Skip to main content
. 2016 Mar 25;16(4):437. doi: 10.3390/s16040437

Table 1.

Predictive capabilities of testing dataset from the Arid and Semi-arid Agriculture Institute of China (ASAIC) preprocessing by different method and modeling using the Partial least squares (PLS) or BP neural network (BPNN): correlation coefficient (R2), and root mean square error (RMSE).

Preprocessing Method Model R2 RMSE
MSC BPNN 0.8256 1.9785
SNV BPNN 0.8141 1.8945
MSC PLS 0.8127 1.7269
SNV PLS 0.8116 1.7996
SWS-MSC BPNN 0.8482 1.7940
SWS-SNV BPNN 0.8454 1.7970
SWS-MSC PLS 0.8429 1.7369
SWS-SNV PLS 0.8492 1.7216