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Abstract Autism spectrum disorders (ASDs) are a group of developmental disabilities that
affect social interaction and communication and are characterized by repetitive behaviors.
There is now a large body of evidence that suggests a complex role of genetics in ASDs, in
which many different loci are involved. Although many current population-scale genomic
studies have been demonstrably fruitful, these studies generally focus on analyzing a
limited part of the genome or use a limited set of bioinformatics tools. These
limitations preclude the analysis of genome-wide perturbations that may contribute to the
development and severity of ASD-related phenotypes. To overcome these limitations,
we have developed and utilized an integrative clinical and bioinformatics pipeline
for generating a more complete and reliable set of genomic variants for downstream
analyses. Our study focuses on the analysis of three simplex autism families consisting of
one affected child, unaffected parents, and one unaffected sibling. All members were
clinically evaluated and widely phenotyped. Genotyping arrays and whole-genome
sequencing were performed on each member, and the resulting sequencing data were
analyzed using a variety of available bioinformatics tools. We searched for rare variants
of putative functional impact that were found to be segregating according to de novo,
autosomal recessive, X-linked, mitochondrial, and compound heterozygote transmission
models. The resulting candidate variants included three small heterozygous copy-number
variations (CNVs), a rare heterozygous de novo nonsense mutation in MYBBP1A located
within exon 1, and a novel de novo missense variant in LAMB3. Our work demonstrates
how more comprehensive analyses that include rich clinical data and whole-genome
sequencing data can generate reliable results for use in downstream investigations.

[Supplemental material is available for this article.]

INTRODUCTION

There is a consistent amount of evidence suggesting a complex role of genetics in au-
tism spectrum disorders (ASDs) (Zhao et al. 2007; Betancur 2011; lossifov et al. 2012;
Neale et al. 2012; O'Roak et al. 2012; Zhou and Parada 2012; Bernier et al. 2014;
Robinson et al. 2014; Rothwell et al. 2014; Sugathan et al. 2014; Krumm et al. 2015; Lyon
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and O'Rawe 2015), in which many different loci are involved, but a general understanding
of what leads to ASDs on a molecular and physiological level has not yet emerged. There
is a large collection of putative disease-contributing variants found in small subpopulations
of people with ASDs (Zhou and Parada 2012; Bemier et al. 2014; lossifov et al. 2014;
Ronemus et al. 2014), yet leaving most ASD cases of undetermined etiology. The lack of
generality in these findings may be attributed to many factors, including the phenotypic het-
erogeneity of the disease (Lyon and O'Rawe 2015), the need for larger sample sizes for sta-
tistical studies (lossifov et al. 2012), and the variability in the methodology used to analyze
ASD-related data.

Another important factor contributing to the varying results among studies is the diagno-
sis methodology used for ASDs. Although there are efforts to achieve a clear and consistent
method of diagnosis (Schaefer and Mendelsohn 2013), ASD is by definition a spectrum with
likely many different contributing factors (Johnson et al. 2011). As a consequence of this, a
carefully chosen study cohort is needed for statistical studies to reliably detect shared genet-
ic variants.

Currently, many ASD studies focus on the analysis of microarray and/or exome-sequenc-
ing data for understanding the etiological contributions to and mechanisms of ASDs (Levy
etal. 2011; lossifov et al. 2012, 2014; O'Roak et al. 2012). These analyses are generally ap-
plied to large cohorts, such as those from the Simons Simplex Collection (Fischbach and Lord
2010; Levy etal. 2011), which consists of families with a single affected child, unaffected par-
ents, and at least one unaffected sibling. These large studies generally use and analyze only
one of the high-throughput sequencing technologies, with varying levels of sequence cov-
erage for whole-exome sequencing (WES) or genotyping markers (for genotyping microar-
rays). Furthermore, these studies use only one or a few analysis tools for detecting sequence
variations, which can result in a loss of information in situations where one tool performs
poorly. Although these approaches have led to significant genetic discovery (Zhao et al.
2007; Betancur 2011; Levy et al. 2011; lossifov et al. 2012, 2014; Neale et al. 2012;
O'Roak et al. 2012; Zhou and Parada 2012; Bernier et al. 2014; Robinson et al. 2014;
Rothwell et al. 2014; Sugathan et al. 2014; Krumm et al. 2015; Lyon and O’Rawe 2015),
they are likely to miss-call or simply miss true and disease-relevant genetic variation.
Some tools may perform better on just one or a few areas of the genome, and their perfor-
mance may also differ depending on data set—specific characteristics, which has been stud-
ied previously (O'Rawe et al. 2013). To address these problems, we describe an integrative
clinical and bioinformatics pipeline that makes use of a variety of analysis tools and orthog-
onal high-throughput sequencing technologies to obtain a more complete and reliable set
of candidate ASD variants for validation and downstream functional analysis, resulting in a
collection of different types of variants for a better understanding of the genomic burden
of the three autism probands.

RESULTS

This study consisted of the clinical recruitment of three simplex autism families (Fig. 1) for
phenotyping and whole-genome studies. Human sequence variation spans a variety
of genomic scales, ranging from single nucleotide to megabases and even whole-chro-
mosome differences. Because of the variety of scales and mechanisms that can lead
to variation in human sequence between individuals and populations, a variety of algorithms
are needed to extract genomic signatures at all scales and that represent a wide variety
of variant types. Several variant discovery algorithms and procedures were used during
the course of this study, each designed to detect different classes of human sequence
variants (Fig. 2).
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Figure 1. (A) Pedigree structure of a simplex autism family. For a family to be classified as a simplex autism
family, it has to be composed of one affected child and at least one unaffected sibling, and both parents should
not have obvious autism. Probands and siblings can be either males or females. (B) K21 proband showing no
dysmorphology. (C) Analyzed pedigrees. Two of the families have male probands and unaffected male sib-
lings (K21 and SSC_12605), whereas the third family has a male proband and a female unaffected sibling
(SSC_1259¢).
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Figure 2. A conceptual map of human sequence variation. Here, we show approximate sizes, as well as the
associated signature, of the various different types of human sequence variation that can be currently detected
with whole-genome sequencing (WGS), microarray data, and informatics technologies used in this work. The
frequency axis shows the approximate frequency of the various genetic variation types that are currently
detectable via germline WGS combined with microarray data. Above the visual signatures of the different
types of human sequence variation, the general names of the different informatics software tools for detecting
the variation are noted which include, the Genome Analysis Toolkit (GATK), Scalpel, PennCNV, the estimation
by read depth with single-nucleotide variants (ERDS) CNV caller, and the FreeBayes caller.
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Clinical Presentation

The proband from the Simons Simplex Collection (SSC) pedigree with ID SSC_12596 is an
Asian male who was 4 yr and 11 mo old at the time he was evaluated. He was 102 cm tall,
weighed 18.1 kg with a body mass index (BMI) of 17.4, and his head circumference was
51.6 cm. He is the second child of the quad, which contains a female unaffected sibling of
the same father and mother. No previous miscarriages or medical terminations were report-
ed. According to the Gillberg Optimality Scale, there were no complications during the
pregnancy or at birth, and the proband has never presented febrile or nonfebrile seizures.
He presented abnormal development at ~3 mo and a loss of skills relating to communicative
intent and social engagement has been reported. The proband is considered nonverbal as
he did not formulate phrases at the assessment date and he achieved his first single words at
the age of 30 mo, indicating a word delay. His verbal and nonverbal intelligence quotient
(IQ) tests resulted in a score of 32 and 89, respectively, and his full-scale 1Q test resulted
in a score of 61. According to the results of the Autism Diagnostic Interview-Revised, the
Autism Diagnostic Observation Schedule, and the clinician’s best estimate, the proband
was diagnosed with autism with high certainty. Based on a battery of behavioral and cogni-
tive tests applied to the family (Table 1), this proband had a low number of self-injurious be-
haviors; however, he does have a high-social impairment and inappropriate, stereotyped,
compulsive, restrictive, ritualistic, and sameness behaviors. There is no history of autism in
the family.

The proband from the Simons Simplex Collection pedigree ID SSC_12605 is a non-
Hispanic-white male adolescent whose assessment was carried out at the age of 16 yr and
4 mo. He was 175 cm tall and weighed 100.9 kg, resulting in a BMI of 32.9 (obese), his
head circumference was 60.5 cm. He is the first child of the quad with an unaffected male
sibling of the same father and mother. Four miscarriages or medical terminations were re-
ported. Based on the Gillberg Optimality Scale, he presented four nonoptimal events at
labor (not specified). He has never presented febrile or nonfebrile seizures. He presented

Table 1. Body measurements and 1Q test scores

Test SSC_12596 SSC_2605
Diagnostic classification ADI-R Autism Autism
Diagnostic classification ADOS algorithm Autism Autism
ADOS module 1—no words 4
Certainty of ASD diagnosis 15 15
Verbal 1Q 32 136
Nonverbal IQ 89 108
Full-scale 1Q 61 120
ABC total score 53 34
Stereotyped behavior 7 1
Self-injurious 2 1
Compulsive behavior 6 13
Ritualistic behavior 6 4
Sameness behavior 11 10
Restricted behavior 8 7
Pregnancy optimality 0 4
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abnormal development at ~18 mo but no loss of skills relating to communicative intent and
social engagement has been reported. He is considered verbal, achieved his first single
words at the age of 20 mo and his first phrases at 26 mo with no indication of word or phrase
delay. His verbal and nonverbal 1Q tests resulted in 136 and 108, respectively, and his full-
scale 1Q test resulted in a score of 120. According to the results of the Autism Diagnostic
Interview-Revised, the Autism Diagnostic Observation Schedule, and the clinician’s best es-
timate, SSC_12596 proband was diagnosed with autism with high certainty. According to a
battery of behavioral and cognitive tests applied to the family (Table 1), this proband had a
low number of self-injurious or stereotyped behaviors, he presented some inappropriate, rit-
ualistic, sameness, and restricted behaviors as well as compulsive behaviors. There is no his-
tory of autism in the family.

The proband with ID K21 is a white male child who was recruited for this study at the age
of 8 yrand 11 mo with a previous diagnosis of classical autism with nonsyndromic features;
test results and scales used for diagnosis and phenotypical assessment are not available. He
reached early milestones in normal time. He rolled over at 6 mo and walked at 12 mo but
seemed to undergo regression at ~15 mo of age. He was 135.5 cm, weighted 31.8 kg
and had a head circumference of 53.3 cm. Physical appearance of his eyes, hair, ears, mouth,
palate, nose, and in general his appearance was evaluated as normal (Fig. 1B). He has no his-
tory of heart murmur or fainting, and there are no concerns for hearing or visual impairment
nor for hernia or undescended testis. Ear infections, palate anomalies, breathing problems,
unusual scarring or abnormal wound healing, anemia, immunodeficiency, or platelet dys-
function were not detected. There is no concern about limbs, joints, or spine; he has symmet-
ric muscle development, normal strength, and fluent movement. He has a history of
constipation and encopresis and has difficulty falling and staying asleep. He is the first child
of the quad with an unaffected male sibling of the same father and mother who were 33 and
26 yr old, respectively, at the time the proband was born; there were no concerning expo-
sures to drugs or medications during pregnancy and no acute or chronic illnesses complicat-
ed the pregnancy. The proband was born at 41 wk of gestation with an induced labor and C-
section for CP disproportion. He was 22 in and weighed 9 pounds, 2 ounces at birth and
there were no newborn complications. He has been treated with risperidone and trazodone.
He has had a FMR1 test, which was negative for fragile X syndrome. A comparative genomic
hybridization (CGH) microarray revealed a duplication on Xq13.1 inherited by the mother
and shared by the unaffected sibling. There is no history of autism in close relatives; however,
there are other distant cases of autism and pervasive developmental disorder in male indi-
viduals in the paternal side of the family (Supplemental Fig. 8).

Concordance between Variant Detection Algorithms

In this section, we explore detection reliability by measuring concordance among algorithm
results across all sequenced individuals. Single-nucleotide variants, small insertions or dele-
tions, and the detection of de novo variants of either class were compared across algorithms
applied to raw whole-genome sequencing (WGS) data.

Single-Nucleotide Variants (SNVs) and Small Insertions or Deletions (INDELs)

GATK (the Genome Analysis Toolkit) and FreeBayes (FB) are algorithms that detect both
SNVs and INDELs across the entire sequenced genome; as such, we report here the concor-
dance between these two algorithms in detecting SNVs and INDELs. The observed mean
concordance between GATK and FreeBayes was 79.3% and 56.6% for filtered SNV and
INDEL calls, respectively. After filtering for high-quality variants according to each algo-
rithm’s recommendation (see Methods), concordance between the algorithms increases
by 5.7% and 5.4% for SNVs and INDELs, respectively. Table 2 summarizes the mean per per-
son number of variants called by each algorithm.
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Table 2. Number of variants obtained by each algorithm before and after filtering

Unique to Unique to Intersection
Variants GATK HC FreeBayes Intersection GATK % FreeBayes % %
Raw SNVs 3,911,804 4,216,193 3,593,919 13.7 7 79.3
Filtered 3,403,728 3,714,842 3,255,217 1.9 3.8 84.3
SNVs
Raw INDELs 814,730 790,178 580,335 20.5 229 56.6
Filtered 725,573 720,426 542,982 19.7 20.2 60.1
INDELs

SNVs, single-nucleotide variants.

De Novo Unique SNVs

The mean number of unfiltered unique de novo SNVs (not shared by siblings) detected by
the multinomial analyzer, FreeBayes, and GATK were 65,572, 76,920, and 40,873, respec-
tively. The multinomial analyzer is an algorithm specifically designed to detect de novo
SNVs, whereas additional steps were taken to obtain a list of putative de novo variants using
FreeBayes and GATK. After filtering variants based on each algorithm’s recommendations
(refer to the Methods section for details pertaining to the filtering procedures), the mean
number of variants detected by each caller dropped to 1692, 24,982, and 31,831 for the mul-
tinomial analyzer, FreeBayes, and GATK, respectively. The concordance between the three
algorithms was generally low, with FreeBayes and GATK agreeing on 12.4% of their detect-
ed variants, and all three agreeing on <1% of the total filtered call set, 0.113%. Itis important
to note that the low concordance between the multinomial analyzer and the other algorithms
isinfluenced by the fact that its filtering step considers a “de novo score,” which is something
that the other algorithms do not use for filtering purposes. Thus, the large difference in over-
all call rate makes a comparison of the mean overlapping calls somewhat uninformative, as
the intersection between all three can only be as large as the smallest set. It is for this reason
that the union of the three algorithms was considered during downstream prioritization
steps, rather than the intersection.

De Novo Unique INDELs

De novo INDELs from GATK, FreeBayes, and Scalpel were also compared. The mean num-
ber of de novo INDELs detected by GATK, FreeBayes, and Scalpel per proband before fil-
tering was 52,631, 55,505, and 128, respectively, and after filtering based on each
algorithm’s recommendations, this number dropped to 42,425, 37,210, and 70. The concor-
dance between the three algorithms was, again, low. FreeBayes and GATK agreed on 10.7%
of the total call set, and all three callers agreed on only one variant and only within the subset
of a single family (i.e., there was only one instance in which all three callers found the same
variant). One should keep in mind that the filtering criteria and size of call sets are very dif-
ferent across these three callers, so our a priori expectation is that a low number of calls will
be within the intersection of all three.

Variant Classification and Prioritization for SNVs and INDELs

After obtaining high-quality call sets from the union of filtered variants from all algorithms
and categorizing them according to different disease models, the number of variants was still
too large to proceed to more detailed literature searches and putative functional interpreta-
tions. Filtering variants by CADD (Combined Annotation-Dependent Depletion) score >20
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Table 3. Average number of variants by model before and after filtering

Model Filtered calls CADD >20 1000 Genomes MAF <0.05 Databases
De novo 110,794 46 33 2
X-linked 327,170 1017 153 0
Autosomal recessive 143,578 466 14 0
Compound heterozygous 1380 NA 0 0

CADD, combined annotation-dependent depletion; MAF, multiple alignment format.

and MAF (minor allele frequency) <0.01 from the 1000 Genomes Project reduced the num-
ber of variants for consideration dramatically (Table 3) and the number of compound hetero-
zygous mutations was reduced to zero. However, variants segregating according to the
compound heterozygous model are not necessarily expected to be deleterious on their
own, but may be deleterious in combination with other variants in the same gene on the
same, or different, chromosome.

To narrow the list of possible disease-contributing variants, each call set was annotated
and filtered using various criteria and scores described in the Methods section. Out of the
resulting prioritized variants, an average of 101 per family were localized to intra- or inter-
genic regions (Supplemental Table 1) and only three were located within a gene, one of
which was found to be common in the SSC controls. Thus, by these filtering criteria, two ex-
onic variants were considered as potentially contributing to the disease (Table 4). The genic
variants are described below.

MYBBP1A Stop Gain Variant

A de novo heterozygous nonsense mutation was found on the first exon of MYBBP1A (Chr17:
4,442,191-4,458,926) in pedigree K21 (Fig. 3). This mutation is located at Chr17:4458481, is
a G — A substitution, and is annotated as being highly deleterious with a CADD score of
40, which corresponds to being within the top 0.01% of all possible SNVs in terms of its del-
eteriousness. The variant was not found in dbSNP Human Build 142 (Sherry et al. 2001), the
Exome Variant Server (http:/evs.gs.washington.edu/EVS/) or in any other person in the
Simons Simplex Collection database. One proband from the SSC was found to have a de
novo missense G — T substitution in the same gene located at Chr17:4444853 causing
an Arg — Ser change. Only one person out of 71,164 unrelated individuals from the
Exome Aggregation Consortium (EXAC) (http://exac.broadinstitute.org) is reported to have
this exact same mutation, indicating that this is a very rare variant. As the phenotype of
this person in the EXAC database with the mutation is unknown, and also given that there

Table 4. Final set of single-nucleotide variants

Algorithms
Ref — Alt/ Location Affected that called Pedigree  ExAC allele = CADD
Model effect hg19 gene the variant ID frequency score
De Sub (C—-T) Chrl: LAMB3 FB, MA, SSC_12605 0 22.7
novo missense 209823359 GATK
De Sub (G—A) Chr17: MYBBP1A FB, MA, K21 1/74014 = 40
novo nonsense 4458481 GATK 0.00001351

EXAC, Exome Aggregation Consortium; CADD, combined annotation dependent depletion; FB, FreeBayes; MA,
multinomial analyzer; GATK, Genome Analysis Toolkit.
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Figure 3. Genome Browser Screen view for the read depths in the MYBBP1A stop gain (Chr17:4458481) mu-
tation in the K21 family.

are people with neuropsychiatric conditions in EXAC, no conclusions can be made from this
alone. Sanger sequencing validated this mutation (Supplemental Fig. 1).

LAMB3 Missense Variant

The second de novo mutation detected in the study was found in the SSC_12605 pedigree
and was a missense mutation located at Chr1:209823359 on LAMB3 (Fig. 4). Although this
mutation was reported in a previous autism exome study in the same proband (Table 6;
lossifov et al. 2012), it was not found in any other person contained within the SSC database
and it was not found in any of the other interrogated databases, the Exome Variant Server, or
the EXAC database, making it an ultrarare mutation.

C | — - m mww s -

|

Figure 4. Genome Browser Screen view for the read depths in the LAMB3 missense mutation
(Chr1:209823359), showing 34 reads supporting the variant for the proband in SSC_12605 family.
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Variant Classification and Prioritization for Copy-Number Variations

On average, 1500 unfiltered deletions and 450 unfiltered duplications were detected by
ERDS applied to the WGS data (see Methods section) for each person in the study. After fil-
tering (see Methods section), 150 deletions and 170 duplications were found on average per
person. The number of calls obtained with PennCNV was highly variable, with a mean of
60 unfiltered duplications (SD = 38) and a mean of 80 unfiltered deletions (SD = 29) being
detected. After filtering the variants, only 5% and 20% of all duplications and deletions
were retained, respectively. After annotation, none of the remaining CNVs were identified
as “pathogenic.” However, we detected three CNVs (Figs. 5-7) whose coordinates
(Table 5) are embedded within larger CNVs that have been associated with cognitive dis-
ease. These CNVs were not found in any other unaffected family member. Two out of the
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Figure 5. (A) Genome browser screen view for the read depths in the K21 CNV 3922.1 region of 16 kb. (B) B
allele frequencies (BAF) for lllumina Omni2.5 markers on 3g22.1 region including the markers belonging to the
CNV region detected by ERDS in red. (C) Log R ratio (LRR) values for lllumina Omni2.5 markers on 3922.1 re-
gion including the markers belonging to the CNV region detected by ERDS in red.
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Figure 6. (A) Genome browser screen view for the read depths in the K21 CNV 16p12.3 region of 22 kb. (B) B
allele frequencies (BAF) for lllumina Omni2.5 markers on K21 16p12.3 region including the markers belonging
to the CNV region detected by ERDS in red. (C) Log R ratio (LRR) values for lllumina Omni2.5 markers on K21
16p12.3 region including the markers belonging to the CNV region detected by ERDS in red.

three CNVs were found in pedigree K21; however, only the ERDS algorithm detected them.
As described in the Methods section, PennCNV uses the Log R Ratio (LRR) and B Allele
Frequencies (BAF) to detect a CNV. Different numbers of copies have different clustering
patterns for the LRR and BAF values when plotted. In pedigree K21 (Figs. 5 and 6), both
the LRR and BAF are not properly clustered, suggesting, in this case, that these CNVs
were not detected by PennCNV but were detected by ERDS as true positives, because of
the properties of the microarray data set for this family.

CGH microarray and sequence analysis applied to the proband and his mother revealed
the presence of a maternally inherited duplication spanning several genes (ChrX:69074860-
69512431). The duplication completely overlapped OTUDSA, IGBP1, DGAT2L6, AWATT,
AWAT2, P2RY4, KIF4A, ARR3, GDPD2, RAB41, and PDZD11 and partially overlapped
EDA and DLG3. However, WGS-based CNV analyses revealed that the CNV was also
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Figure 7. Genome Browser Screen view for the read depths in the SSC_12596 CNV 4p16.3 region of 50 kb.
The highlighted region is where the four people bear either a homozygous or heterozygous deletion, only the
proband has a homozygous deletion including the highlighted area plus the two regions indicated by the red
arrows, which could have been generated by inheriting the deleted copy from both parents.

present in the healthy sibling (Supplemental Fig. 6A). PennCNV, which was applied to addi-
tional lllumina microarray data, did not accurately call the breakpoints for this CNV in any of
the three individuals where it was initially detected (mother, proband, sibling), although
its presence was clear from manual inspection of the microarray data (see Supplemental
Fig. 6B).

FMR1 Test

Fragile X testing resulted in a normal number of CGG trinucleotide repeats for the K21 pro-
band. Analysis of WGS data from all probands did not show any significant difference in
CGG-repeat content from the reference genome (Supplemental Figs. 2-5). Traditional clin-
ical fragile X testing does not include sequencing FMR1, thus potentially missing other mu-
tations that can contribute to the development of fragile X syndrome (De Boulle et al. 1993;
Lugenbeel et al. 1995; Wang et al. 1997; Collins et al. 2010; Gronskov et al. 2011; Myrick
etal. 2014). Although the probands in this study did not present any of the common pheno-
typic features of fragile X, a profile of all the CGG repeats present in every person was gen-
erated using WGS data and these profiles are compared with the reference sequence
(Supplemental Figs. 3-5). No point mutations reported in the literature as contributing to
fragile X syndrome (FXS) were found in any of the probands (Myrick et al. 2014); therefore,
no evidence for FXS was found for any of the probands.

Reproducibility of Previous Exome Studies

As different approaches were taken to obtain the variants for each proband, it was of interest
to know whether all of the SSC proband variants detected in the previous exome study, listed
in Table 6 (lossifov et al. 2012), were also detected by the methods used here. In cases where
a variant was missed, this type of analysis will enable us to identify which step of the analysis
pipeline might be responsible. Out of the three previously reported variants, which belong
only to one family (SSC_12605), only one was included in the final list of variants with this
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Table 5. Copy-number variants

Proband Location Genes Type ERDS score
K21 Chr16:19945555-19967579 Intergenic Homozygous deletion 2475.9
K21 Chr3:129763383-129806745 Intergenic Homozygous deletion 3026.58
SSC_596 Chr4:4108476-4159245 Intergenic Homozygous deletion 1525.08

ERDS, estimation by read depth with single-nucleotide variants.

pipeline. Two of the three were lost by GATK after the initial filtering step, but they were still
included in the downstream analysis because FreeBayes and the multinomial analyzer de-
tected and retained them in their call sets. However, they were ultimately discarded after
the CADD score prioritization step, as they were not included in the top 1% most deleterious
variants (<20 CADD score). No small variants were found in the SSC_12596 family, and none
of the variants reported in Table 6 were found in SSC_12596 or K21.

DISCUSSION

Using a single bioinformatics pipeline for the discovery and analysis of sequence variants
stemming from whole-genome sequencing data can result in incomplete data sets. In this
study, we used a range of different software tools for detecting and analyzing human
sequence variation stemming from WGS data, which has enabled the analysis of a more com-
prehensive data set composed of SNVs, INDELs, and CNVs. We found that only using the
GATK pipeline for detecting SNVs would have resulted in a data set that left validated
sequence variants undetected, highlighting the benefits of comprehensive analyses using
aggregated data sets stemming from various detection tools. We have shown that the detec-
tion of CNVs from WGS data is naturally more sensitive, although the accuracy of WGS-based
CNVs was not investigated here, as we did not perform validation experiments for CNVs. Itis
important to note that detecting CNVs from the same biological sample using microarray
data and WGS results in data sets that are rather distinct both in number and in the character-
istics of the CNV signal. Indeed, WGS resulted in an average of 1500 unfiltered deletions and
450 unfiltered duplications per sequenced individual whereas microarray resulted in an aver-
age of 60 unfiltered deletions and 80 unfiltered duplications per sequenced individual.
Despite differences in the number of CNVs detected between microarray and WGS-based
methods, having both data sets allowed for quick and relatively simple comparisons between
these orthogonal technologies. This allowed for the detection of false-negatives and the eval-
uation of potential false-positive calls, as CNVs detected by both technologies can, in cases
where both have adequate data, be used to cross-validate the calls.

Although we found CNVs and SNVs that fit the filtering and annotation criteria described
in the Methods section, there is no obvious connection between any of them and ASDs, so

Table 6. Previous SSC exome study comparison

HC/Filtered FB/Filtered MA/Filtered CADD
Pedigree Location Ref — Alt/effect Gene Type out out out score
SSC_12605 10:103908608 sub (C — T)/missense PPRC1 De novo Yes/no Yes/yes Yes/no 19.5
SSC_12605 1:209823359  sub (C— T)/missense ~ LAMB3 De novo Yes/yes Yes/yes Yes/no 22.7
SSC_12605 3:185993461  sub (C — T)/missense DGKG De novo Yes/no Yes/yes Yes/no 7.5

SSC, Simons Simplex Collection; HC, haplotype caller; FB, FreeBayes; MA, multinomial analyzer; CADD, combined annotation dependent depletion.
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they should be carefully considered only as possible disease-contributing variants that are
in need of further functional analysis. In addition, we did not have the statistical power of
a larger study to be able to associate our variants as contributing factors in the development
of autism, and so our results are restricted to interpretation in the context of the three families
studied here.

Aggregated Data Sets Are More Comprehensive

It is known that different algorithms are better at calling particular types of variants, each ca-
pable of detecting variants others cannot, and that they all usually agree on a subset of re-
liably called regions (O'Rawe et al. 2013). For this reason, the results of different algorithms
were integrated, and instead of considering only the intersection of variants common to all
algorithms, the union of all variant sets was obtained. This enabled the retention of variants
that would have otherwise been excluded due to performing intersections with call sets, as
only variants agreeing among all callers would have been retained. Indeed, one of the steps
in which many variants are lost is during the initial filtering steps applied to each algorithm'’s
raw call set, at which point one can decide how stringent the filter should be. Even recom-
mended filtering parameters resulted in a detectable level of false negatives (i.e., true vari-
ants excluded from the final call set), despite these parameters being optimized for both
sensitivity and specificity. Because the probands included in our study had already been
part of previously reported targeted sequencing experiments, we were able to leverage
available validation data to identify which informatics steps would have resulted in false-neg-
ative calls. Indeed and as stated above, we found that for the GATK HC (haplotype caller) call
set, not all of the previously validated calls (lossifov et al. 2012) passed the first initial recom-
mended filtering steps.

Itis important to note that to measure concordance between the different variant calling
algorithms used in this study, we considered variants in agreement if they match in terms
of the genomic positions where each algorithm made a call. Because of large differences
in INDEL calling and reporting, the same INDEL can sometimes be reported differently
(Assmus et al. 2013). For this reason, the reference and alternative fields were not included
in the analysis of concordance between the different INDEL callers. Another reason for com-
paring callers in this way is based on the large differences seen in multiallelic calls reported
by GATK HC (~30,000) and FreeBayes (~70,000). This nonstandard way of reporting INDELs
has made the comparison between algorithms particularly difficult; thus, the comparisons
performed in this study are approximate. These issues underscore the importance of careful-
ly integrating sets of variants from different variant callers, as simple intersections can dra-
matically reduce the number of true positives even if all callers detect them, as their
representations may be slightly different between the different callers. New tools that stand-
ardize discordant variant reporting into a unified schema have been developed (Tan et al.
2015), and we expect that these tools will aid in the more precise comparison and use of
variants stemming from different callers.

Microarray versus WGS Data for Detecting CNVs

Microarray data provide researches with a cheap yet powerful way of detecting CNVs; how-
ever, depending on the particular technology used as well as the algorithms used to analyze
the generated data, the results can vary widely. Sparse markers in some genomic regions
make it difficult to define accurate breakpoints of detected CNVs, something that is less dif-
ficult with CNVs detected from WGS data. This is due, in part, to the fact that WGS data are
more uniform, having an average coverage of reads which is less variable across the genome.
For this study, we had both types of data for one of the quads, making it possible to call
variants from both sources and compare the results. We found a large degree of variation

Jiménez-Barrén et al. 2015 Cold Spring Harb Mol Case Stud 1: a000422 13 0f 25



Genome-wide variant analysis of ASD families

in terms of the number of CNVs detected per person and also between the two detection
methods used (i.e., WGS-based and DNA microarray—based methods). The genome-wide
sensitivity of CNV detection using WGS is higher, because array-based methods do not
densely cover the entire human genome with markers. We found that having data from these
orthogonal technologies was useful in including or excluding true- or false-positive calls, as
each should show some evidence of a CNV, if one does exist. Thus, in regions where both
technologies had enough data to detect CNVs, discordant calls could be easily resolved
by comparing the data profiles between the two.

Combining Prioritization Methods for More Robust Candidate Lists

Variant prioritization is another potentially delicate and important step in finding candidate
disease-contributing variants. One could detect all true variants from WGS analysis yet still
discount biologically important variants if the pertinent annotations are not used correctly.
When filtering based on annotations that are numerically scaled, filtering threshold values
should generally be strict enough to result in a small number of variants in which functional
studies are feasible, without letting any biologically important variant go unconsidered.
Obtaining this variant set from a single annotation or score is currently not possible, as
each individually lacks the power to filter to a small and manageable set, which could other-
wise be obtained by using multiple annotations for threshold-based filtering. For these rea-
sons, several tools and annotations were combined to make sure that the results were robust
and not due to systematic errors from one prioritization framework. Although two different
frameworks were used, they were only slightly different in their results, likely because the
VEP-GEMINI toolset has more annotations to determine if a variant is deleterious than
does the in-house toolset. Unfortunately, using these two methods, we were unable to
find a single candidate SNV or INDEL variant for the SSC_12596 pedigree. One alternative
would be to use other prioritizing methods, such as the Variant Annotation, Analysis, and
Search Tool (VAAST), which uses an aggregative variant association test that combines
both amino acid substitution (AAS) and allele frequencies and incorporates information
about phylogenetic conservation (Hu et al. 2013). As human variation not only includes small
variations (SNVs and INDELs) and CNVs, but also structural variants and repeats, other soft-
ware tools have to be used on these WGS data to explore other sources of variation that
might contribute to disease.

Diagnostic Yield of ASD Genetic Studies

The diagnostic yield for different studies in the genetics of ASDs have been reported to
range from 6% to 15% (Schaefer and Mendelsohn 2013). This variation depends on many
factors including the type of technology used to generate the data, the tools used, the
type of variants being studied, and the size of the cohort of study. Considering all of these
variables, this pipeline tries to improve the strategies of those different studies by integrating
them in a single pipeline that in principle would be able to improve the yield of diagnosis, as
long as a larger cohort is studied to have statistical power. The diagnostic yield also highly
depends on how many cases of the study would fall into the known autism-associated vari-
ants versus how many will be novel associated variants, but again, a larger cohort would be
necessary to evaluate the improvement of the yield as well as to collect enough evidence to
proceed with further functional analysis.

Putative Candidate Variants

After initial filtering, variant prioritization, and segregation analyses, we found two de novo
missense variants that were annotated as being highly deleterious (as defined by a CADD
score of >20) and rare on the population level (with population allele frequencies <0.01).
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The first variant was found in the proband of the pedigree K21 and it is a stop gain variant in
MYBBP1A, and the second is a missense in LAMB3 found in the proband from the
SSC_12605 pedigree.

Stop Gain in MYBBP1A

MYBBP1A codes for a nucleolar transcriptional regulator that was first identified by its ability
to bind specifically to the MYB proto-oncogene protein (Favier and Gonda 1994). The en-
coded protein is thought to play a role in many cellular processes including response to nu-
cleolar stress, tumor suppression and the synthesis of ribosomal DNA, and many cancers
have been previously associated with MYBBP1A including brain glioma (Maglott et al.
2005). According to UniProt (Magrane and UniProt Consortium 2011), it may activate or re-
press transcription via interactions with sequence-specific DNA-binding proteins and repres-
sion may be mediated at least in part by histone deacetylase activity. It has been shown that
its down-regulation induces apoptosis and mitotic anomalies in mouse embryonic stem cells,
embryonic fibroblasts, and human Hela cells (Mori et al. 2012). The known information about
MYBBP1A does not make any obvious connection to ASDs; however, it has not been possi-
ble to create a homozygous knockout mouse for MYBBP1A and this is thought to happen as
itis essential for early mouse development prior to blastocyst formation (Mori et al. 2012). In
this study, the mutation found in this gene is heterozygous and although healthy heterozy-
gous knockout mice have been reported, it is not clear if those mice had any behavioral phe-
notypes related to autism; further studies are needed before any conclusions about the
relevance of this variant in the etiology of ASDs can be made.

LAMB3

LAMB3 codes for a p subunit laminin that belongs to a family of basement membrane pro-
teins. Together with an a and a y subunit, LAMB3 forms laminin-5. It is known that mutations
in this gene can cause autosomal-dominant amelogenesis imperfecta (Kim et al. 2013), epi-
dermolysis bullosa junctional Herlitz type, and generalized atrophic benign epidermolysis
bullosa, diseases that are characterized by blistering of the skin (Mellerio et al. 1998;
Maglott et al. 2005). According to UniProt (Magrane and UniProt Consortium 2011), its func-
tion is to bind to cells via a high affinity receptor, and laminin is thought to mediate the at-
tachment, migration, and organization of cells into tissues during embryonic development
by interacting with other extracellular matrix components. Again, the known diseases asso-
ciated with this gene do not have an obvious link to autism, but its participation during em-
bryonic development makes it an interesting candidate for further functional studies.

CONCLUSIONS

Although a subset of ASD cases are now better understood, with their genetic contributions
becoming more clear (Zhao et al. 2007; Betancur 2011; lossifov et al. 2012, 2014; Bernier
et al. 2014; Ronemus et al. 2014; Lyon and O'Rawe 2015), the large degree of phenotypic
heterogeneity in ASDs leaves the vast majority of cases still poorly understood. Larger stud-
ies have focused on a subset of variant types, but here we have obtained a broader and more
complete view of all the different types of genomic variation that could be contributing to
the ASD phenotypes observed in this study. By combining different algorithms and variant
prioritization methods, we were able to use the strengths of each and compensate for the
different weaknesses by integrating their results in one computational framework.

There has been special interest in knowing to what extent de novo mutations contribute
to ASD cases (lossifov et al. 2012). In this study, four different variant detection algorithms
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and three different prioritization methods were used to detect de novo variants. This allowed
us to improve detection sensitivity and to reduce the false-negative rate. We also searched
for variants segregating according to other disease transmission models, including autoso-
mal recessive, X-linked, mitochondrial, and compound heterozygote. As expected, the num-
ber of variants detected from each model varies widely (Table 3).

As sequencing technologies improve in accuracy and their operational costs decrease,
large-sequencing studies including thousands of people at higher sequencing depths are
becoming more common. As such, it is useful and perhaps even necessary to design studies
that search for and aim to detect all known variant types and to not just focus on a small sub-
set. We suspect that such studies would, in general, obtain more biologically relevant results
by doing so. However, study design must also consider the cost/benefit balance of sequenc-
ing whole genomes of a large number of people to high-sequence depth, as was done here
with the SSC quads (~75x). The previously reported ideal coverage for accurately detecting
SNVs is 40x-45x where the detection saturates (Ajay et al. 2011). It has recently been shown
that for accurate INDEL detection in personal genomes, whole-genome sequencing cover-
age of 60x may be ideal, at least with 100 base pairs (bp) paired-end reads from Illumina
(Fang et al. 2014). Given the known complexity and heterogeneity of ASDs (Zhao et al.
2007; O'Roak et al. 2012; Bernier et al. 2014), it is clear that a large study capable of obtain-
ing robust statistical signals is needed; yet a study of this magnitude with 60x coverage is still
prohibitively expensive. Our study is useful in terms of contributing a small but rich data set
to larger studies, so that the etiology of ASDs can be better understood. While this study was
being completed, a study was published using the Complete Genomics (CG) platform to
study 85 quartet families with autism (Yuen et al. 2015), although there is a very high
false-negative rate associated with this sequencing technology, at least with the CG v2.0
pipeline (O’'Rawe et al. 2013), and as a consequence the power of this study to detect recur-
rent signals may be relatively low. We provide our study as a more comprehensive analysis of
three simplex autism quads, with the goal of improving genotype accuracy so that down-
stream analyses can take advantage of these rich data sets.

METHODS

Sample Collection and Sequencing

A pilot study of two SSC families (SSC_12605 and SSC_12596) and one Utah family (K21) was
conducted. The SSC was assembled at 13 clinical centers, with the blood drawn from parents
and children (affected and unaffected) sent to the Rutgers University Cell and DNA
Repository (RUCDR) for DNA preparation. WGS was performed at Cold Spring Harbor
Laboratory (CSHL) on the two SSC families using the lllumina HiSeq 2000 platform at an av-
erage coverage of 75x, using paired-end 100-bp reads.

The Utah family had previously undergone fragile X screening and chromosomal micro-
array (CMA) genotyping for the proband and mother at the University of Utah. K21 blood
samples were collected at the Utah Foundation for Biomedical Research, and genomic
DNA was extracted and purified. Finally the DNA was quantified using Qubit dsDNA BR
Assay Kit (Invitrogen) and 1 pg was sent to the CSHL sequencing facility where WGS was per-
formed on the lllumina HiSeq 2000 platform at an average coverage of 40x using paired-end
100-bp reads, and a parallel DNA sample was genotyped with an lllumina Omni2.5 array at
the CHOP core facility.

Clinical and Phenotypic Evaluation for the Simons Simplex Collection Probands

Physical measures such as height, weight, and head circumference were taken for each pro-
band as well as a detailed medical history. To evaluate the pregnancy and birth of each
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proband the Gillberg Optimality Scale (Gillberg and Gillberg 1983) was used; this scale se-
lects certain events that may happen during pregnancy and labor that are considered “non-
optimal” and get scored as a 1 (if they do not occur, they get scored as a 0).

The Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic
Interview Revised (ADI-R) were used by the clinicians to determine whether a proband
may fall in the autism, ASD, or nonspectrum category. The ADI-R is a clinical diagnostic in-
strument for assessing autism; it provides a diagnostic algorithm for autism and focuses on
behavior in three main areas: qualities of reciprocal social interaction; communication and
language; and restricted and repetitive stereotyped interests and behaviors (Lord et al.
1994). The ADOS is a semistructured assessment of communication, social interaction,
and play for individuals suspected of having autism; it consists of four modules, each of which
is appropriate for different developmental and language levels, ranging from nonverbal to
verbally fluent (Lord et al. 2000). Given the age and language level of the probands, module
number 1 for nonverbal individuals was used on proband SSC_12596, and module number 4
was used for proband SSC_12605. Besides ADOS and ADI-R, the diagnosticians were asked
to complete a form in which they indicated how certain they were that the proband was on
the autism spectrum, compiling a 15-point scale ranging from high certainty that the partic-
ipant did not have ASD (1) to high certainty that the participant had autism (15). As all pro-
bands included in the SSC are required to fall somewhere on the autism spectrum, certainty
ratings in this sample may range from 6 (uncertainty whether ASD) to 15 (high certainty of
autism). The verbal, nonverbal, and overall cognitive abilities were measured by applying in-
telligence quotient tests for each ability and are reported in Table 1. The Aberrant Behavior
Checklist (Aman et al. 1985; Kaat et al. 2014) is a rating scale that measures the severity of a
range of problem behaviors commonly observed in individuals with intellectual and devel-
opmental disabilities. Higher scores indicate more inappropriate behavior. The Repetitive
Behavior Scale-Revised (RBS-R) is a measure of repetitive behaviors in young children with
ASDs (Lam and Aman 2007; Mirenda et al. 2010). Items on the RBS-R are scored from 0
(behavior does not occur) to 3 (behavior occurs and is a severe problem) and items are clas-
sified as stereotyped behavior (6 items), self-injurious (8 items), compulsive behavior (8
items), sameness behavior (11 items), and restricted behavior (4 items).

Fragile X Analysis (FMR1 Test)

The pedigree K21 proband was tested for fragile X syndrome, a common inherited form of
intellectual disability and autism spectrum disorder with characteristic phenotypic features,
in which the majority of patients exhibit a massive CGG-repeat expansion mutation in FMR1
that silences the locus (Myrick et al. 2014). To know if the expansion was present, the fragile X
region was amplified by polymerase chain reaction (PCR) using a single chimeric primer setin
which one of the primers is fluorescently labeled (FristStep™ [http:/www.firststepdx.com/]).
The reactions were then separated by capillary electrophoresis on the ABI310x| Genetic
Analyzer and analyzed using the GeneMapper software.

Fragile X syndrome can sometimes be misdiagnosed as only autism in the absence of the
CGG-repeat expansion. However, there are two missense and other point mutations in the
FMR1 gene that have been reported and described as causative of fragile X Syndrome (De
Boulle et al. 1993; Lugenbeel et al. 1995; Wang et al. 1997; Collins et al. 2010; Gronskov
et al. 2011; Myrick et al. 2014). Because missense mutations cannot be detected using
the CGG-repeat test and because WGS data was available for every proband, loci spanning
FMR1 were carefully analyzed to see if any of the probands had any possible disease-contrib-
uting mutation (e.g., p.lle304Asn, p.Gly266Glu, IVS10 + 14C — T, and p.Ser27X). ACGG-re-
peat analysis on the fragile X region (ChrX:146,993,468-147,032,646, http://omim.org/
entry/309550) was also performed for all the probands to confirm that the CGG-repeat
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number was normal compared with the reference genome. This was done by calling variants
and generating a gVCF file with the GATK Haplotype Caller software. The gVCF file contains
all sites in the FMRT gene, whether there is a variant present or not. Using the gVCF file, the
gene sequences were inferred and each CGG trinucleotide was plotted as it appears within
the FMR1 gene region, making evident any subtle difference in the amount or positions of
the CGG repeats (Supplemental Fig. 2). This simple method will only work if the CGG-repeat
size is covered by the read length of the sequencing technology used to sequence the sam-
ples; otherwise it would not align to the reference sequence. However if the reads are not
long enough and few or no reads are aligned, we may still infer the presence of an expansion
if there is an apparent deletion in the 5" UTR of FMRT.

Chromosomal Microarray Analysis (CMA)

The pedigree K21 proband was genotyped using the Affymetrix Cytogenetics Whole-
Genome 2.7 Array, which has a total of 2,141,868 markers across the genome, including
1,742,975 unique nonpolymorphic markers and 398,891 single-nucleotide polymorphism
(SNP) markers. After finding a CNV with unknown pathogenicity on chromosome X, the
mother was also genotyped using the same array to determine if the CNV was inherited.

SNV and INDEL Variant Calling

Before proceeding to analyze the WGS data, the quality of raw sequencing reads was as-
sessed using FastQC (http:/www.bioinformatics.babraham.ac.uk/projects/fastqc/), which
summarizes sequence quality metrics that can indicate whether there was a problem with
the sequencing experiment. This quality control procedure is important, because the quality
of the raw sequencing data needs to be assessed before performing further downstream
analyses. As human genomic variation can range from single-nucleotide changes to
whole-chromosome variations, different analyses need to be performed to retrieve most
of the true variation present in each person. In this study, several software packages were
used in an integrative manner to analyze all the data generated by the different high-
throughput technologies. Raw sequence read quality analysis was performed for all sam-
ples, followed by aligning them to the reference genome. All analysis prior to the use of var-
iant caller software were applied to the data in a lane by lane fashion; this is done to take
account of experimental variation introduced by optical duplicates known to occur in a
lane-specific manner (McKenna et al. 2010).

Whole-Genome Sequence Aligning and Precalling Processes

Whole-genome sequence reads from all samples were aligned, lane by lane, to the GRCh37/
hg19 human reference sequence using BWA-MEM 0.7.5a-r405 software (Li and Durbin
2009) with default parameters, tagging shorter split hits as secondary for compatibility
with Picard tools used downstream from the alignment. Samples from the SSC families
were sequenced to a mean coverage of 75x, with six different lanes per sample used to
achieve this depth. K21 family samples were sequenced to a mean coverage of 40x, ob-
tained by using 3.5 lanes. The resulting alignments were converted to binary format, and
then sorted and indexed using SAMtools version 0.1.19-44428cd (Li et al. 2009).
Duplicated reads were marked and read groups were assigned to each lane using Picard
tools v1.84 (http://sourceforge.net/projects/picard/). The Qualimap version 2.1 software
was used to extract basic statistics on these alignments; Supplemental Document 2 contains
a table with the number of mapped reads and coverage by contig aligned to the reference
genome. Before any variant calling, all alignments were subjected to the GATK Indel
realigner v3.0-0, which was used to correct mapping artifacts that, because of reads aligning
to the edges of INDELs, may look like evidence for SNPs. The GATK Base Quality Score

Jiménez-Barrén et al. 2015 Cold Spring Harb Mol Case Stud 1: a000422 18 of 25


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/

Genome-wide variant analysis of ASD families

Recalibrator was also used to correct systematic errors of sequencing technologies
(McKenna et al. 2010; DePristo et al. 2011; Van der Auwera et al. 2013). Finally all lanes
were merged by sample with Picard tools to generate a ready-to-use alignment.

Variant Detection for SNV and INDELS

After obtaining ready-to-use alignments, four different variant callers were used to analyze
the WGS data for each individual in the three different families. The GATK haplotype caller
v2.8-1 and v3.0-0 and FreeBayes variant caller v9.9.2-43- (Garrison and Marth 2012) were
both used on the ready-to-use alignments (see Whole-Genome Sequence Aligning and
Precalling Processes) to call both SNVs and INDELs. Variants obtained with the GATK
Haplotype Caller were filtered for variant quality using the GATK variant quality score recal-
ibration (VQSR) tool; those obtained with the FreeBayes variant caller were also filtered for
variant quality, and calls with a QUAL score of <30 or with <10 supporting reads were filtered
out. To further support the detection of de novo calls (INDELs and SNVs), two other packag-
es were used. Scalpel, an INDEL variant caller that performs localized micro-assembly to ac-
curately detect mutations (Narzisi et al. 2014), was used in de novo mode considering the
four family members in order to make a decision whether an INDEL was de novo. Only de
novo variants not shared with the sibling were considered. The multinomial analyzer (MA),
a SNV de novo caller (lossifov et al. 2012), was also used; this implements a multinomial mod-
el that also consider all family members of a quad to decide whethera call is a true de novo or
not. The filtering thresholds for MA were set to de novo score >60 and y? P value >0.0001, as
was used in the exome study in which both SSC families were previously analyzed (lossifov
etal. 2012). Variants from the same sample coming from GATK, FreeBayes, Scalpel, and MA
were merged into a single VCF file for downstream analysis. See Supplemental Document 1
for a complete list of the parameters or code used for each of the four algorithms.

Variant Classification and Prioritization

The final set of high-quality calls were divided into different models of inheritance, so that the
way in which the mutations emerged and how they were possibly contributing to the con-
dition could be interrogated. After obtaining model-specific subsets, the variants were
annotated with a combined annotation dependent depletion (CADD) score, a metric that
evaluates the deleteriousness of SNV, as well as INDEL, variants in the human genome.
CADD scores are generated by integrating multiple annotations, including PolyPhen and
SIFT scores, into one metric by contrasting variants that survived natural selection with sim-
ulated mutations (Kircher et al. 2014). Those variants with a CADD score of >20 were kept as
potentially deleterious, and the number of reads supporting each variant was compared
among all family members to decide whether a call was a false positive or not. All variants
were further filtered using a MAF <0.01 from the 1000 Genomes Project (October 2014).
The final set of variants was annotated with in-house tools as well as the ANNOVAR software
(Wang et al. 2010) using the UCSC (Kent et al. 2002) and RefSeq (Raney et al. 2014) gene
tables; the SSC (Basu et al. 2009), Exome Variant Server (http:/evs.gs.washington.edu/
EVS/), and ClinVar databases (Landrum et al. 2014); and the recently released EXAC data-
base (http://exac.broadinstitute.org).

Models

There are several ways in which a disease-contributing genetic variant can be present in an
individual. As we were not only interested in the variants, but also in their origin, they were
divided into different models before prioritization.

Jiménez-Barrén et al. 2015 Cold Spring Harb Mol Case Stud 1: a000422 19 of 25


http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://exac.broadinstitute.org

Genome-wide variant analysis of ASD families

De Novo Model

De novo variants are those that emerge at some stage during the gametogenesis of one of
the parents or embryogenesis of the child, so those mutations will be only present in the off-
spring and not the parents. Only those variants present uniquely in the proband and not in
parents or unaffected sibling were kept for downstream annotation and analysis.

X-Linked

Here only variants on chromosome X are considered. As all of the probands in this study are
males, the only X chromosome copy they have comes from the mother, who by having two X
chromosome copies could be masking the deleteriousness of a mutation, which is then ex-
pressed fully in the male offspring. All X chromosome variants present in the proband inher-
ited from the mother but not present in the healthy sibling or father were kept for
downstream annotation and analysis.

Autosomal Recessive

In this model, a given variant is required to be present in both probands with one copy in-
herited by the mother and the second one from the father. The autosomal recessive variants
found in the healthy sibling are also excluded.

Compound Heterozygous

Sometimes a gene can bear two different heterozygous mutations; one in each chromosom-
al copy, affecting both copies of a gene but not with the same exact mutation, as is the case
for the autosomal recessive model. For this set of variants, only those combinations of het-
erozygous mutations on the same gene and present in the proband were considered.

Mitochondrial

In a similar fashion as chromosome X, it is well known that the mitochondrial DNA is passed
from mother to offspring; however in this case, if a mutation is contributing to the disease the
mother would also be affected so the only mitochondrial mutations considered are under the
de novo model described above.

VEP-GEMINI

The VEP (Variant Effect Predictor)-Genome Mining (GEMINI) (Paila et al. 2013) toolset is a
framework for annotating and prioritizing genomic variants by different criteria. Built-in anal-
ysis tools were used to obtain variants characterized by different classifications: de novo,
compound heterozygous, autosomal recessive, and impact severity. The VEP-GEMINI tool-
set was used to get additional information about each variant, and to compare the results
obtained with the model classifications and prioritizations performed with in-house tools.
The criteria for keeping variants from each classification scheme were for variants to have
a CADD score of >20 or be annotated as having high impact severity for the proband.

Variant Calling for Copy-Number Variants

The estimation by read depth with SNVs (ERDS) software (Zhu et al. 2012) was used with de-

fault parameters to call CNVs from WGS data on each individual. It uses WGS data along with

previously generated VCF files using the read depth and number of contiguous heterozy-

gous and homozygous SNVs to call CNVs. Only calls with an ERDS score of >300 were kept.
Additionally, CNVs were called with the microarray data from pedigree K21, which

was genotyped with an lllumina Omni2.5 array and analyzed with the software package
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PennCNV (Wang et al. 2007). For kilobase-resolution detection of CNVs, PennCNV uses an
algorithm that implements a hidden Markov model, which integrates multiple signal pat-
terns across the genome and uses the distance between neighboring SNPs and the allele
frequency of SNPs. The two signal patterns that it uses are the log R ratio (LRR), which is a
normalized measure of the total signal intensity for two alleles of the SNP, and the B allele
frequency (BAF), a normalized measure of the allelic intensity ratio of two alleles. The com-
bination of both signal patterns is then used to infer copy-number changes in the genome.
Microarrays often show variation in hybridization intensity (genomic waves), which is relat-
ed to the genomic position of the clones, and that correlates to GC content among the
genomic features considered. For adjustment of such genomic waves in signal intensities,
the cal_gc_snp.pl PennCNV program was used to generate a GC model that considered
the GC content surrounding each Illumina Omni2.5 marker within 500 kilobases (kb) on
each side (1 Mb total). The joint-calling algorithm designed for parents-offspring trios
was used, as it is the most accurate of the algorithms in the package for family-based stud-
ies. The hidden Markov model used is contained in the hhall.hmm file provided by the lat-
est PennCNV package, and the custom population frequency of B allele (PFB) file for all
the SNPs in the Illlumina Omni2.5 array was generated from 600 controls, which consist
of 600 unaffected parents from the Simons Simplex Collection (provided by Dr. Stephan
Sanders from Yale University). The GC model described above was also used during
CNV calling.

Chromosome X CNVs were called separately using the — test mode with the —Chrx op-
tion. Using BEDtools (Quinlan and Hall 2010) and in-house tools, consensus CNV calls
were obtained for parents from the two separate trio calling processes that had to be
done for each child in the quad. CNVs were quality filtered by considering the length of
the CNV event (for both algorithms: ERDS and PennCNV) and for microarray data, the num-
ber of SNPs embedded on the CNV region and the number of expected SNPs for that given
region (Supplemental Fig. 5), histocompatibility regions, and centromeric and telomeric re-
gions were also filtered out as it is common to find nonpathogenic variants there (both
algorithms).

For pedigree K21, ERDS and PennCNYV calls were compared and the union of each pipe-
line's set of variants was annotated with in-house tools and the ANNOVAR software (Wang
et al. 2010) using dbVar (Lappalainen et al. 2013), DGV (MacDonald et al. 2014), ClinVar
(Landrum et al. 2014), DECIPHER (Firth et al. 2009), ENCODE (Rosenbloom et al. 2013),
and the SFARI Gene database (Basu et al. 2009) and those variants in which >90% of their
total length overlapped reciprocally with variants found in controls were ruled out. ERDS-fil-
tered output for pedigrees SSC_12596 and SSC_12605 were annotated with the same soft-
ware and criteria.

Sanger Sequencing

Polymerase chain reaction (PCR) primers for the Chr17:4458481(hg19) variant in MYBBP1A
(Supplemental Document 7) were designed to produce a 911-bp amplicon, using Primer3
(http://primer3.sourceforge.net). Primers were obtained from Sigma-Aldrich, and tested
for PCR efficiency with an in-house DNA sample using a Phusion Flash High-Fidelity PCR
Master Mix (Life Technologies). The optimized PCR reaction was then carried out on patient
DNA. PCR products were visually inspected for amplification efficiency using agarose gel
electrophoresis and were purified using the QlAquick PCR Purification Kit (QIAGEN).
Purified products were then diluted to 5-10 ng/pL in water for use with the ABI 3700
sequencer. The resulting *.ab1 sequence files were loaded into the CodonCode Aligner
V5.1.2 for analysis. All sequence traces were manually reviewed to ensure the reliability of
the genotype calls.
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ADDITIONAL INFORMATION

Ethics Statement

Research was carried out in compliance with the Helsinki Declaration. Two of the families an-
alyzed in this study belong to the SSC (referred as SSC_12596 & SSC_12605), and both fam-
ilies were clinically evaluated and extensively phenotyped as well as whole-exome
sequenced for a previous study (lossifov et al. 2012).

The third family (referred to as K21) was recruited to this study at the Utah Foundation for
Biomedical Research (UFBR) where extensive clinical evaluation was performed. Written con-
sent was obtained for phenotyping, use of facial photography, and whole-genome sequenc-
ing through Protocol #100 at the Utah Foundation for Biomedical Research, approved by the
Independent Investigational Review Board, Inc.

Data Deposition and Access

All of the sequence reads have been deposited in NCBI Sequence Read Archive (SRA;
http://www.ncbi.nlm.nih.gov/sra) and are accessible under BioProject PRJNA282537
(BioSamples SAMNO03571202, SAMNO03571214, SAMNO03571217, SAMNO03571219).
Interpreted variants have been submitted to ClinVar (http:/www.ncbi.nlm.nih.gov/
clinvar/) under accession numbers SCV000238497, SCV000238498, SCV000239874,
SCV000239875, and SCV000239876.
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