potentials can be stitched together 

dX= f(X) dt+𝜎 dW.

𝜕p

𝜕t
=−

𝜕

𝜕x1

(
f1 p

)
−

𝜕

𝜕x2

(
f2 p

)
+
𝜎2

2

(
𝜕2p

𝜕x2
1

+
𝜕2p

𝜕x2
2

)
.

ps(x)=k exp
(
−

2V(x)
𝜎2

)
,

∇V0 ⋅∇V0+ f ⋅∇V0 =0,

d

dt

(
V0 (x(t))

)
=∇V0 ⋅ f (x(t))=−∇V0 ⋅∇V0 ≤0,

Q (x)= f (x)+∇V0 (x) .
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to obtain a global quasi-potential, Φ( x ) (Roy and 
Nauman  1995 ); see further details in  Appendix S1: 
Section S3 . Φ is related to   V0    by   Φ=2V0    ( Appendix S1: 
Section S5 ). In this paper, we use   V0    instead of Φ, because 
  V0    agrees with the true potential in gradient systems. The 
multiple of 2 in the relationship   Φ=2V0    is an inconvenient 
result of the Freidlin-Wentzell defi nition. Conceptually, 
these two functions measure the same properties, and 
computing one immediately yields the other. 

 The quasi-potential can be calculated by solving the 
static Hamilton-Jacobi Eq.  (12) . This is a numerically 
diffi cult task, however; standard fi nite difference and 
fi nite element methods typically break down when applied 
to this kind of non-linear partial differential equation. 
Ordered upwind methods (Sethian and Vladimirsky  2001 ) 
are an innovative approach that circumvent the problems 
encountered by traditional methods. The basic idea is 
to create an expanding front of points where the solution 
is known, and march outward by considering and accept-
ing solution values at adjacent points in ascending order. 
For use in systems of the form  (9) , the standard ordered 
upwind method was enhanced by Cameron ( 2012 ). 
Cameron's algorithm allows for effi cient computation 
of the quasi-potential. It forms the basis for  QPot , a 
freely-available R package we have developed (Moore 
et al.  2015 ) that includes a full set of tools for analyzing 
two-dimensional autonomous stochastic differential 
equations (Moore et al.,  arXiv:1510.07992) . To calculate 
the quasi-potential, users simply input the deterministic 
skeleton of the system, the domain, and the mesh size 
(although many other options are available). 
Computation time for the ordered upwind method 
depends on the model and mesh size; example 2 took 
<10 min on a fairly average personal computer. 

 The Freidlin-Wentzell construction of the quasi-po-
tential provides a mathematically rigorous justifi cation 
for the Wentzel-Kramers-Brillouin (WKB) ansatz, 
which can be used to approximate mean fi rst passage 
times in the small noise limit (Bressloff and Newby 
 2014 ). The WKB method has been applied to calculate 
expected extinction times for several specifi c models in 
population dynamics and epidemiology (Roozen  1989 , 
van Herwaarden and Grasman  1995 , Meerson and 
Sasorov  2009 , Ovaskainen and Meerson  2010 ).  

  EXAMPLE 2 CONTINUED 

 We generated solutions to the static Hamilton-Jacobi 
equation for the system  (8)  using base points   eA    and 
  eB   , and then matched them into a global quasi-potential 
by enforcing continuity at   eS    and setting the minimum 
to 0. We divided this function by two to obtain   V0   . 
The ordered upwind method was implemented using 
Cameron's algorithm (Cameron  2012 ).  Mathematica  
was used for data processing and graphics generation, 
and the code is available as a supplementary fi le. 

 For the consumer-resource system  (8) , the resulting 
surface for   V0    and a corresponding contour plot are 

shown in Fig.  3 a, b. We fi nd that   V0(eA) = 0   , 
  V0(eS) = 0.007   ,   V0(eB) = 0.006   . The relative values of   V0    
can be used to make calculations regarding fi rst passage 
times and calculate transition rates between   eA    and   eB   . 
The most fundamental observation, however, is that 
  V0(eA) < V0(eB)   , which indicates that   eA    is more stable 
than   eB   . This contrasts with the linear stability analysis, 
but agrees with the qualitative picture obtained from 
realizations of the system. As in example 1, analyzing 
the system through the lens of a potential (or quasi- 
potential) function yields a completely different conclu-
sion than the deterministic analysis, and one that aligns 
much more clearly with the simulated dynamics we 
observe. Furthermore,   V0(eS)    and   V0(eB)    are closer to 
each other than they are to   V0(eA)   . This indicates that 
  eS    and   eB    have similar stabilities, and it encourages us 
to move beyond the dichotomous classifi cation of equi-
libria as either stable or unstable, which is often applied 
in linear stability analysis. The stable vs. unstable dichot-
omy classifi es   eA    and   eB    as alike, and   eS    as different. 
The quasi-potential shows that it is   eB    and   eS    that are 
alike, and   eA    that is different. By quantifying stability 
on a useful continuum, the quasi-potential offers a more 
nuanced perspective. 

    V0    also provides a useful way to decompose the deter-
ministic skeleton of Eq.  (8)  into physically interpretable 
parts,   f = −∇V0+Q   . This decomposition is shown in 
Fig.  4 a, B.   −∇V0    represents the part of the system that 
moves the system towards stable states, while  Q  repre-
sents the part that causes consumer-resource cycling. 

    EXAMPLE 3: PREDATOR AND PREY WITH A LIMIT CYCLE 

 The quasi-potential allows for stability analysis of 
attractors that are more complicated than equilibrium 
points. As discussed in Cameron ( 2012 ) and Freidlin 
and Wentzell ( 2012 ) and explained in  Appendix S1: 
Section S2 , the quasi-potential can be defi ned for 
compact sets, such as limit cycles. As an example of 
a non- gradient system with a limit cycle, consider a 
stochastic version of the Rosenzweig-MacArthur pred-
ator-prey model (e.g. Logan and Wolesensky  2009 ):

  (15)       

  Here  R  is the resource density,  C  is the consumer 
density, and   W1    and   W2    are independent Wiener pro-
cesses. Consumption of resources is represented by a 
Type II functional response; otherwise the resource 
dynamics are the same as in example 2. In the absence 
of resources, the consumer density decreases at an 
exponential rate determined by  µ .   𝜎1    and   𝜎2    are the 
noise intensity for the resource and consumer densities, 
respectively. We present the analysis of this model with 
 α  = 1.5,  β  = 45,  γ  = 5,  δ  = 10,  κ  = 18, and  µ  = 4. 

dR=

(
𝛼R

(
1−

R

𝛽

)
−

𝛿RC

𝜅+R

)
dt+𝜎1dW1

dC=

(
𝛾RC

𝜅+R
−𝜇C

)
dt+𝜎2dW2.
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 Figure  2 b shows a stream plot of the system's deter-
ministic skeleton, and Fig.  2 d shows a realization with 
noise intensities   𝜎1 = 𝜎2 = 0.8    over time interval [0, 50]. 
This choice of noise intensity and time scale was made 
to illustrate clear population cycles with amplitude 
shifts. 

 Surface and contour plots of   V0    for system  (15)  are 
shown in Fig.  3 c, d. Recall that   V0    provides a decom-
position of the deterministic system into a “downhill” 
force and a “circulatory” force, as shown in Fig.  4 c, d. 
In this case,   −∇V0    causes trajectories to be attracted to 
the limit cycle's trough. The circulatory component 
causes trajectories to cycle in this trough. This decom-
position harkens back to Holling ( 1973 ), who made the 
following observation about dynamical systems: “There 
are two components that are important: one that con-
cerns the cyclic behavior and its frequency and amplitude, 
and one that concerns the confi guration of forces caused 
by the positive and negative feedback relations.” The 
latter is described by the gradient of   V0   , the former by 

the circulatory component. Therefore, we see that the 
Freidlin-Wentzell approach provides a systematic way 
to distinguish between the two concepts identifi ed by 
Holling. 

 In this example, we cannot contrast the quasi-poten-
tial results with the traditional linear stability analysis, 
because the latter only applies to equilibrium points.  

  LIMITATIONS AND GENERALIZATIONS 

 In this paper, we have focused on applying the quasi- 
potential framework to stochastic differential equations 
models that share several characteristics: (1) time is 
continuous; (2) state variables are continuous; (3) noise 
is additive and the noise intensity is the same for both 
state variables; (4) noise is a direct perturbation to the 
state variables (as opposed to a perturbation to param-
eter values); (5) noise is white (as opposed to colored); 
and (6) noise occurs continually with low intensity (as 
opposed to occurring as discrete, abrupt events). For 

 FIG. 3.               (a) The quasi-potential function for the consumer-resource model, Eq.  (8) . Variables are scaled, so the units are 
dimensionless. Note that the quasi-potential surface is much deeper around   eA    than   eB   . The quasi-potential is truncated at 0.02 for 
display purposes; it continues to increase in the regions outside the plot. (b) Contour plot for the same model. The white disk is the 
saddle point   eS   . The gray disks are the stable equilibria   eA    and   eB   . (c) The quasi-potential function for Eq.  (15) . (d) Contour plot for 
the same model. The white disk is an unstable equilibrium, and the white dashed line is a stable limit cycle. 

(a)

(b)

(c)

(d)
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models with discrete state variables, different approaches 
in large deviation theory are needed (Wainrib  2013 ). 
However, our approach can be adapted to work in 
systems that deviate from several of the other charac-
teristics. For instance, characteristic 1 is not a limitation 
of the quasi-potential framework; Kifer ( 1990 ) describes 
how analogous concepts can be applied to discrete-time 

Markov chains (Kifer  1990 , Faure and Schreiber  2014 ). 
Variable transformations (see  Appendix S1: Section S6 ) 
can be used to compute quasi-potentials for systems 
that deviate from characteristic 3 (e.g. those with noise 
terms of unequal intensity (  𝜎1 ≠𝜎2   ), noise that scales 
with population density (demographic stochasticity; 
  𝜎i

√
Xi dWi   ), or multiplicative environmental stochasticity 

 FIG. 4 .              (a) and (b) are the orthogonal decomposition of the deterministic skeleton of the system  (8) . (a) The “downhill" 
component,   −∇V0   . (b) The “circulatory" component,  Q . Gray disks are stable equilibria. The white disk is an unstable equilibrium. 
(c) and (d) are the orthogonal decomposition of the deterministic skeleton of the system  (8) . The thick gray line is a stable limit 
cycle. 
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(  𝜎iXi dWi   ) (Hakoyama and Iwasa  2000 )). Perturbations 
to parameters rather than state variables can be 
 accommodated by explicitly modeling the parameter as 
a state variable with its own differential equation (Allen 
 2007 ). A similar approach can be applied to models 
with colored noise (i.e., models that do not have char-
acteristic 5). The noise process itself can be explicitly 
modeled as a state variable with its own differential 
equation (e.g., an Ornstein-Uhlenbeck process). 
Unfortunately, increasing the dimensionality of the state 
space in these ways makes the process of numerically 
calculating the quasi-potential even more challenging. 
Given the pace of development of numerical techniques 
(Cameron  2012 ), however, it is conceivable that solving 
such systems will soon be more practical. 

 Characteristic 6, which states that noise occurs contin-
ually with low intensity, is central to the quasi-potential 
framework. The expressions relating the quasi-potential 
to steady-state probability distributions and mean fi rst 
passage times are based on the assumption that the 
noise intensity is very small. As a rule of thumb, these 
approximations are only useful when   𝜎2    is much less 
than   2ΔV0   , where   ΔV0    is the difference in the quasi- 
potential between the stable equilibrium and the saddle. 
In  Appendix S1: Section S8 , we provide details on how 
mean fi rst passage time scales with noise intensity, and 
present a numerical examination of these concepts 
applied to example 2. For systems that experience 
extreme events and external shocks (e.g., natural disas-
ters, extreme climactic conditions, invasive species intro-
ductions, etc.), the quasi-potential no longer provides 
complete information. If a shock directly impacts the 
state variable (e.g., if the lake system in example 1 were 
to receive a massive pulse of phosphorous run-off), the 
ball in the ball-in-cup diagram would experience a large, 
instantaneous horizontal displacement (perhaps skip-
ping over intervening valleys and hills). If the system 
reverts to deterministic dynamics, or stochastic dynamics 
with lower-intensity perturbations after the shock, the 
quasi- potential will still be useful for describing the 
system’s response after the shock. In the presence of 
large shocks, though, the quasi-potential loses its ability 
to make probabilistic predictions. If a shock impacts 
the state variable indirectly (e.g., if an invasive species 
entered the lake and fundamentally altered the phos-
phorous cycling), the shape of the quasi-potential surface 
would change dramatically. The interaction between a 
dynamically changing quasi-potential surface and 
state-variable noise would be diffi cult to analyze using 
the methods presented here. 

 The three examples in this article show that the 
 quasi-potential often provides a more informative sta-
bility metric than traditional linear analysis. Linear 
stability is much easier to measure in the fi eld, though. 
This can be done by slightly perturbing a system and 
measuring the time it takes to return to equilibrium. 
Before the quasi-potential can be calculated, a model 
must be fi t to observed data and validated. This 

limitation is also shared by other methods for analyzing 
systems with alternative stable states, which depend 
explicitly (e.g., Boettiger and Hastings  2012 ) or implicitly 
(e.g., Dakos et al.  2008 ) on underlying models. 
Fortunately, carefully controlled experiments (Dai et al. 
 2012 ) and advances in model-fi tting (Ives et al.  2008 ) 
point toward a promising future for the empirical study 
of shifts between alternative stable states through 
models.  

  A PATH THROUGH THE QUAGMIRE OF STABILITY CONCEPTS 

 Systems with alternative stable states are only inter-
esting when perturbations can cause shifts between 
states; when these stochastic perturbations are continual 
and random, as in most ecological systems, stochastic 
models are appropriate. When state and time variables 
are continuous, stochastic differential equations like 
 (9)  are the best option. The three examples presented 
in this paper show that the quasi-potential provides 
a useful way to study such stochastic differential equa-
tion models. In particular, it provides a way to quantify 
the relative stability of alternative stable states. 

 Unfortunately, many notions of stability were developed 
for a deterministic context, and these can be misleading 
when applied to stochastic systems (as in examples 1 
and 2). Our goal is not to add to the existing tangle of 
stability defi nitions (Grimm and Wissel  1997 ), but rather 
to provide a clarifying mathematical interpretation. 
Many existing defi nitions can be related to the ball-in-
cup heuristic, and the quasi-potential shows that this 
metaphor has a useful and rigorous mathematical mean-
ing. The translation between mathematical model and 
potential surface is easy in gradient systems (in particu-
lar, for one-dimensional systems, which are always gra-
dient systems). The translation for more general systems 
is less obvious, but the quasi-potential fi lls that need. 

 Figure  5 a is a ball-in-cup diagram of the potential 
for a one-dimensional system that helps to illustrate 
several important concepts associated with stability. 
These concepts are equally relevant for higher dimen-
sional systems, where the ball rolls on a multi-dimen-
sional surface specifi ed by   V0    (half the Freidlin-Wentzell 
quasi-potential) instead of a curve. 

  One metric of stability for an equilibrium   e0    is the 
curvature of   V0    at   e0    (dashed black line in Fig.  5 a). The 
greater the curvature, the more diffi cult it is to perturb 
the system away from   e0   , and in this sense, the more 
stable   e0    is. In one dimension, the curvature at   e0    is 
  V′′(e0)   , which is minus the eigenvalue obtained in linear 
stability analysis. In higher dimensions, the eigenvalues 
are again directly related to curvature, now along 
 different planar sections of   V0    (see  Appendix S1: Section 
S7 ). Thus, measuring the curvature of   V0    at   e0    is equiv-
alent to determining asymptotic stability through linear 
stability analysis. 

 Asymptotic stability has a long history in ecology 
(May  1973) . The primary problem with this metric is 
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that it is purely local – once a trajectory is perturbed 
outside of a tiny neighborhood of an equilibrium, non-
linear effects can come into play and the approximation 
is no longer informative. Furthermore, this approach 
views perturbations as being isolated one-time events. 
With this view, a system is displaced, and then the 
dynamics proceed deterministically without further per-
turbation. In reality, perturbations often take place on 
a continual basis. Indeed, as noted by Ives ( 1995 ), “To 
apply generally to ecological communities, stability 
needs to be defi ned for stochastic systems in which 
environmental perturbations are continuous and equi-
librium densities are never achieved.” Likewise, Neubert 
and Caswell ( 1997 ) write, “real ecosystems are seldom 
if ever subject to single, temporally isolated perturba-
tions. Nevertheless, our analyses, together with most 
theoretical and experimental studies of resilience, ignore 
the effects of continual stochastic disturbances in the 

hope that the deterministic results will shed light on 
the stochastic case.” 

 A second metric of stability of an equilibrium   e0    is 
the minimum distance between   e0    and the boundary of 
its domain of attraction (dotted line in Fig.  5 a). The 
width of the basin of attraction measures the magnitude 
of perturbation that a system can sustain and still be 
guaranteed to return to   e0   . One problem with this metric 
is that, like asymptotic stability, it views perturbations 
as singular, isolated events. For this metric, it is only 
the boundary of basins of attraction that matter, not 
the shape or height of   V0   . If perturbations happen con-
tinuously, the shape and height of the   V0    are important. 
Nonetheless, this basin width metric can be extremely 
useful. 

 A third metric of stability is the height of   V0    (gray 
line in Fig.  5 a). Holling ( 1973 ) anticipated this concept, 
and called it resilience, which he explained with 

 FIG. 5 .              (a) A schematic diagram of the relationship between various concepts of stability, as related to the quasi-potential and   V0   . 
(b) A comparison of three different metrics of stability for the system  (8) . 
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ball-in-cup diagrams. He defi nes one aspect of resilience, 
writing: “the height of the lowest point of the basin of 
attraction … will be a measure of how much the forces 
have to be changed before all trajectories move to extinc-
tion of one or more of the state variables.” Holling had 
no way of defi ning the surface, and so could not actually 
quantify notions like “height”; the quasi-potential solves 
this problem. Holling's identifi cation of the difference 
between asymptotic stability and this defi nition of resil-
ience (basin height) is hugely important, and it has major 
consequences for the analysis of alternative stable states. 

 This third metric is perhaps the most useful of the 
three we have explored. Unlike the fi rst two metrics, it 
is appropriate for use in systems that undergo contin-
uous stochastic perturbations. As we saw in the examples 
in this paper, it can be used to compute mean fi rst 
passage times, and is directly related to steady-state 
probability densities. 

 These three metrics of stability can yield confl icting 
information about alternative stable states. Figure  5 b 
shows these three metrics for the equilibria   eA    and   eB    
from example 2. Note that the basin width metric and 
the quasi-potential metric show that   eA    is more stable 
than   eB   , but the asymptotic stability metric shows the 
reverse. 

  Appendix S1: Section S9  demonstrates that the equi-
libria in a multi-stable system can exhibit any combi-
nation of the three stability metrics. That is, one 
equilibrium can be classifi ed as most stable according 
to the fi rst metric, but not the second or third; or by 
the fi rst and second, but not the third; etc. 

 Resilience is a concept closely related to stability, and 
like stability, it is defi ned in different ways by different 
authors. In a large review of the ecological literature, 
Myers-Smith et al. ( 2012 ) found that resilience was used 
in many ambiguous and contradictory ways. Some 
authors, like Holling ( 1973 ) view stability and resilience 
as distinct properties; others, like Harrison ( 1979 ) defi ne 
resilience as a single aspect of stability. Pimm ( 1984 ) 
and Neubert and Caswell ( 1997 ) defi ne resilience as 
essentially the asymptotic stability metric, while Harrison 
( 1979 ), Peterson et al. ( 1998 ), and Gunderson ( 2000 ) 
defi ne it as essentially the basin width metric. Ives and 
Carpenter ( 2007 ) defi nes Holling's resilience using the 
dominant eigenvalue of the saddle that separates alter-
native stable states; like the asymptotic stability metric, 
this is the result of applying a local analysis to the 
deterministic skeleton of a system. 

 Hodgson et al. ( 2015 ) argue that resilience cannot be 
quantifi ed by a single metric, and use a potential function 
to illustrate the different components of resilience, which 
include latitude (the width of the basin of attraction) 
and elasticity (the asymptotic stability metric). The 
 quasi-potential framework aids this clarifi cation about 
resilience by extending it to multi-dimensional systems. 

 The quasi-potential is also useful for understanding 
several other concepts related to stability. Reactivity 
(Neubert and Caswell  1997 ) differs from asymptotic 

stability, in that it quantifi es the immediate (as opposed 
to long-term) growth or decay of perturbations. In the 
quasi-potential framework, reactivity is related to the 
circulatory component of the vector fi eld. In the neigh-
borhood of asymptotically stable equilibria with high 
reactivity, the circulatory component of the vector fi eld 
will carry trajectories away from the equilibrium before 
bringing them back. 

 Harrison ( 1979 ) defi ned resistance as the ability of a 
system to avoid displacement during a time of stress. 
The stress is quantifi ed in terms of an environmental 
parameter distinct from the state variables, and hence 
the interpretation of resistance depends on the parameter 
under examination. Resistance is best viewed as a meas-
ure of how dramatically   V0    changes due to environmental 
parameter changes. 

 Finally, Harrison defi ned persistence as the ability of 
a system to stay in a given range when continual per-
turbations are applied. He notes that this is the property 
that is most biologically useful, and that stochastic dif-
ferential equations are the best mathematical modeling 
tool to assess it. Unlike his defi nitions of resilience and 
resistance, this defi nition views the dynamics of the 
system as stochastic and subject to continual perturba-
tions. He was unable to venture far with the mathe-
matical analysis for this defi nition, but the quasi-potential 
provides a way forward. Mathematically, persistence 
can be defi ned as the fi rst passage time for a system to 
leave a specifi ed domain, which is directly related to 
the quasi-potential. Thus Harrison's persistence is 
another manifestation of the quasi-potential. 

 Despite the confusing array of stability concepts cur-
rently used in ecology, we believe that the quasi-potential 
concept provides hope for clarity. The three metrics 
associated with the quasi-potential show how many of 
these concepts are deeply related (Fig.  5 a, b). The math-
ematics developed by Freidlin and Wentzell ( 2012 ), 
coupled with numerical advances by Cameron ( 2012 ), 
make the quasi-potential a practical and accessible tool 
for ecologists to study alternative stable states. This 
paper's goal is to demonstrate the utility of the 
 quasi-potential, and to properly position it in terms of 
existing ecological ideas.  
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