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Abstract

This paper is concerned with solving nonconvex learning problems with folded concave penalty. 

Despite that their global solutions entail desirable statistical properties, there lack optimization 

techniques that guarantee global optimality in a general setting. In this paper, we show that a class 

of nonconvex learning problems are equivalent to general quadratic programs. This equivalence 

facilitates us in developing mixed integer linear programming reformulations, which admit finite 

algorithms that find a provably global optimal solution. We refer to this reformulation-based 

technique as the mixed integer programming-based global optimization (MIPGO). To our 

knowledge, this is the first global optimization scheme with a theoretical guarantee for folded 

concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP 

penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over 

the state-of-the-art solution scheme, local linear approximation, and other alternative solution 

techniques in literature in terms of solution quality.
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1. Introduction

Sparse recovery is of great interest in high-dimensional statistical learning. Among the most 

investigated sparse recovery techniques are LASSO and the nonconvex penalty methods, 

especially folded concave penalty techniques (see Fan, Xue and Zou, 2014, for a general 

definition). Although LASSO is a popular tool primarily because its global optimal solution 

is efficiently computable, recent theoretical and numerical studies reveal that this technique 

requires a critical irrepresentable condition to ensure statistical performance. In comparison, 
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the folded concave penalty methods require less theoretical regularity and entail better 

statistical properties (Zou, 2006; Meinshausen and Bühlmann, 2006; Fan, Xue and Zou, 

2014). In particular, Zhang and Zhang (2012) showed that the global solutions to the folded 

concave penalized learning problems lead to a desirable recovery performance. However, 

these penalties cause the learning problems to be nonconvex and render the local solutions to 

be nonunique in general.

Current solution schemes in literature focus on solving a nonconvex learning problem 

locally. Fan and Li (2001) proposed a local quadratic approximation (LQA) method, which 

was further analyzed by using majorization minimization algorithm-based techniques in 

Hunter and Li (2005). Mazumder et al. (2011) and Breheny and Huang (2011) developed 

different versions of coordinate descent algorithms. Zou and Li (2008) proposed a local 

linear approximation (LLA) algorithm and Zhang (2010) proposed a PLUS algorithm. Kim, 

Choi, and Oh (2008) developed the ConCave Convex procedure (CCCP). To justify the use 

of local algorithms, conditions were imposed for the uniqueness of a local solution (Zhang, 

2010; Zhang and Zhang, 2012); or, even if multiple local minima exist, the strong oracle 

property can be attained by LLA with wisely (but fairly efficiently) chosen initial solutions 

(Fan, Xue and Zou, 2014). Huang and Zhang (2012) showed that a multistage framework 

that subsumes the LLA can improve the solution quality stage by stage under some 

conditions. Wang, Kim and Li (2013) proved that calibrated CCCP produces a consistent 

solution path which contains the oracle estimator with probability approaching one. Loh and 

Wainwright (2015) established conditions for all local optima to lie within statistical 

precision of the true parameter vector, and proposed to employ the gradient method for 

composite objective function minimization by Nesterov (2007) to solve for one of the local 

solutions. Wang, Liu and Zhang (2014) incorporated the gradient method by Nesterov 

(2007) into a novel approximate regularization path following algorithm, which was shown 

to converge linearly to a solution with an oracle statistical property. Nonetheless, none of the 

above algorithms theoretically ensure global optimality.

In this paper, we seek to solve folded concave penalized nonconvex learning problems in a 

direct and generic way: to derive a reasonably efficient solution scheme with a provable 

guarantee on global optimality. Denote by n the sample size, and by d the problem 

dimension. Then the folded concave penalized learning problem of our discussion is 

formulated as following:

(1.1)

where Pλ(·) : ℝ → ℝ is a penalty function with tuning parameter λ. Our proposed procedure 

is directly applicable for settings allowing βi to have different λi or different penalty. For 

ease of presentation and without loss of generality, we assume Pλ(·) is the same for all 

coefficients. Function (·) : ℝd → ℝ is defined as a quadratic function, 

, which is an abstract representation of a proper (quadratic) statistical 

loss function with Q ∈ ℝd×d and q ∈ ℝd denoting matrices from data samples. Denote by 

Λ := {β ∈ ℝd : β ≤ b} the feasible region defined by a set of linear constraints with  ∈ 
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ℝd×m and b ∈ ℝm for some proper m : 0 ≤ m < d. Assume throughout the paper that Q is 

symmetric,  is full rank, and Λ is non-empty. Notice that under this assumption, the loss 

function does not have to be convex. We instead stipulate that problem (1.1) is well defined, 

i.e., there exists a finite global solution to (1.1). To ensure the well-definedness, it suffices to 

assume that the statistical loss function (β) is bounded from below on Λ. As we will 

discussed in Section 2.1, penalized linear regression (least squares), penalized quantile 

regression, penalized linear support vector machine, penalized corrected linear regression 

and penalized semiparametric elliptical design regression can all be written in the unified 

form of (1.1). Thus, the problem setting in this paper is general enough to cover some new 

applications that are not addressed in Fan, Xue and Zou (2014). Specifically, the discussions 

in Fan, Xue and Zou (2014) covered sparse linear regression, sparse logistic regression, 

sparse precision matrix estimation, and sparse quantile regression. All these estimation 

problems intrinsically have convex loss functions. Wang, Liu and Zhang (2014) and Loh and 

Wainwright (2015) considered problems with less regularity by allowing the loss functions 

to be nonconvex. Their proposed approaches are, therefore, applicable to corrected linear 

regression and semiparametric elliptical design regression. Nonetheless, both works 

assumed different versions of restricted strong convexity. (See Section 4 for more 

discussions about restricted strong convexity.) In contrast, our analysis does not make 

assumptions of convexity, nor of any form of restricted strong convexity, on the statistical 

loss function. Moreover, the penalized support vector machine problem has been addressed 

in none of the above literature.

We assume Pλ(·) to be either one of the two mainstream folded concave penalties: (i) 

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001), and (ii) minimax 

concave penalty (MCP, Zhang, 2010). Notice that both SCAD and MCP are nonconvex and 

nonsmooth. To facilitate our analysis and computation, we reformulate (1.1) into three well-

known mathematical programs: firstly, a general quadratic program; secondly, a linear 

program with complementarity constraints; and finally, a mixed integer (linear) program 

(MIP). With these reformulations, we are able to formally state the worst-case complexity of 

computing a global optimum to folded concave penalized nonconvex learning problems. 

More importantly, with the MIP reformulation, the global optimal solution to folded concave 

penalized nonconvex learning problems can be numerically solved with a provable 

guarantee. This reformulation-based solution technique is referred to as the MIP-based 
global optimization (MIPGO).

In this paper, we make the following major contributions:

a. We first establish a connection between folded concave penalized nonconvex 

learning and quadratic programming. This connection enables us to analyze the 

complexity of solving the problem globally.

b. We provide an MIPGO scheme (namely, the MIP reformulations) to SCAD and 

MCP penalized nonconvex learning, and further prove that MIPGO ensures global 

optimality.

To our best knowledge, MIPGO probably is the first solution scheme that theoretically 

ascertains global optimality. In terms of both statistical learning and optimization, a global 
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optimization technique to folded concave penalized nonconvex learning is desirable. Zhang 

and Zhang (2012) provided a rigorous statement on the statistical properties of a global 

solution, while the existing solution techniques in literature cannot ensure a local minimal 

solution. Furthermore, the proposed MIP reformulation enables global optimization 

techniques to be applied directly to solving the original nonconvex learning problem instead 

of approximating with surrogate subproblems such as local linear or local quadratic 

approximations. Therefore, the objective of the MIP reformulation also measures the (in-

sample) estimation quality. Due to the critical role of binary variables in mathematical 

programming, an MIP has been well studied in literature. Although an MIP is theoretically 

intractable, the computational and algorithmic advances in the last decade have made an 

MIP of larger problem scales fairly efficiently computable (Bertsimas et al., 2011). MIP 

solvers can further exploit the advances in computer architectures, e.g., algorithm 

parallelization, for additional computational power.

To test the proposed solution scheme, we conduct a series of numerical experiments 

comparing MIPGO with different existing approaches in literature. Involved in the 

comparison are a local optimization scheme (Loh and Wainwright, 2015), approximate path 

following algorithm (Wang, Liu and Zhang, 2014), LLA (Wang, Kim and Li, 2013; Fan, 

Xue and Zou, 2014), and two different versions of coordinate descent algorithms 

(Mazumder et al., 2011; Breheny and Huang, 2011). Our numerical results show that 

MIPGO can outperform all these alternative algorithms in terms of solution quality.

The rest of the paper is organized as follows. In Section 2, we introduce our setting, present 

some illustrative examples, and derive reformulations of nonconvex learning with the SCAD 

penalty and the MCP in the form of general quadratic programs. Section 3 formally states 

the complexity of approximating a global optimal solution and then derives MIPGO. 

Sections 4 and 5 numerically compare MIPGO with the techniques as perWang, Liu and 

Zhang (2014) and Loh and Wainwright (2015) and with LLA, respectively. Section 6 

presents a more comprehensive numerical comparison with several existing local schemes. 

Section 7 concludes the paper. Some technical proofs are given in Section 8, and more 

technical proofs are given in the online supplement of this paper.

2. Setting, Example and Folded Concave Penalty Reformulation

It is worth noting that the abstract form (1.1) evidently subsumes a class of nonconvex 

learning problems with different statistical loss functions. Before we pursue further, let us 

provide a few examples of the loss functions that satisfy our assumptions to illustrate the 

generality of our statistical setting. Suppose that {(xt, yt) : t = 1, …, n} ⊂ ℝd × ℝ is a 

random sample of size n. Let y = (y1, …, yn)T be the n × 1 response vector, and X = (x1, …, 

xn)T, the n × d design matrix. Denote throughout this paper by || · ||2 the ℓ2 norm and by | · | 

the ℓ1 norm.
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2.1. Examples

a. The ℓ2 loss for the least squares problem, formulated as 

. It is easy to derive that the ℓ2-loss can be 

written in the form of the loss function as in (1.1).

b.
The ℓ1 loss, formulated as . In this case, we can 

instantiate the abstract form (1.1) into

where 1 denotes the all-ones vector with a proper dimension.

c. The quantile loss function in a quantile regression problem, defined as

where, for any given τ ∈ (0, 1), we have ρτ(u) := u{τ − (u < 0)}. This problem 

with a penalty term can be written in the form of (1.1) as

d. The hinge loss function of a linear support vector machine classifier, which is 

formulated as . Here, it is further assumed that yt ∈ {−1, 

+1}, which is the class label, for all t = 1, …, n. The corresponding instantiation of 

the abstract form (1.1) in this case can be written as

e. Corrected linear regression and semiparametric elliptical design regression with a 

nonconvex penalty. According to Loh and Wainwright (2015) and Wang, Liu and 

Zhang (2014) both regression problems can be written as general quadratic 

functions and, therefore, they are special cases of (1.1) given that both problems are 

well defined.

2.2. Equivalence of Nonconvex Learning with Folded Concave Penalty to a General 
Quadratic Program

In this section, we provide equivalent reformulations of the nonconvex learning problems 

into a widely investigated form of mathematical programs, general quadratic programs. We 

will concentrate on two commonly-used penalties: the SCAD penalty and the MCP.
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Specifically, given a > 1 and λ > 0, the SCAD penalty (Fan and Li, 2001) is defined as:

(2.1)

where (·) is the indicator function, and (b)+ denotes the positive part of b.

Given a > 0 and λ > 0, the MCP (Zhang, 2010) is defined as:

(2.2)

We first provide the reformulation of (1.1) with SCAD penalty to a general quadratic 

program in Proposition 2.1, whose proof will be given in the online supplement. Let (·, 

·) : ℝd × ℝd → ℝ be defined as

where β = (βi) ∈ ℝd and g = (gi) ∈ ℝd.

Proposition 2.1: Let Pλ(·) = PSCAD, λ(·).

a. The minimization problem (1.1) is equivalent to the following program

(2.3)

b. The first derivative of the SCAD penalty can be rewritten as 

 for any θ ≥ 0.

To further simplify the formulation, we next show that program (2.3), as an immediate result 

of Proposition 2.1, is equivalent to a general quadratic program.

Corollary 2.2: Program (2.3) is equivalent to

(2.4)

Proof: The proof is completed by invoking Proposition 2.1 and the non-negativity of g.

The above reformulation facilitates our analysis by connecting the non-convex learning 

problem with a general quadratic program. The latter has been heavily investigated in 

literature. Interested readers are referred to Vavasis (1991) for an excellent summary on 

computational issues in solving a nonconvex quadratic program.
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Following the same argument for the SCAD penalty, we have similar findings for (1.1) with 

the MCP. The reformulation of (1.1) with the MCP is given in the following proposition, 

whose proof will be given in the online supplement. Let  (·, ·) : ℝd × ℝd → ℝ be 

defined as

Proposition 2.3: Let Pλ(·) = PMCP,λ(·).

a. The model (1.1) is equivalent to the following program

(2.5)

b. For any θ ≥ 0, the first derivative of the MCP can be rewritten as 

where g*(·) : ℝ+ → ℝ is defined as

Immediately from the above theorem is an equivalence between MCP penalized nonconvex 

learning and the following nonconvex quadratic program.

Corollary 2.4: The program (2.5) is equivalent to

(2.6)

Proof: This is a direct result of Proposition 2.3 by noting the non-negativity of g.

With the above reformulations we are able to provide our complexity analysis and devise our 

promised solution scheme.

3. Global Optimization Techniques

This section is concerned with global optimization of (1.1) with the SCAD penalty and the 

MCP. We will first establish the complexity of approximating an ε-suboptimal solution in 

Section 3.1 and then provide the promised MIPGO method in Section 3.2. Note that, since 

the proposed reformulation di3erentiates between solving nonconvex learning with the 

SCAD penalty and solving nonconvex learning with the MCP, we will use MIPGO-SCAD 

or MIPGO-MCP to rule out the possible ambiguity occasionally.
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3.1. Complexity of Globally Solving Folded Concave Penalized Nonconvex Learning

In Section 2, we have shown the equivalence between (1.1) and a quadratic program in both 

the SCAD and MCP cases. Such equivalence allows us to immediately apply existing results 

for quadratic programs to the complexity analysis of (1.1). We first introduce the concept of 

ε-approximate of global optimum that will be used Theorem 3.1(c). Assume that (1.1) has 

finite global optimal solutions. Denote by β* ∈ Λ a finite, globally optimal solution to (1.1). 

Following Vavasis (1992), we call  to be an ε-approximate solution if there exists another 

feasible solution β̄ ∈ Λ such that

(3.1)

Theorem 3.1

a. Denote by Id×d ∈ ℝd×d an identity matrix, and by

(3.2)

the Hessian matrix of (2.4). Let 1 < a < ∞, then  has at least one negative 
eigenvalue (i.e.,  is not positive semidefinite).

b. Denote by

(3.3)

the Hessian matrix of (2.6). Let 0 < a < ∞, then  has at least one negative 
eigenvalue.

c. Assume that (1.1) has finite global optimal solutions. Problem (1.1) admits an 

algorithm with complexity of  to attain an ε-approximate of 
global optimum, where l denotes the worst-case complexity of solving a convex 
quadratic program with 3d variables, and r is the number of negative eigenvalues of 

 for the SCAD penalty, and the number of negative eigenvalues of  for the 
MCP.

Proof: Consider an arbitrary symmetric matrix Θ. Throughout this proof, Θ ⪰ 0 means that 

Θ is positive semidefinite.

Notice  ⪰ 0 only if
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(3.4)

Since 1 < a < ∞, we have n(a−1)Id×d ≻ 0. By Schur complement condition, the positive 

semidefiniteness of  requires that −n(a − 1)−1 ≥ 0, which contradicts with the assumption 1 

< a < ∞. Therefore,  is not positive semidefinite. This completes the proof of (a).

In order to show (b), similarly, we have  ⪰ 0 only if

(3.5)

Since 0 < a < ∞, we have n/aId×d ≻ 0. By Schur complement condition, the positive 

semidefiniteness of  requires that −n/a ≥ 0, which contradicts with the assumption 0 < a < 
∞. Therefore,  is not positive semidefinite, which means  has at least one negative 

eigenvalue. This completes the proof for part (b).

Part (c) can be shown immediately from Theorem 2 in Vavasis (1992), and from the 

equivalence between (1.1) and the quadratic program (2.4) for the SCAD case, and that 

between (1.1) and (2.6) for the MCP case.

In Theorem 3.1(c), the complexity result for attaining such a solution is shown in an abstract 

manner and no practically implementable algorithm has been proposed to solve a nonconvex 

quadratic program in general, or to solve (2.4) or (2.6) in particular.

Pardalos (1991) provided an example for a nonconvex quadratic program with 2r local 

solutions. Therefore, by the equivalence between (2.4) (or (2.6)) for SCAD (or MCP) and 

(1.1), the latter may also have 2r local solutions in some bad (not necessarily the worst) 

cases.

3.2. Mixed Integer Programming-based Global Optimization Technique

Now we are ready to provide the proposed MIPGO, which essentially is a reformulation of 

nonconvex learning with the SCAD penalty or the MCP into an MIP problem. Our 

reformulation is inspired by Vandenbussche and Nemhauser (2005), who provided MIP to a 

quadratic program with box constraints.

It is well known that an MIP can be solved with provable global optimality by solution 

schemes such as the branch-and-bound algorithm (B&B, Martí and Reinelt, 2011). 

Essentially, the B&B algorithm keeps track of both a global lower bound and a global upper 

bound on the objective value of the global minimum. These bounds are updated by B&B by 

systematically partitioning the feasible region into multiple convex subsets and evaluating 

the feasible and relaxed solutions within each of the partitions. B&B then refines partitions 

repetitively over iterations. Theoretically, the global optimal solution is achieved, once the 

gap between the two bounds is zero. In practice, the B&B is terminated until the two bounds 
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are close enough. The state-of-the-art MIP solvers incorporate B&B with additional features 

such as local optimization and heuristics to facilitate computation.

3.2.1. MIPGO for Nonconvex Learning with the SCAD Penalty—Let us introduce a 

notation. For two d-dimensional vectors Φ = (φi) ∈ ℝd and Δ = (δi) ∈ ℝd, a complementarity 

constraint 0 ≤ Φ ⊥ Δ ≥ 0 means that φi ≥ 0, δi ≥ 0, and φiδi = 0 for all i : 1 ≤ i ≤ d. A natural 

representation of this complementarity constraint is a set of logical constraints involving 

binary variables z = (zi) ∈ {0, 1}d:

(3.6)

The following theorem gives the key reformulation that will lead to the MIP reformulation.

Theorem 3.2: Program (2.4) is equivalent to a linear program with (linear) complementarity 
constraints (LPCC) of the following form:

(3.7)

(3.8)

The above LPCC can be immediately rewritten into an MIP. Rewriting the complementarity 

constraints in (3.8) into the system of logical constraints following (3.6), problem (2.4) now 

becomes

(3.9)

(3.10)
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where we recall that  is a properly large constant.

The above program is in the form of an MIP, which admits finite algorithms that ascertain 

global optimality.

Theorem 3.3: Program (3.9)–(3.10) admits algorithms that attain a global optimum in finite 
iterations.

Proof: The problem can be solved globally in finite iterations by B&B (Lawler and Wood, 

1966) method.

The proof in fact provides a class of numerical schemes that solve (3.9)–(3.10) globally and 

finitely. Some of these schemes have become highly developed and even commercialized. 

We elect to solve the above problem using one of the state-of-the-art MIP solvers, Gurobi, 

which is a B&B-based solution tool. (Detailed information about Gurobi can be found at 

http://www.gurobi.com/.)

3.2.2. MIPGO for Nonconvex Learning with the MCP—Following almost the same 

argument for the SCAD penalized nonconvex learning, we can derive the reformulation of 

the MCP penalized nonconvex learning problem into an LPCC per the following theorem.

Theorem 3.4: Program (2.6) is equivalent to the following LPCC:

(3.11)

(3.12)

To further facilitate the computation, Program (3.11)–(3.12) can be represented as

(3.13)
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(3.14)

The computability of a global optimal solution to the above MIP is guaranteed by the 

following theorem.

Theorem 3.5: Program (3.13)–(3.14) admits algorithms that attain a global optimum in 
finite iterations.

Proof: The problem can be solved globally in finite iterations by B&B (Lawler and Wood, 

1966) method.

Combining the reformulations in Section 3.2, we want to remark that the MIP reformulation 

connects the SCAD or MCP penalized nonconvex learning with the state-of-the-art 

numerical solvers for MIP. This reformulation guarantees global minimum theoretically and 

yields reasonable computational expense in solving (1.1). To acquire such a guarantee, we 

do not impose very restrictive conditions. To our knowledge, there is no existing global 

optimization technique for the nonconvex learning with the SCAD penalty or the MCP 

penalty in literature under the same or less restrictive assumptions. More specifically, for 

MIPGO, the only requirement on the statistical loss function is that it should be a lower-

bounded quadratic function on the feasible region Λ with the Hessian matrix Q being 

symmetric. As we have mentioned in Section 2, an important class of sparse learning 

problems naturally satisfy our assumption. In contrast, LLA, per its equivalence to a 

majorization minimization algorithm, converges asymptotically to a stationary point that 

does not differentiate among local maxima, local minima, or saddle points. Hence, the 

resulting solution quality is not generally guaranteed. Fan, Xue and Zou (2014) proposed the 

state-of-the-art LLA variant. It requires restricted eigenvalue conditions to ensure 

convergence to an oracle solution in two iterations with a lower-bounded probability. The 

convergence of the local optimization algorithms by Loh and Wainwright (2015) and Wang, 

Liu and Zhang (2014) both require the satisfaction of (conditions that imply) RSC. To our 

knowledge, MIPGO stipulates weaker conditions in contrast to the above solution schemes.

3.2.3. Numerical Stability of MIPGO—The representations of SCAD or MCP penalized 

nonconvex learning problems as MIPs introduce dummy variables to the original problem. 

These dummy variables are in fact Lagrangian multipliers in the KKT conditions of (2.4) or 

(2.6). In cases when no finite Lagrangian multipliers exist, the proposed MIPGO can result 

in numerical instability. To address this issue, we study an abstract form of SCAD or MCP 

penalized the nonconvex learning problems given as following.
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(3.15)

where M > 0, Λ̃ := {(β, h) : β ∈ Λ, h ∈ ℝd, h ≥ β, h ≥ −β}, and  : Λ̃ × [0, M]d → ℝ is 

assumed continuously differentiable in (β, h, g) with the gradient ∇  being Lipschitz 

continuous. It may easily be verified that (2.4) and (2.6) are both special cases of (3.15). 

Now, we can write out the KKT conditions of this abstract problem as:

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

where ∇β (β, h, g) := ∂ (β, h, g)/∂β, ∇g (β, h, g) := ∂ (β, h, g)/∂g, and ∇h (β, h, g) := 

∂ (β, h, g)/∂h, and where ζ1, ζ2, υ1, υ2 ∈ ℝd and ρ ∈ ℝm are the Lagrangian multipliers that 

we are concerned with. For convenience, the i-th dimension (i = {1, …, d}) of these 

multipliers are denoted as ζ1,i, ζ2,i, υ1,i, υ2,i, and ρi, respectively. Notice that, since  is full-

rank, then ρ is bounded if || || is bounded, where we let ||·|| be an ℓp norm with arbitrary 1 ≤ 

p ≤ ∞. (To see this, observe that  and   is positive definite.)

Theorem 3.6: Denote a global optimal solution to problem (3.15) as (β*, h*, g*). Assume 
that there exists a positive constant C1 such that

Then the Lagrangian multipliers corresponding to this global optimum, υ1, υ2, ζ1, ζ2, and ρ 

satisfy that

(3.22)
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Proof: Recall that Λ is non-empty. Since  is full rank and all other constraints are linear 

and non-degenerate, we have the linear independence constraint qualification satisfied at a 

global solution, which then satisfies the KKT condition. (i) In order to show that υ1 and υ2 

are bounded, with (3.17), we have ||υ1 + υ2|| = ||∇h (β*, h*, g*)|| ≤ C1. Noticing the non-

negativity of υ1 and υ2, we obtain max{||υ1||, ||υ2||} ≤ ||υ1 + υ2|| = ||∇h (β*, h*, g*)|| ≤ C1. 

(ii) To show  is bounded, considering (3.16), || || = ||∇β (β, h, g)+ υ1 − υ2|| ≤ ||∇h (β*, 

h*, g*)|| + ||υ1|| + ||υ2|| ≤ 3C1. (iii) To show that ζ1 and ζ2 are bounded, we notice that, 

immediately from (3.19), ζ1,i ≥ 0; ζ2,i ≥ 0; and ζ1,i · ζ2,i = 0, for all i = 1, …, d. Thus, 

according to (3.18), C1 ≥ ||∇g (β*, h*, g*)|| ≥ ||(max{ζ1,i, ζ2,i}, i = 1, …, d)||. Therefore, ||ζ1|| 

≤ C1 and ||ζ2|| ≤ C1.

With Theorem 3.6, we claim that the Lagrangian multipliers corresponding to a global 

optimal solution cannot be arbitrarily large under proper assumptions. Hence, we conclude 

that the proposed method can be numerically stable. In practice, because ∇F is assumed 

Lipschitz continuous, we can simply impose an additional constraint ||β||∞ ≤ C in the MIP 

reformulation for some positive constant C to ensure the satisfaction of (3.22). Conceivably, 

this additional constraint does not result in a significant modification to the original problem.

4. Comparison with the Gradient Methods

This section will compare MIPGO with Loh and Wainwright (2015) and Wang, Liu and 

Zhang (2014) when  := . Thus the complete formulation is given as:

(4.1)

where X and y are defined as in Section 2.1. We will refer to this problem as SCAD (or 

MCP) penalized linear regression (LR-SCAD (or -MCP)). To solve this problem, Loh and 

Wainwright (2015) and Wang, Liu and Zhang (2014) independently developed two types of 

computing procedures based on the gradient method proposed by Nesterov (2007). For the 

sake of simplicity, we will refer to both approaches as the gradient methods hereafter, 

although they both present substantial differentiation from the original gradient algorithm 

proposed by Nesterov (2007). To ensure high computational and statistical performance, 

both Loh and Wainwright (2015) and Wang, Liu and Zhang (2014) considered conditions 

called “restricted strong convexity” (RSC). We will illustrate in this section that RSC can be 

a fairly strong condition in LR-SCAD or -MCP problems and that MIPGO may potentially 

outperform the gradient methods regardless of whether the RSC is satisfied.

In Loh and Wainwright (2015) and Wang, Liu and Zhang (2014), RSC is defined differently. 

These two versions of definitions are discussed as below: Let βtrue = (βtrue,i) ∈ ℝd be the true 

parameter vector and k = ||βtrue||0. Denote that . Then according to Loh 

and Wainwright (2015), L(β) is said to satisfy RSC if the following inequality holds:

(4.2)
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for some α1, α2 > 0 and τ1, τ2 ≥ 0. Furthermore, Loh and Wainwright (2015) assumed (in 

Lemma 3 of their paper) that  with α = min{α1, α2} and τ = max{τ1, τ2}, for 

some μ ≥ 0 such that  is convex.

Wang, Liu and Zhang (2014) discussed a different version of RSC. They reformulated (4.1) 

into , where . According to the same 

paper, one can quickly check that L̃(β) is continuously differentiable. Then, their version of 

RSC, as in Lemma 5.1 of their paper, is given as:

(4.3)

for all  for some α3 > 0 and s ≥ k. 

Evidently, this implies that (4.3) also holds for all ||β′−β″||0 ≤ s.

To differentiate the two RSCs, we will refer to (4.2) as RSC1, and to (4.3) as RSC2. A closer 

observation reveals that both RSCs imply that the objective function of the nonconvex 

learning problem is strongly convex in some sparse subspace involving k number of 

dimensions.

Lemma 4.1: Assume that L(β) satisfies RSC1 in (4.2). If k ≥ 1, , and 

 is convex, then

(4.4)

for some α3 > 0, where s = 64k − 1, ∇ (β″) ∈ [n∇L̃(β) + nλ∂|β|]β=β″, and ∂|β| denotes the 
subdifferential of |β|.

The proof is given in the online supplement S3. From this lemma, we know that RSC1, 

together with other assumptions made by Loh and Wainwright (2015), implies (4.4) for 

some s ≥ ||βtrue||0 = k for all k ≥ 1. Similarly for RSC2, if the function L̃ satisfy (4.3), in view 

of the the convexity of λ|β|, we have that  satisfies (4.4) for some s ≥ ||

βtrue||0. In summary, (4.4) is a necessary condition to both RSC1 and RSC2.

Nonetheless, (4.4) can be restrictive in some scenarios. To illustrate this, we conduct a series 

of simulations as following: We simulated a sequence of samples {(xt, yt) : 1 ≤ t ≤ n} 

randomly from the following sparse linear regression model: , for all t = 1, 

…, n, in which d is set to 100, and βtrue = [1; 1; 0d−2]. Furthermore, εt ~ N (0, 0.09) and xt ~ 

(0, Σ) for all t = 1, …, n with covariance matrix Σ = (σij) ∈ ℝd×d defined as σij = ρ|i−j|. 

This numerical test considers only SCAD for an example. We set the parameters for the 

SCAD penalty as a = 3.7 and λ = 0.2.
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We conduct a “random RSC test” to see if the randomly generated sample instances can 

satisfy the RSC condition. Notice that both versions of RSC dictate that the strong convexity 

be satisfied in a sparse subspace that has only k number of significant parameters. In this 

example, we have k = 2. Therefore, to numerically check if RSC is satisfied, we conduct the 

following procedures: (i) we randomly select two dimensions i1, i2 : 1 ≤ i1 < i2 ≤ d; (ii) we 

randomly sample two points β1, β2 ∈ {β ∈ ℝd : βi = 0, ∀i ∉ {i1, i2}}; and (iii) we check if a 

necessary condition for (4.4) holds. That is, we check if the following inequality holds, when 

β1 ≠ β2:

(4.5)

We consider different sample sizes n ∈ {20, 25, 30, 35} and the covariance matrix 

parameters ρ ∈ {0.1, 0.3, 0.5} and constructed twelve sets of sample instances. Each set 

includes 100 random sample instances generated as mentioned above. For each sample 

instance, we conduct 10,000 repetitions of the “random RSC test”. If (4.5) is satisfied for all 

these 10,000 repetitions, we say that the sample instance has passed the “random RSC test”. 

Table 1 reports the test results.

We observe from Table 1 that in some cases the percentage for passing the random RSC test 

is noticeably low. However, with the increase of sample size, that percentage grows quickly. 

Moreover, we can also observe that when ρ is larger, it tends to be more difficult for RSC to 

hold. Figure 1 presents a typical instance that does not satisfy RSC when n = 20 and ρ = 0.5. 

This figure shows the 3-D contour plot of objective function when the decision variable is 

within the subspace {β : βi = 0, ∀i ∉ {19, 20}}. We can see that the contour plot apparently 

indicates nonconvexity of the function in the subspace, which violates (4.5).

We then compare MIPGO with both gradient methods in two sets of the sample instances 

from the table: (i) the one that seems to provide the most advantageous problem properties 

(ρ = 0.1, and n = 35) to the gradient methods; and (ii) the one with probably the most 

adversarial parameters (ρ = 0.5, and n = 20) to the gradient methods. Notice that the two 

gradient methods are implemented on MatLab following the descriptions by Wang, Liu and 

Zhang (2014) and Loh and Wainwright (2015), respectively, including their initialization 

procedures. MIPGO is also implemented on MatLab calling Gurobi (http://

www.gurobi.com/). We use CVX, “a package for specifying and solving convex programs” 

(Grant and Boyd, 2013, 2008), as the interface between MatLab and Gurobi. Table 2 

presents our comparison results in terms of computational, statistical and optimization 

measures. More specifically, we use the following criteria for our comparison:

• Absolute deviation (AD), defined as the distance between the computed solution 

and the true parameter vector. Such a distance is measured by ℓ1 norm.

• False positive (FP), defined as the number of entries in the computed solution that 

are wrongly selected as nonzero dimensions.

• False negative (FN), defined as the number of entries in the computed solution that 

are wrongly selected as zero dimensions.
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• objective gap (“Gap”), defined as the difference between the objective value of the 

computed solution and the objective value of the MIPGO solution. A positive value 

indicates a worse relative performance compared to MIPGO.

• Computational time (“Time”), which measures the total computational time to 

generate the solution.

AD, FP, and FN are commonly used statistical criteria, and “Gap” is a natural measure of 

optimization performance. In Table 2, we report the average values for all the above criteria 

out of 100 randomly generated instances aforementioned. From this table, we observe an 

outperformance of MIPGO over the other solution schemes on solution quality for both 

statistical and optimization criteria. However, MIPGO generates a higher computational 

overhead than the gradient methods.

5. Numerical Comparison on Optimization Performance with Local Linear 

Approximation

In this section, we numerically compare MIPGO with local linear approximation (LLA). We 

implement LLA on MatLab. In the implementation, we invoke the procedures of LLA 

iteratively until the algorithm fully converges. This shares the same spirit as the multistage 

procedure advocated by Huang and Zhang (2012). At each iteration, the LASSO subproblem 

is solved with Gurobi 6.0 using CVX (Grant and Boyd, 2013, 2008) as the interface. We 

report in the following a series of comparison results in terms of the optimization accuracy.

5.1. Numerical Tests on A Two-Dimensional Problem

In the following we conduct a numerical test on a two-dimensional LR-SCAD and a two-

dimensional LR-MCP problem. We generate one instance for both of LR-SCAD and LR-

MCP problems through the following procedures: We randomly generate βtrue ∈ ℝ2 with a 

uniformly distributed random vector on [−1, 5]2 and then generate 2 observations xt ~ (0, 

Σ), t ∈ {1, 2}, with covariance matrix Σ = (σij) and σij = 0.5|i−j|. Finally, we compute yt as 

 with εt ~ (0, 1) for all t ∈ {1, 2}. Both the LR-SCAD problem and the LR-

MCP problem use the same set of samples {(xt, yt) : t = 1, 2} in their statistical loss 

functions. The only difference between the two is the different choices of penalty functions. 

The parameters for the penalties are prescribed as λ = 1 and a = 3.7 for the SCAD and λ = 

0.5 and a = 2 for the MCP. Despite their small dimensionality, these problems are noncon-

vex with multiple local solutions. Their nonconvexity can be visualized via the 2-D and 3-D 

contour plots provided in Figure 2(a)–(b) (LR-SCAD) and Figure 3(a)–(b) (LR-MCP).

We realize that the solution generated by LLA may depend on its starting point. Therefore, 

to make a fair numerical comparison, we consider two possible initialization procedures: (i) 

LLA with random initial solutions generated with a uniform distribution on the set [0, 3.5]2 

(denoted LLAr), and (ii) LLA with initial solution set to be the least squares solution 

(denoted by LLALSS). (We will also consider LLA initialized with LASSO in later sections.)

To fully study the impact of initialization to the solution quality, we repeat each solution 

scheme 20 times. The best (Min.), average (Ave.), and worst (Max.) objective values as well 
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as the relative objective difference (gap(%)) obtained in the 20 runs are reported in Table 3. 

Here gap(%) is defined

From the table we have the following observations:

1. LLAr’s performance varies in different runs. In the best scenario, LLA attains the 

global optimum, while the average performance is not guaranteed.

2. LLALSS fails to attain the global optimal solution.

3. LLA with either initialization procedure yields a local optimal solution.

4. MIPGO performs robustly and attains the global solution at each repetition.

Figure 2(c) and Figure 3(c) present the search trajectories (dot dash lines) and convergent 

points (circles) of LLAr for LR-SCAD and LR-MCP, respectively. In both figures, we 

observe a high dependency of LLA’s performance on the initial solutions. Note that the least 

squares solutions for the two problems are denoted by the black squares. Figure 2(d) and 

Figure 3(d) present the convergent points of LLALSS for LR-SCAD and for LR-MCP, 

respectively. LLALSS utilizes the least squares solution (denoted as the black square in the 

figure) as its starting point. This least squares solution happens to be in the neighborhood of 

a local solution in solving both problems. Therefore, the convergent points out of the 20 

repetitions of LLALSS all coincide with the least squares solution. Even though we have n = 

d = 2 in this special case, we can see that choosing the least squares solution as the initial 

solution may lead the LLA to a non-global stationary point. The solutions obtained by 

MIPGO is visualized in Figure 2(b) and 3(b) as triangles. MIPGO generates the same 

solution over the 20 repetitions even with random initial points.

5.2. Numerical Tests on Larger Problems

In the following, we conduct similar but larger-scale simulations to compare MIPGO and 

LLA in terms of optimization performance. For these simulations, we randomly generate 

problem instances as follows: We first randomly generate a matrix T ∈ ℝd×d with the entry 

on i-th row and j-th column uniformly distributed on [0, 0.5|i−j|] and set Σ = T⊤T as the 

covariance matrix. Let the true parameter vector βtrue = [3 2 10 0 1 1 2 3 1.6 6 01×(d−10)]. We 

then randomly generate a sequence of observations {(xt, yt) : t = 1, …, n} following a linear 

model , where xt ~ (0, Σ), and εt ~ (0, 1.44) for all t = 1, …, n. Finally, 

the penalty parameters are λ = 1 and a = 3.7 for SCAD and λ = 0.5 and a = 2 for MCP.

Following the aforementioned descriptions, we generate problem instances with different 

problem sizes d and sample sizes n (with 3 problem instances generated for each 

combination of d and n) and repeat each solution scheme 20 times. For these 20 runs, we 

randomly generate initial solutions for MIPGO with each entry following a uniform 

distribution on [−10, 10]. Similar to the 2-dimensional problems, we also involve in the 

comparison LLA with different initialization procedures: (i) LLA with randomly generated 
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initialization solution whose each entry follows a uniform distribution on [−10, 10] (denoted 

LLAr). (ii) LLA with zero vector as the initial solution (denoted LLA0). (iii) LLA with the 

initial solution prescribed as the solution to the LASSO problem (denoted LLA1). More 

specifically, the LASSO problem used in the initialization of LLA1 is formulated as

(5.1)

where X := (x1, …, xn)⊤, y := (y1, …, yn)⊤, and  at K-th run with 1 ≤ K ≤ 

20. This is designed to examine how sensitive the performance the LLA1 depends on the 

initial estimate. We would also like to remark that, when K = 1, the initial solution for LLA 

will be exactly the least squares solution. We would also like to remark that the LLA 

initialized with LASSO is the solution scheme proposed by Fan, Xue and Zou (2014).

The best (Min.), the average (Ave.), and the worst (Max.) objective values and the relative 

objective differences (gap(%)) of the 20 runs for each instance are reported in the upper and 

lower panels of Table 4 for LR-SCAD and LR-MCP, respectively. Notice that for each 

problem scale, we generate three test instances randomly, but Table 4 only reports one of the 

three instances for each problem size due to the limit of space. Tables S1 and S2 in 

Appendix S4 will complement the rest of the results. According to the numerical results, in 

all instances with different dimensions, MIPGO yields the lowest objective value, and in 

many cases, gap(%) value is nontrivially large. This indicates the outperformance of our 

proposed MIPGO over all counterpart algorithms.

6. Numerical Comparison on Statistical Performance with Local Algorithms

We next examine MIPGO on the statistical performance in comparison with several existing 

local algorithms, including coordinate descent, LLA, and gradient methods. We simulate the 

random samples {(xt, yt), t = 1, …, n} from the following linear model: 

, where we let d = 1001, n = 100, and βtrue,d is the 

intercept. βtrue is constructed by first setting βtrue,d = 0, then randomly choosing 5 elements 

among dimensions {1, …, d − 1} to be 1.5, and setting the other d − 6 elements as zeros. 

Furthermore, for all t = 1, …, n, we let εt ~ N(0, 1.44) and xt ~ (0, Σ) with Σ = (σij) 

defined as σij = 0.5|i−j|. For both LR-SCAD and LR-MCP, we set the parameter a = 2, and 

tune λ the same way as presented by Fan, Xue and Zou (2014). We generate 100 instances 

using the above procedures, and solve each of these instances using MIPGO and other 

solutions schemes, including: (i) coordinate descent; (ii) gradient methods; (iii) SCAD-based 

and MCP-based LLA; and (iv) the LASSO method. The relative details of these techniques 

are summarized as follows:

LASSO: The LASSO penalized linear regression, coded in MatLab that invokes Gurobi 

6.0 using CVX as the interface.

GM1-SCAD/MCP: The SCAD/MCP penalized linear regression computed by the local 

solution method by Loh and Wainwright (2015) on Mat-Lab.
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GM2-SCAD/MCP: The SCAD/MCP penalized linear regression computed by the 

approximate path following algorithm by Wang, Liu and Zhang (2014) on MatLab.

SparseNet: The R-package sparsenet for SCAD/MCP penalized linear regression 

computed by coordinate descent (Mazumder et al., 2011).

Ncvreg-SCAD/-MCP: The R-package ncvreg for MCP penalized linear regression 

computed by coordinate descent (Breheny and Huang, 2011).

SCAD-LLA1/MCP-LLA1: The SCAD/MCP penalized linear regression computed by 

(fully convergent) LLA with the tuned LASSO estimator as its initial solution, 

following Fan, Xue and Zou (2014).

Notice that we no longer involve LLAr and LLA0 in this test, because a similar numerical 

experiment presented by Fan, Xue and Zou (2014) has shown that LLA1 is more preferable 

than most other LLA variants in statistical performance.

Numerical results are presented in Table 5. According to the table, the proposed MIPGO 

approach estimates the (in)significant coefficients correctly in both SCAD and MCP 

penalties, and provides an improvement on the average AD over all the other alternative 

schemes.

To further measure the performance of different schemes, we use the oracle estimator as a 

benchmark. The oracle estimator is computed as following: Denote by xt,i as the i-th 

dimension of the t-th sample xt, and by  the true support set, i.e., . We 

conduct a linear regression using X̂ := (xt,i : t = 1, …, n, i ∈ ) and y := (yt). As has been 

shown in Table 5, MIPGO yields a very close average AD and standard error to the oracle 

estimator. This observation is further confirmed in Figure 4. Specifically, Figures 4.(a) and 4.

(b) illustrate relative the performance of LLA1 and of MIPGO, respectively, in contrast to 

the oracle estimators. We see that MIPGO well approximates the oracle solution. Comparing 

MIPGO and LLA1 from the figures, we can tell a noticeably improved recovery quality by 

MIPGO in contrast to LLA1.

Nonetheless, we would like to remark that, although MIPGO yields a better solution quality 

over all the other local algorithms in every cases of the experiment as presented, the local 

algorithms are all noticeably faster than MIPGO. Therefore, we think that MIPGO is less 

advantageous in terms of computational time.

6.1. A Real Data Example

In this section, we conduct our last numerical test comparing MIPGO, LLA, and the gradient 

methods on a real data set collected in a marketing study (Wang, 2009; Lan et al., 2013), 

which has a total of n = 463 daily records. For each record, the response variable is the 

number of customers and the originally 6397 predictors are sales volumes of products. To 

facilitate computation, we employ the feature screening scheme in Li et al. (2012) to reduce 

the dimension to 1500. The numerical results are summarized in Table 6. In this table, GM1 

and GM2 refer to the local solution methods proposed by Loh and Wainwright (2015) and by 

Wang, Liu and Zhang (2014), respectively. LLA0 denote the LLA initialized as zero. LLA1 

denote the LLA initialized as the solution generated by LASSO. To tune the LASSO, we 
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implement LLA1 choosing the coefficients ω in the LASSO problem (5.1) from the set 

{0.1×nKλ : K = {0, 1, …, 20}} and we select the ω that enables LLA1 to yield the best 

objective value. Here the value of λ is the same as the tuning parameter of SCAD or MCP. 

As reported in Table 6, λ = 0.02 for SCAD, and λ = 0.03 for MCP, respectively. 

Observations from Table 6 can be summarized as following: (i) for the case with the SCAD 

penalty, the proposed MIPGO yields a significantly better solution than all other alternative 

schemes in terms of both Akaike’s information criterion (AIC), Bayesian information 

criterion (BIC), and the objective value. Furthermore, MIPGO also outputs a model with the 

smallest number of parameters. (ii) for the MCP case, both MIPGO and LLA1 outperforms 

other schemes. Yet these two approaches have similar values for AIC and BIC. Nonetheless, 

MIPGO provides a better model as the number of nonzero parameters is smaller than the 

solution generated by LLA1.

7. Conclusion

The lack of solution schemes that ascertain solution quality to nonconvex learning with 

folded concave penalty has been an open problem in sparse recovery. In this paper, we seek 

to address this issue in a direct manner by proposing a global optimization technique for a 

class of nonconvex learning problems without imposing very restrictive conditions.

In this paper, we provide a reformulation of the nonconvex learning problem into a general 

quadratic program. This reformulation then enables us to have the following findings:

a. To formally state the complexity of finding the global optimal solution to the 

nonconvex learning with the SCAD and the MCP penalties.

b. To derive a MIP-based global optimization approach, MIPGO, to solve the SCAD 

and MCP penalized nonconvex learning problems with theoretical guarantee. 

Numerical results indicate that the proposed MIPGO outperforms the gradient 

method by Loh and Wainwright (2015) and Wang, Liu and Zhang (2014) and LLA 

approach with different initialization schemes in solution quality and statistical 

performance.

To the best of our knowledge, the complexity bound of solving the nonconvex learning with 

the MCP and SCAD penalties globally has not been reported in literature and MIPGO is the 

first optimization scheme with provable guarantee on global optimality for solving a folded 

concave penalized learning problem.

We would like to alert the readers that the proposed MIPGO scheme, though being effective 

in globally solving the nonconvex learning with the MCP and SCAD penalty problem, 

yields a comparatively larger computational overhead than the local solution method in 

larger scale problems. (See comparison of computing times in Table 5.) In the practice of 

highly time-sensitive statistical learning with hugh problem sizes, LLA and other local 

solution schemes can work more efficiently. However, there are important application 

scenarios where a further refinement on the solution quality or even the exact global 

optimum is required. MIPGO is particularly effective in those applications, as it is the only 

method that is capable of providing the refinement with theoretical guarantee.
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Finally, we would like to remark that the quadratic programming reformulation of penalized 

least squares with the MCP and SCAD penalty can be further exploited to develop convex 

approximation, complexity analyses, and solution schemes for finding a local solution. 

Those will be the future extensions of the presented work herein.

8. Proofs of Theorems 3.2 and 3.4

In this section, we give proofs of Theorems 3.2 and 3.4.

Proof of Theorem 3.2—Recall that 1 denotes an all-ones vector of a proper dimension. 

The program has a Lagrangian  given as:

where , and 

are Lagrangian multipliers. The KKT condition yields

(8.1)

(8.2)

Since Λ is non-empty and  is full rank, it is easy to check that the linear independence 

constraint qualification is satisfied. Therefore, the global solution satisfies the KKT 

condition. This leads us to an equivalent representation of (2.4) in the form:

(8.3)
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(8.4)

Then, it suffices to show that (8.3)–(8.4) is equivalent to (3.7)–(3.8).

Notice that the objective function (8.3) is immediately

Due to equalities (8.1),

(8.5)

Invoking the complementarity conditions in (8.2), we may have

(8.6)

Therefore, Program (8.3)–(8.4) is equivalent to

(8.7)

which is immediately the desired result.

Proof of Theorem 3.4—The proof follows a closely similar argument as that for Theorem 

3.4. The Lagrangian  of Program (2.6) yields:

(8.8)
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where 1 denotes an all-ones vector of a proper dimension, and where  and 

are Lagrangian multipliers. The KKT condition yields

(8.9)

(8.10)

Since Λ is non-empty and  is full rank, it is easily verifiable that the linear independence 

constraint qualification is satisfied. This means the KKT system holds at the global solution. 

Therefore, Imposing additional constraints (8.9)–(8.10) in program (2.6) will not result in 

inequivalence. Notice that the object function in (2.6) equals

(8.11)

Per (8.9), we obtain

(8.12)

Further noticing (8.10) we obtain

which immediately leads to the desired result.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A sample instance that fails in the random RSC test.
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Fig. 2. 
(a) 3-D contour plots of the 2-dimension LR-SCAD problem and the solution generated by 

MIPGO in 20 runs with random initial solutions. The triangle is the MIPGO solution in both 

subplots. (b) 2-D representation of subplot (a). (c) Trajectories of 20 runs of LLA with 

random initial solutions. (d) Trajectories of 20 runs of LLA with the least squares solution as 

the initial solutions.
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Fig. 3. 
(a). 3-D contour plots of the 2-dimension LR-MCP problem and the solution generated by 

MIPGO in 20 runs with random initial solutions. The triangle is the MIPGO solution in both 

subplots. (b). 2-D representation of subplot (a). (c). Trajectories of 20 runs of LLA with 

random initial solutions. (d). Trajectories of 20 runs of LLA with the least squares solution 

as the initial solutions.
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Fig. 4. 
Comparison between generated solutions and the oracle solutions in AD when (a) solutions 

are generated by LLA1, and (b) solutions are generated by MIPGO. The horizontal axis is 

the AD value of the oracle solution for each simulation, while the vertical axis is the AD of 

generated solutions for the same simulation. The closer a point is to the linear function “y = 

x”, the smaller is the difference between the AD of a generated solution and the AD of the 

corresponding oracle solution.
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Table 1

Percentage for successfully passing the random RSC test out of 100 randomly generated instances.

ρ n = 35 n = 30 n = 25 n = 20

0.1 93% 81% 53% 4%

0.3 94% 76% 39% 9%

0.5 55% 50% 21% 1%
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Table 5

Comparison of statistical performance. “Time” stands for the computational time in second. The numbers in 

parenthesis are the standard errors.

Method
n = 100, d = 1000

AD FP FN Time

LASSO 2.558 (0.047) 5.700 (0.255) 0 (0) 2.332 (0.108)

GM1-SCAD 0.526 (0.017) 0.600 (0.084) 0 (0) 4.167 (0.254)

GM1-MCP 0.543 (0.018) 0.540 (0.073) 0 (0) 4.42 (0.874)

GM2-SCAD 3.816 (0.104) 18.360 (0.655) 0 (0) 3.968 (0.049)

GM2-MCP 0.548 (0.019) 0.610 (0.083) 0 (0) 3.916 (0.143)

SparseNet 1.012 (0.086) 5.850 (1.187) 0 (0) 2.154 (0.017)

Ncvreg-SCAD 1.068 (0.061) 9.220 (0.979) 0 (0) 0.733 (0.007)

Ncvreg-MCP 0.830 (0.045) 3.200 (0.375) 0 (0) 0.877 (0.009)

SCAD-LLA1 0.526 (0.017) 0.600 (0.084) 0 (0) 31.801 (1.533)

MCP-LLA1 0.543 (0.018) 0.540 (0.073) 0 (0) 28.695 (1.473)

MIPGO-SCAD 0.509 (0.017) 0 (0) 0 (0) 472.673 (97.982)

MIPGO-MCP 0.509 (0.017) 0 (0) 0 (0) 361.460 (70.683)

Oracle 0.509 (0.017)
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