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Abstract

A number of brain regions have been implicated in the anxiety disorders, yet none of these regions 

in isolation has been distinguished as the sole or discrete site responsible for anxiety disorder 

pathology. Therefore, the identification of dysfunctional neural networks as represented by 

alterations in the temporal correlation of blood-oxygen level dependent (BOLD) signal across 

several brain regions in anxiety disorders has been increasingly pursued in the past decade. Here, 

we review task-independent (e.g., resting state) and task-induced functional connectivity magnetic 

resonance imaging (fcMRI) studies in the adult anxiety disorders (including trauma- and stressor-

related and obsessive compulsive disorders). The results of this review suggest that anxiety 

disorder pathophysiology involves aberrant connectivity between amygdala-frontal and frontal-

striatal regions, as well as within and between canonical “intrinsic” brain networks - the default 

mode and salience networks, and that evidence of these aberrations may help inform findings of 

regional activation abnormalities observed in the anxiety disorders. Nonetheless, significant 

challenges remain, including the need to better understand mixed findings observed using different 

methods (e.g., resting state and task-based approaches); the need for more developmental work; 

the need to delineate disorder-specific and transdiagnostic fcMRI aberrations in the anxiety 

disorders; and the need to better understand the clinical significance of fcMRI abnormalities. In 

meeting these challenges, future work has the potential to elucidate aberrant neural networks as 

intermediate, brain-based phenotypes to predict disease onset and progression, refine diagnostic 

nosology, and ascertain treatment mechanisms and predictors of treatment response across anxiety, 

trauma-related and obsessive compulsive disorders.
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A neural network approach to the pathophysiology of anxiety disorders

Anxiety and stress disorders have a lifetime prevalence of nearly 30% (1); cost more than 

$42 billion each year - almost 1/3 of the U.S.’s annual mental health costs (2); and impose 

significant suffering and burden on patients (3). For more than three decades, neuroimaging 

work has attempted to uncover the neural basis of anxiety and other psychiatric disorders, 

however no study has yet discovered a single brain region responsible for psychiatric 

pathology as delineated in current nosological systems (4). Therefore, recent research has 

shifted toward the identification of disruptions between regions and in large-scale neural 

networks distributed throughout the brain (5; 6) to better define anxiety pathophysiology. 

Here, we define neural networks as collections of neural regions that function together, in 

the sense that they are statistically dependent on each other (7).

The field of functional connectivity magnetic resonance imaging (fcMRI) - a measure of 

temporally correlated fluctuations in blood oxygen-level dependent (BOLD) signal across 

spatially distributed brain regions - has availed a mapping tool to explore how the brain is 

organized and how that organization may be altered in psychopathology. This tool holds 

great promise; however, its application to the anxiety disorders is still in its relative infancy. 

As such, gaps in the literature remain: disorders and networks are inconsistently represented, 

discrepancies are observed across methods and there are few transdiagnostic investigations. 

Nonetheless, some conclusions can be drawn about common and shared neural network 

aberrations evident in anxiety. Below, we review key studies of task-independent (e.g., 

resting state) and task-induced functional connectivity - in the adult anxiety, trauma- and 

stressor-related and obsessive compulsive disorders1. Overall results of this review are 

summarized in Table 1, in which increased (i.e., more positive or less negative) connectivity 

for patients versus controls is indicated with a red “up” arrow and reduced (i.e., less positive 

or more negative) connectivity for patients versus controls is indicated with a blue “down” 

arrow. In the text, we have grouped the results of our review by connectivity regions/

network, and below each, by anxiety disorder, where sufficient literature exists, ordered 

according to the size of the existing literature on each disorder (largest to smallest).

First, we summarize research on connectivity between amygdala-frontal regions and frontal-

striatal regions (Fig. 1). Of note, coordinated response of these regions is not thought to 

reflect canonical neural network activity – i.e., initially discovered during resting state 

studies, and believed to reflect the inherent organization of the brain. Instead, amygdala-

frontal connectivity includes regions that are frequently implicated in fear extinction and the 

regulation of negative affect - namely, the dorsolateral prefrontal cortex (dlPFC), 

ventrolateral prefrontal cortex (vlPFC) and medial PFC (8–10; see 11 for a meta-analysis of 

emotion regulation connectivity). Frontal-striatal connectivity includes nodes that are 

frequently implicated in reward processing, action selection, habit formation, and motor 

control, such as the orbitofrontal cortex (OFC), striatum (ventral and dorsal), ventral 

pallidum and thalamus. It is important to note that “frontal” connectivity encompasses 

1Obsessive compulsive disorder and post-traumatic stress disorder were considered anxiety disorders at the time the majority of these 
studies were conducted; therefore, we have opted to include research on these disorders in our review.
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several subdivisions (e.g., dorsal and ventral, medial and lateral), which differ in 

connectivity (12; functional and structural connectivity with the amygdala; 13–15). There is 

also some evidence that these subdivisions have distinct functions in relation to negative 

emotions (e.g., appraisal/expression versus regulation; 16) and that trait anxiety dissociates 

dorsal from ventral medial PFC functional connectivity with the amygdala at rest (17). 

However, no study has directly examined the differential and specific contribution of these 

subdivisions in the context of anxiety disorders in terms of network connectivity. Therefore, 

in what follows, we have more generally aggregated these subdivisions into a “frontal” 

grouping (“amygdala-frontal” and “frontal-striatal” and as summarized in Table 1). When 

specified in the original paper, details are provided as to the specific frontal subdivision in 

which aberrant connectivity was observed.

Next, we review research on two canonical neural networks (Fig. 1) that have been 

characterized in the context of resting state studies of spontaneous low-frequency BOLD 

fluctuations (6; 18): the default mode network (DMN), which includes the precuneus, 

posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), and lateral parietal 

cortex (19) and the salience network (SN), which includes the dorsal anterior cingulate 

cortex (dACC), the anterior insula, amygdala and substantia nigra/ventral tegmental area (6; 

20). Because coherence in the DMN and the SN can be observed both when participants are 

at rest and on task (21), these networks have come to be thought of as reflecting intrinsic 

connectivity – i.e., neural regions that “hang together” regardless of a person’s current state 

of mind or task-evoked changes (though resting state itself might be considered as an 

unconstrained and passive but nonetheless, task state; 5). Among intrinsic connectivity 

networks, the DMN is unique in that it is known to activate more while participants are at 

rest than on task; the SN is thought to be engaged by more active processes - e.g., 

responding to external stimuli (22; 23). Other intrinsic neural networks have been identified 

(e.g., the central executive network, CEN; 6), but insufficient literature exists to implicate 

these neural networks in the anxiety disorders – thus, they are not reviewed here.

Finally, we examine how task-based and resting-state connectivity can jointly increase 

understanding of anxiety disorder pathophysiology and how functional connectivity can 

complement our current understanding of aberrant activation in discrete nodes in the anxiety 

disorders (24). We explore the clinical relevance of connectivity findings in the anxiety 

disorders, and discuss open questions for future research.

Amygdala-frontal connectivity

Social anxiety disorder

Reduced amygdala-frontal connectivity has been observed in social anxiety disorder (SAD). 

For instance, in the context of an emotional and neutral word viewing task, greater SAD 

symptom severity was associated with less amygdala connectivity with the vmPFC and OFC 

(25; see also words previously associated with fearful or neutral faces 26; and resting state, 

27; 28). Similarly, using an amygdala seed in a SAD group that exhibited amygdala 

hyperactivation to threat faces, Hahn and colleagues (27) found evidence of reduced 

amygdala connectivity to medial OFC at rest. On the other hand, effective connectivity work 

has found that SAD may be characterized by a positive connection from the OFC to the 
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amygdala during facial emotion and object discrimination tasks, (whereas a negative 

feedback loop was observed in controls; 29). Anatomical connections between the OFC and 

the amygdala may facilitate the implementation of emotion regulation (9; 13; 16). Therefore, 

aberrant connectivity between these regions might underlie impaired emotion regulatory 

function or altered threat processing in SAD.

Abnormal functional connectivity involving the amygdala and more lateral regions of the 

PFC has also been observed in SAD. For instance, SAD participants viewing fearful faces 

showed reduced amygdala connectivity to the dlPFC (and rostral ACC, rACC; 30). 

Additionally, when asked to down-regulate their emotional response to negative self-beliefs, 

SAD participants showed fewer regulatory regions inversely related to amygdala activity - 

including three regions in the dlPFC and two in the vlPFC - suggesting less widespread 

cortical control of amygdala activation (31). Interestingly, amygdala-lateral frontal 

connectivity does not appear to differ between SAD and controls at rest (30; 32), indicating 

some functional specificity.

Generalized anxiety disorder

Etkin and colleagues (33; 34) have found blunting of the normally negative connectivity 

between the pregenual/ventral cingulate and the amygdala in generalized anxiety disorder 

(GAD) during emotional conflict adaptation (33), suggesting impaired emotion regulation 

(see also 35 for evidence of increased vmPFC-amygdala connectivity during rest). In 

addition, participants with GAD showed increased positive connectivity between the 

amygdala and the dlPFC (36). According to the authors, greater amygdala-dlPFC 

connectivity in the GAD group may serve a compensatory function – e.g., cognitive 

strategies to reduce or manage negative emotion. This notion was supported by a negative 

correlation between amygdala-dlPFC connectivity and anxiety symptoms in the GAD group, 

suggesting that – while amygdala-dlPFC connectivity was heightened in patients overall –

patients who were the most anxious engaged this connection the least (36).

Obsessive compulsive disorder

Several studies have identified increased connectivity between the amygdala and the dlPFC 

during face processing and working memory tasks in obsessive compulsive disorder (OCD; 

37; 38); at least one result from the resting state literature (using a graph theoretical 

approach) has, however, suggested reduced connectivity between the amygdala and 

frontoparietal executive/attention areas (39). In OCD, increased amygdala-PFC connectivity 

might signify an overactive cognitive control system, potentially implicated in heightened 

error monitoring and checking behaviors (37).

Post-traumatic stress disorder

Post-traumatic stress disorder (PTSD), which involves decreased activation in the medial 

PFC (implicated in fear extinction and its retention; e.g., 40). may be characterized by 

reduced connectivity between this region and the amygdala on task - e.g., amygdala-vmPFC/

subgenual(s)ACC during a passive face-viewing task (41). Still, other work suggests that 

certain amygdala subregions – i.e., the basolateral amygdala complex - may show increased 
connectivity to the dmPFC at rest (42).
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Summary—Amygdala-medial frontal connectivity is reduced during the viewing of 

emotional stimuli in SAD (and potentially PTSD), suggesting a neural substrate for impaired 

top-down control of threat-processing and impaired emotion regulation in these disorders 

(43–45). Similar results are also observed at rest in SAD. Altered amygdala-lateral PFC 

connectivity, however, may be observed only during emotional tasks and not at rest in SAD. 

Evidence suggests that GAD and OCD may involve increased amygdala-frontal connectivity 

during emotional tasks, in line with prior evidence of different disease pathologies – e.g., 

failures to observe amygdala hyperactivation (46–48) – in these disorders. Given differences 

in dorsal versus ventral frontal connectivity (12; 49), future work may wish to go farther in 

delineating regional distinctions in amygdala-frontal connectivity in the anxiety disorders.

Frontal-striatal connectivity

Obsessive compulsive disorder

Both task-based (induced sadness, 50; conflict processing, 51; see also symptom 

provocation, 52; but see risk aversion, 53) and resting state (54–61; but see 62) studies have 

repeatedly revealed increased functional connectivity between orbitofrontal and striatal 

regions in OCD. Structural abnormalities have also been observed in frontal-striatal regions 

in OCD, though the direction of results has been mixed (63; 64). Recent work suggests that 

heightened frontal-striatal connectivity at rest (e.g., between the caudate and OFC) is also 

evident in first degree relatives of OCD patients (65), suggesting that it may represent a 

marker of risk. By contrast, heightened amygdala-frontal connectivity during a working 

memory task is observed only in OCD patients and not their first degree relatives (38).

Social anxiety disorder and specific phobia

Though the vast majority of work on frontal-striatal connectivity in the anxiety disorders has 

focused on OCD, there is growing evidence of altered frontal-striatal connectivity in SAD 

and specific phobia. Similar to OCD, adults with SAD show greater task-induced functional 

connectivity between the thalamus and the medial frontal cortex, as well as between the 

medial frontal cortex and the basal ganglia (caudate nucleus), when perceiving scrutiny (66). 

Additionally, a resting state study of SAD that used several subcortical striatal seeds 

(caudate, putamen, globus pallidus) showed widespread increased connectivity during 

resting-state throughout medial, orbital, dorsolateral and cingulate regions, including nodes 

within the executive control network and the DMN (32; but see 67, also at rest). In dental 

phobics, Scharmüller and colleagues (68) found evidence of reduced connectivity of the 

basal ganglia (putamen and pallidum) with the ACC and dlPFC when viewing phobia-

relevant pictures.

Summary—Patients with OCD show increased frontal-striatal connectivity across 

emotional and cognitive tasks and during resting state – results that could relate to 

uncontrolled and repetitive cognition and behavior (69). More work is needed to understand 

patterns of altered frontal-striatal connectivity in other anxiety disorders, however initial 

results suggest that SAD may be associated with increased frontal-striatal connectivity both 

on task (i.e., perceiving scrutiny) and while at rest, whereas specific phobia may be 
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associated with reduced connectivity in these regions during symptom provocation, though 

no resting state studies exist for comparison.

Default mode network

Post-traumatic stress disorder

Studies of the DMN –often revealed by connectivity to a PCC seed at rest - have primarily 

been conducted in patients with PTSD as opposed to other anxiety disorders. The PCC is 

thought to be important for integration of past and present information, and its aberrant 

connectivity, may be related to memory impairments and difficulties with contextualization - 

hallmark features of PTSD. The central finding across seed-based resting state studies has 

been evidence of decreased connectivity involving the DMN in PTSD (e.g., PCC-mPFC, 

PCC-lateral parietal cortex, 70; hippocampus-PCC: hippocampus-pgACC, 71; vmPFC-

rACC, PCC-hippocampus, 72) and in acutely traumatized individuals who go on to develop 

symptoms of PTSD (PCC-mPFC, 73). Work examining amplitude of low frequency 

fluctuation (ALFF; 74) and using independent component analysis (ICA; 75; see also 76) 

has found similar results.

Another main finding has been evidence of increased connectivity between the DMN and 

nodes of the SN at rest in PTSD (73; 72; but see 77 for greater negative connectivity). Along 

these lines, Lanius and colleagues (78) found evidence of increased connectivity between the 

dACC (a key node of the SN) and the PCC during script-driven symptom provocation. 

Furthermore, emerging evidence from the resting state literature suggests that connectivity 

between DMN and SN node, the amygdala, may predict the development of PTSD 

symptoms, though the direction of these associations is mixed (79; 80).

Obsessive compulsive disorder

As for PTSD, evidence indicates reduced connectivity within the DMN in OCD (PCC-

mPFC, 81; PCC-middle frontal gyrus, 82; 39; see also 83; but see 58), suggesting a neural 

substrate for altered self-referential processing. Also similar to PTSD, some work has also 

found evidence of increased connectivity between the DMN and the SN in OCD (83; but see 

39).

Social anxiety disorder

SAD has been associated with reduced connectivity of the PCC to the rest of the brain (i.e., 

reduced centrality; 84) and with reduced coherence (regional homogeneity, ReHo) in the 

medial PFC (85). In addition, SAD has been associated with reduced connectivity between 

nodes in the SN (amygdala) and DMN (PCC; 27).

Generalized anxiety disorder and panic disorder

In GAD, older age and increasing anxiety symptoms may be associated with less 

connectivity between the PCC and medial PFC (86). Findings in PD have been inconsistent 

(decreased, 87; and increased, 88).
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Summary—Conducted primarily during resting state, research suggests that the anxiety 

disorders are characterized by reduced DMN connectivity, with the strongest evidence 

available for PTSD and OCD. Evidence also suggests that DMN-SN connectivity is 

increased in PTSD both during symptom provocation and while at rest. Future work may 

wish to determine whether reduced DMN connectivity represents a general liability for or 

marker of anxious psychopathology. Moreover, given evidence of DMN hyperactivity and 

connectivity in depression (89), the DMN might help inform understanding of anxiety- and 

depression-specific processes.

Salience network

Post-traumatic stress disorder

Altered SN connectivity – in particular, amygdala-insula connectivity – has been found to be 

decreased in PTSD when processing emotional images (90) or social signals/faces (91; see 

also 92) but increased at rest (93; using ALFF, 74; see 42 for increased amygdala-dACC). 

Furthermore, some work has found evidence of both increased and decreased connectivity, 

depending on which nodes of the SN are involved (increased amygdala-insula; decreased 

amygdala-dACC, 94). Therefore, while findings point towards SN involvement in PTSD 

pathophysiology, more work is needed to clarify the meaning of discrepant results.

Social anxiety disorder

Reduced SN connectivity has been observed in SAD during the presentation of aversive 

social stimuli (amygdala-insula and amygdala-dACC, 95; insula-dACC, 96) and during 

resting state (amygdala-ACC, 28; but see 32), and may underlie aberrant threat processing 

observed in this disorder (95).

Generalized anxiety disorder

GAD may be associated with increased SN connectivity during the processing of threatening 

faces (97; with comorbid SAD, 98; but see 36). Compared to other anxiety disorders, GAD 

has been less frequently associated with amygdala hyper-reactivity to negative stimuli (46; 

47), which could explain why connectivity effects involving the amygdala may differ for 

GAD.

Panic disorder and obsessive compulsive disorder

PD has been associated with both increased and decreased connectivity between SN seeds 

(i.e., left and right dACC) and somatosensory and superior parietal brain regions (99), 

suggesting an altered system for interpreting bodily signals and assessing homeostasis. In 

OCD there is evidence of hypoconnectivity within the SN (amygdala-dACC) during a task 

involving risk (53).

Summary—The choice of paradigm seems to yield different results in SN connectivity for 

PTSD, with connectivity reduced for task-based studies involving the viewing of emotional 

stimuli but increased during resting state. By contrast, reduced SN connectivity is observed 

in SAD during both the presentation of aversive social stimuli and during resting state; 

GAD, however, may be associated with increased SN connectivity when viewing social 
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stimuli (no resting state studies exist for comparison). There are few studies and results are 

mixed for PD and OCD. Finally, many of the studies examining the SN in anxiety have 

focused on connectivity with the amygdala, which is considered part of the SN by some 

(e.g., 6), but not all (e.g., 100) researchers. Therefore, future work may wish to determine 

whether anxiety-related aberrations in SN connectivity extend beyond the amygdala.

Future Directions and Conclusion

As reviewed above, growing evidence suggests altered brain connectivity across the anxiety 

disorders. Given that connectivity is aberrant across several neural regions (amygdala-

frontal, frontal-striatal) and across several canonical neural networks (DMN, SN), a more 

accurate depiction of anxiety pathophysiology may therefore involve widespread distributed 

disturbances in functional brain organization rather than discrete nodes of over- or under-

activation. However, the potential of fcMRI for understanding anxiety disorder 

pathophysiology should be considered in the context of its limitations and remaining 

unanswered questions.

First, understanding of the functional and clinical relevance of aberrant (increased or 

decreased) patterns of functional connectivity remains poorly defined. This is driven in part 

by the gap between task-independent and task-induced fcMRI approaches, which can yield 

discrepant results (e.g., 101). In addition to contextualizing results in terms of the paradigm 

and analytic approach used, evidence of shared and discrete patterns of connectivity changes 

on task and at rest in the same study may facilitate interpretation. For example, reduced 

amygdala-rACC connectivity both at rest and during threat processing in SAD (30) might 

explain SAD-related hypervigilance that persists even in the absence of threat-related stimuli 

(unprovoked state). On the other hand, reduced amygdala-dlPFC connectivity observed 

during threat but not rest (30; in line with 31) may explain failure to recruit the PFC when 

top-down control is most needed (102) – i.e., as part of exaggerated threat responding in 

SAD. Therefore, conducting both resting state and task-based connectivity studies on the 

same group of individuals will likely advance understanding of anxiety pathophysiology and 

may help reconcile discrepancies. Integrating task-based activation and connectivity findings 

at rest or on task (30; 35) can also give meaning to results. For example, increased dlPFC 

activity in during threat regulation in SAD (102) could at first glance suggest increased 

emotion regulatory engagement; however, in the context of reduced amygdala-dlPFC 

connectivity (30), increased dlPFC activity may signal inefficient emotion regulatory 

control. Linking functional connectivity in anxiety disorders with behavior (103) or 

environmental adversity (104) could also aid in interpretability. Likewise, growing studies 

point to the utility of fcMRI to elucidate treatment mechanisms (105) and to predict 

treatment success – e.g., at baseline - in PD (reduced SN connectivity during fear 

conditioning, 106), SAD (increased amygdala-frontal connectivity at rest, 107) and OCD 

(reduced small-world network efficiency at rest, 108). Therefore, research is beginning to 

expand the significance and interpretability of task-independent and task-dependent 

functional connectivity findings, though more work is needed in these areas.

Second, few fcMRI studies have examined network changes between anxiety-disordered 

adults and children or longitudinally across the lifespan, particularly during childhood 

MacNamara et al. Page 8

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development when neural plasticity and remodeling are most active (109). Among those 

studies that do exist, results suggest increased amygdala-insula connectivity in youth with 

GAD (110; 111; see also 112), as well as less negative/more positive connectivity between 

the amygdala and vlPFC for youth with GAD compared to controls (101) - results that are 

generally consistent with the adult GAD literature (97; 36). On the other hand, among 

patients with OCD ranging in age between 8 to 40 years old, younger patients may exhibit 

less positive connectivity of subcortical regions (thalamus and striatum) with the ACC 

during rest (113), suggesting that the pathophysiology of frontal-striatal connectivity 

changes with age in OCD, and consistent with negative ACC/mPFC-striatal connectivity 

observed in socially anxious adolescents but not adults (114). In healthy individuals, 

subcortical-ACC connectivity goes from positive to negative from childhood to adolescence, 

possibly as a result of synaptic pruning (115) and signifying greater emotion regulation 

capacity (116). Therefore, a more “mature” pattern of functional connectivity between these 

regions at an earlier age in OCD – whether due to biological or environmental (e.g., 117) 

factors – might indicate an aberrant trajectory linked to early disease onset. Collectively, 

these emerging data prompt further investigation into how aging interacts with functional 

network maturation in normal development and anxiety psychopathology.

Third, although similar aberrations in connectivity have been found across several anxiety 

disorders that may differ from patterns observed in other forms of psychopathology (e.g., 

depression, addiction, psychosis; 89; 118; 119), there is insufficient evidence in aggregate to 

point to shared or discrete connectivity abnormalities. Very few studies have incorporated 

multiple diagnostic categories (e.g., 71; 98; 120) or taken a transdiagnostic approach to 

fcMRI in the anxiety disorders. In a study examining both SAD and PD, Demenescu and 

colleagues (121) found that greater amygdala-rACC and amygdala-dmPFC connectivity to 

fearful versus neutral faces was explained not by anxiety diagnosis (SAD or PD), but by 

anxiety symptom severity across all patients, pointing toward a translational account of 

attentional biases and emotion dysregulation in the anxiety disorders (122). The growing 

field of fcMRI along with sufficient number of studies using comparable analytic 

approaches should soon avail the opportunity to aggregate findings across disparate single 

studies into data-driven meta-analyses examining transdiagnostic and disorder-specific 

findings (123). In addition, some networks such as the CEN (i.e., executive control/

frontoparietal network; sometimes including the dorsal attention network; 6; 100; 124) have 

been less studied in anxiety (but see 85; 39) than in other disorders (e.g., depression, 

schizophrenia; 125). However, amygdala-frontal connectivity – discussed above – includes 

nodes within the SN (the amygdala) and the CEN (e.g., the dlPFC). The majority of 

connectivity work to-date has also focused on within-network connectivity and work 

examining connectivity between neural networks is needed (72; 126). Along these lines, 

work that combines both large-scale network connectivity analyses with more localized 

(e.g., seed-based) connectivity analyses might be helpful in bridging literatures and 

aggregating findings.

Fourth, although functional connectivity provides a unique and useful means of examining 

brain organization in the anxiety disorders, it can be difficult to know what fcMRI is 

measuring. That is, functional connectivity is constrained by but does not simply reflect 

anatomical connectivity (5). It depends on an indirect measure of brain activity (BOLD), is 
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subject to confounds such as head movement (127) and respiratory and cardiac artifacts 

(128) and is influenced by recent experience (129) and the subjective state of participants 

(i.e., even while at rest; 5). Moreover, anticorrelations can be particularly difficult to 

interpret (130), although new methods for normalization may help overcome limitations 

(131). Nonetheless, despite these challenges, functional connectivity may be particularly 

relevant for understanding anxiety disorders, precisely because it reflects a combination of 

both anatomic connectivity and experience-driven changes in synaptic efficiency (132). To 

more thoroughly interrogate aberrant functional connectivity in the anxiety disorders, one 

suggestion (5) is that researchers use functional connectivity to generate hypotheses that are 

then followed up using other methods including electrophysiology and neurochemistry (133; 

134) to better understand underlying mechanisms.

Conclusion

In sum, evidence suggests that anxiety disorder pathophysiology involves aberrant functional 

connectivity between disparate nodes, particularly within and between amygdala-frontal and 

frontal-striatal nodes, as well as within canonical default mode and salience networks. As 

advances in study design and analytic approaches continue to address existing gaps in 

knowledge, patterns of functional connectivity elucidated on task and at rest may emerge as 

intermediate, brain-based phenotypes to predict onset and progression of anxiety disorders, 

to help parse phenotypically heterogeneous disorders into more meaningful subgroups, and 

to elucidate mechanisms and predictors of existing and novel therapeutic interventions.
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Figure 1. 
Regions implicated in amygdala-frontal connectivity and frontal-striatal connectivity, as well 

as those involved in intrinsic neural networks, the default mode and salience networks. 

dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; mPFC, medial 

prefrontal cortex; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PFC, 

prefrontal cortex; vlPFC, ventrolateral prefrontal cortex.
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Table 1

Summary of anxiety disorder connectivity findings.

Task Resting State

Amygdala-frontal
SAD ; GAD, OCD SAD

Frontal-striatal
OCD OCD

DMN
PTSD, OCD, SAD

   (DMN-SN)
PTSD

SN
PTSD, SAD ; GAD PTSD

Blue down arrows indicate disorders with reduced (less positive) connectivity compared to controls; red up arrows indicate disorders with greater 
(more positive) connectivity compared to controls. Results reported here reflect those described in the text, where at least 2 studies were in 
agreement. We aggregated “frontal” regions here, but where possible, we note in the text the specific frontal subdivision (ventral, dorsal; medial, 
lateral) in which aberrant connectivity was observed.

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 May 01.


	Abstract
	A neural network approach to the pathophysiology of anxiety disorders
	Amygdala-frontal connectivity
	Social anxiety disorder
	Generalized anxiety disorder
	Obsessive compulsive disorder
	Post-traumatic stress disorder
	Summary


	Frontal-striatal connectivity
	Obsessive compulsive disorder
	Social anxiety disorder and specific phobia
	Summary


	Default mode network
	Post-traumatic stress disorder
	Obsessive compulsive disorder
	Social anxiety disorder
	Generalized anxiety disorder and panic disorder
	Summary


	Salience network
	Post-traumatic stress disorder
	Social anxiety disorder
	Generalized anxiety disorder
	Panic disorder and obsessive compulsive disorder
	Summary


	Future Directions and Conclusion
	Conclusion

	References
	Figure 1
	Table 1

