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Abstract

Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent
subtype being clear-cell RCC (ccRCC). This type of cancer is well characterized at the
genomic and transcriptomic level and is associated with a loss of VHL that results in stabili-
zation of HIF1. The current study focused on evaluating ccRCC stage dependent changes
at the proteome level to provide insight into the molecular pathogenesis of ccRCC progres-
sion. To accomplish this, label-free proteomics was used to characterize matched tumor
and normal-adjacent tissues from 84 patients with stage | to IV ccRCC. Using pooled sam-
ples 1551 proteins were identified, of which 290 were differentially abundant, while 783 pro-
teins were identified using individual samples, with 344 being differentially abundant. These
344 differentially abundant proteins were enriched in metabolic pathways and further exami-
nation revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the
protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of
FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array
data on 47 pairs of these same tissues indicated similar upstream changes, such as
increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1
inhibition were not predicted from the transcriptomic data. The activation of ESRRA and
ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was
confirmed in the transcriptional analysis. This combined analysis highlights the importance
of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential
involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-
1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified
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as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous
biological domains strengthened the findings from each domain, demonstrating the comple-
mentary nature of such an analysis. Together these results highlight the importance of the
VHL/HIF1A/HIF2A axis and provide a foundation and therapeutic targets for future studies.
(Data are available via ProteomeXchange with identifier PXD003271 and MassIVE with
identifier MSV000079511.)

Introduction

Renal cell carcinoma accounts for 90% of kidney cancers, and 2 to 3% of malignancies in adults
[1]. In 2012, kidney cancer was the ninth and fourteenth most common cancer in men and
women worldwide, respectively [2], predominantly affecting men 2:1 [1]. Of these worldwide
cases in 2012, there was a 42% mortality rate [2], and in a survey of over 340,000 RCC cases
between 2001 and 2010, 25% of cases were stage III or IV [3]. Within renal cell carcinoma,
clear-cell renal cell carcinoma (ccRCC) is the most prevalent subtype comprising 70 to 80% of
cases [1]. Detection of ccRCC is the result of an incidental diagnosis 50 to 60% of the time, and
survival is greatly affected by tumor grade at diagnosis. The 5-year survival rate for grade I and
II tumors is 88.9% and grade III and IV tumors is 65.6% and 41.7%, respectively [4]. For this
reason it is imperative to develop a clear understanding of the molecular pathogenesis of
ccRCC in order to identify new targets related to metastatic ccRCC.

The defining genetic characteristic of ccRCC is the loss of chromosome 3p and/or mutations
of the von Hippel-Lindau tumor suppressor gene (VHL), especially in sporadic ccRCC where
92% have inactivated VHL by mutation, hypermethylation or deletion [5]. In a survey of data
from The Cancer Genome Atlas (TCGA) encompassing 12 major cancer types, VHL mutation
occurred in over 50% of ccRCC cases and was not a factor in other malignancies [6], although
some studies have observed VHL mutation in over 80% of ccRCC cases [7]. With the loss of
VHL, hypoxia-inducible factor 1o (HIF1A) and HIF-20. (HIF2A; also referred to as EPASI)
are stabilized [8, 9], each regulating at least 350 gene loci [10, 11]. Specifically, stabilization of
HIF1A leads to downstream changes resulting in an oncologic shift in glucose and glutamine
metabolism consistent with the Warburg effect (first described in the 1920s [12] and expertly
reviewed in [13]). This results in increased glucose uptake and increased glycolytic flux, with
the top-half of the glycolytic pathway facilitating intermediates for the pentose phosphate path-
way and biosynthesis required for tumor growth. The majority of glucose goes to lactate fer-
mentation, thereby uncoupling oxidative metabolism in the tricarboxylic acid (TCA) cycle
[14]. In order to facilitate fatty acid synthesis, the TCA cycle instead relies on glutamine flux
[15], with primary outputs being citrate and malate. Importantly, HIF1A and HIF2A stabiliza-
tion have different effects on promoting tumor growth (reviewed in [16]): HIF1A activates gly-
colytic genes while HIF2A promotes growth and angiogenesis [17, 18]. Moreover, later stages
of ccRCC have higher levels of HIF2A and HIF1A and HIF2A are thought to be antagonistic
[9, 18].

The seminal TCGA study of ccRCC confirmed many Warburg effect-related changes at the
genomic/transcript level and correlated changes with stage and survival [19]. This large-scale
characterization study identified increased DNA methylation in higher stage tumors, as well as
key transcriptional hubs (HIF1A/ARNT, MYC/MAX, SP1, FOXM1, JUN and FOS). It was also
found that down-regulation of genes in the TCA cycle, and up-regulation of genes in the pen-
tose phosphate pathway and fatty acid synthesis correlated with poor survival. Specifically,
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reduced transcript levels of AMP-activated kinase (AMPK) and increased levels of acetyl-CoA
carboxylase (ACC) corresponded to worse survival, changes that would contribute to increased
fatty acid synthesis. In addition to the TCGA work, other transcriptomic studies have been per-
formed using tumor-normal paired samples, identifying almost 6000 differentially expressed
genes in ccRCC, and 31 genes required for tumorigenesis have been confirmed in vitro [20].
Additionally, genes related to adipogenesis have been identified, likely explaining the hallmark
lipoic clear cell morphology of ccRCC [21]. Together these studies have improved our under-
standing of the molecular changes at the gene and transcript level required for the ccRCC
phenotype.

In addition to characterizing genomic and transcriptomic changes in ccRCC, there have
been a series of shotgun-proteomic analyses [22-25]. In general these studies have confirmed
dysregulated metabolic patterns supporting the Warburg shift predicted at the transcript level
[22, 24], including increased abundance of proteins in the pentose phosphate pathway related
to tumor aggressiveness [23]. Studying ccRCC across different biological domains (gene, tran-
script, protein, metabolite) is essential since changes are not linear between these domains. For
example, the follow up proteomic analysis by Zhang et al. [26] to the TCGA study of colorectal
cancer found a mean Spearman’s rank correlation coefficient between transcript and protein
levels of 0.23. Similarly, a recent metabolomic study of ccRCC compared their results to the
TCGA ccRCC study (albeit using different samples) and found little to no correlation between
transcript and metabolite levels [27]. In another study, a follow-up metabolomic analyses of
stage-dependent proteomics of ccRCC demonstrated protein abundance does not correspond
to stage-dependent changes in metabolites [25, 28]. It is important to utilize the complemen-
tary nature of different techniques across domains in order to identify changes at each biologi-
cal hierarchy (abundance, isoforms, post-translational modifications, efc.) that are driving
phenotypic changes.

In the current study we utilized proteomic analysis to characterize the molecular landscape
of ccRCC and interrogated changes in protein abundance and biological pathways with ccRCC
stage. Moreover, we used a previously published transcriptomic data set from the same sample
cohort to strengthen our conclusions. We also identified cofilin-1 (CFL1), profilin-1 (PFN1),
nicotinamide N-methyltransferase (NNMT), and fructose-bisphosphate aldolase A (ALDOA),
as candidate markers of late stage ccRCC. This combined proteotranscriptomic analysis not
only strengthened our understanding of the underlying metabolic changes that occur in
ccRCC, but also highlights probable changes in gene regulation that result in changes to the
molecular phenotype of ccRCC. By utilizing data from heterogeneous biological domains, we
have improved both analyses and provide the foundation for future studies of therapeutic
targets.

Methods
Sample collection and storage

In January, 2000, Mayo Clinic began collecting and storing fresh-frozen patient matched nor-
mal renal and tumor tissue samples of individuals undergoing nephrectomy. The tissue sam-
ples are linked to the Nephrectomy Registry database and are also available to other
investigators conducting renal cancer research. Collections of pathological specimens occurred
in an IRB approved manner such that subjects could not be identified. Approximately 300
patients per year diagnosed with renal cell carcinoma undergo nephrectomy at the Mayo
Clinic. Patients presenting with local tumors, locally advanced tumors, and patients with meta-
static disease undergoing cytoreductive nephrectomy were candidates for this study. The gen-
der breakdown for patients presenting with RCC is approximately 65% male and 35% female,

PLOS ONE | DOI:10.1371/journal.pone.0154074  April 29,2016 3/22



@’PLOS ‘ ONE

Proteotranscriptomic Analysis of Clear-Cell Renal Cell Carcinoma

and the average patient age was 65 years old. Deidentified patient matched normal and ccRCC
tissues were collected under a Mayo Clinic Institutional Review Board approved protocol
(IRB#1746-03 first approved September 2, 2003; “Cancer Research Investigations Using Dis-
carded Tissues") to use tissue for molecular analyses for research purposes only (Mayo Clinic
OHRP number: FWA00005001). Samples were collected from surgical resections, snap frozen
in liquid nitrogen and stored at -80°C. A centralized pathology review on all tumor samples
was performed to confirm tumor histologic classification, TNM stage and grade. The following
definitions were used: stage I is localized ccRCC with tumor less than 7 cm; stage II is localized
ccRCC with tumor >7 cmj; stage I1I is invasive ccRCC into Gerota fascia; stage IV ccRCC is
metastic disease to a distal organ. There were 177 tissue samples used in the current study
taken from 84 patients comprised of 34 stage I, 40 stage II, 42 stage III, and 52 stage IV tumor
normal-adjacent pairs as well as 9 corresponding metastasis tissues.

Immunohistochemistry

A tissue microarray was created using paired normal-adjacent and tumor tissue cores from 54
patients with stage I ccRCC. The resulting formalin-fixed, paraffin-embedded block was cut
into 5 um sections, deparaffinized, hydrated, antigen retrieved and blocked with diluent that
contained background reducing components (Dako; Carpinteria, CA). The section was probed
for 6-phosphofructokinase (PFKP antibody at 1:1500; LifeSpan BioSciences, Inc.; Seattle, WA)
and pyruvate kinase (PKM2 antibody at 1:2500; Cell Signaling Technology; Danvers, MA). The
specificity of the antibodies was confirmed using positive and negative controls from breast
tumor tissue for PFKP and lung normal and tumor tissue for PKM2. Positive controls were
performed and carried out to high titers to demonstrate decreased staining intensity (S1 Fig).
Negative controls were performed with the absence of primary antibody (S1 Fig). For detection,
the Envision Dual Labeled Polymer kit (Dako) was used according to the manufacturer’s
instructions and then lightly counterstained with Gill I hematoxylin (Sigma-Aldrich) before
dehydration and mounting. Images were obtained at 20X using an Aperio AT2 Scanscope
(Leica Biosystems, Buffalo Grove, IL). An average IHC staining intensity score for each core
was generated with triplicate measurement using an in-house Imagescope algorithm. The
number of cores read varied from 36 to 48, and the values were compared using a two-sample
t-test (Excel).

Sample preparation

Individual tissues (10 to 15 mg) were processed by trifluoroethanol (TFE) solubilization and
sonication as adapted from Wang et al.[29]. Briefly, tissue in 50% TFE was disrupted sequen-
tially by repeated probe sonication and heat/vortexing (1 hr, 60°C), with at least two repeats. At
this step, 10 pg of an internal protein standard, maltose-binding periplasmic protein from
Escherichia coli, was added to the lysate. Reducing agent [tris(2-carboxyethyl)phosphine] and
alkylating agent (iodoacetamide; IAA) were added, followed by overnight trypsin digestion
(1:50 based on protein concentration) at 37°C. The resulting peptides were desalted with a C-
18 column (lcm x 1ecm), dried down by SpeedVac and reconstituted with Mobile Phase A [5%
ACN, 0.1% formic acid (FA), 0.005% heptafluorobutyric acid (HFBA)]. Pooled samples were
composites of five samples, and these were tumor normal-adjacent matched between the
pooled samples.

Data acquisition

For the pooled samples, a fully automated five-cycle two-dimensional high-performance liquid
chromatography sequence was set up as previously described [30]. Peptides were loaded onto a
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7-cm Kasil fritted pre-column (150 um inner diameter) packed with 3.5 cm of 5 um Magic C-
18 100 A reversed-phase material (Michrom Bioresources Inc., Auburn, CA) followed by 3.5
cm of Luna 5 pum SCX 100-A strong cation exchange resin (Phenomenex, Torrance, CA). Sam-
ples were loaded automatically from a 96-well microplate autosampler at 3 pl/min using the
EASY-nLC system (Thermo Scientific). The pre-column was connected to a fused silica analyt-
ical column (8 cm long, 75 um inner diameter) via a microsplitter tee (Thermo Scientific) to
which a distal 2.0 kV spray voltage was applied. The analytical column was pulled to a fine elec-
trospray emitter using a laser puller. For peptide separation on the analytical column, a water-
ACN gradient, controlled by the EASY-nLC (Thermo Scientific), was applied at an effective
flow rate of 400 nL/min. Ammonium acetate salt bumps (8 pl) at concentrations of 100, 150,
200, and 500 mM were sequentially loaded, and peptides were eluted by a water-ACN gradient
as described previously [30]. Sample analysis was performed on an LTQ Orbitrap XL (Thermo
Scientific) using previously described instrument parameters [30]. For individual tissue sample
analysis, tumor-normal pairs were analyzed by tandem mass spectrometry temporally close
together. Digests were resuspended in 20 uL Mobile Phase A and a 15 uL aliquot of this peptide
solution was separated on a 12 cm x 0.075 mm fused silica capillary column packed with 5 pm
diameter C-18 beads (The Nest Group, Southborough, MA) across a 90 min linear gradient
from 5% ACN, 0.1% FA, 0.005% HFBA to 95% ACN, 0.1% FA, 0.005% HFBA at 300 nL/min.
The LC was interfaced by electrospray ionization with an LTQ (ThermoFinnigan, San Jose,
CA). Data-dependent analysis was used to perform MS/MS on the five most intense ions
between m/z = 400 and 2000 in each MS spectra with a minimum signal of 1000 cps. Dynamic
exclusion was used with a repeat count of two and an exclusion duration of 180 s.

Data processing

Raw data from pooled sample tandem mass spectrometry runs were converted to mzXML files
using ReAdW (v1.1) and searched against the Human UniProtKB SwissProt database (2011_3
release; 20,227 sequences plus the addition of E. coli maltose-binding periplasmic protein,
malE, POAEX9) using X!Tandem (CYCLONE v2011.12.01.1), OMSSA (v2.1.8), and Myri-
Match (v2.1.97) search algorithms. The search was conducted with a fragment ion mass toler-
ance of 0.40 Da and a parent ion tolerance of 10 ppm. Complete tryptic digestion was assumed
with one allowed missed cleavage site. Methionine oxidation was specified as a variable modifi-
cation and alkylation of cysteine with IAA as a static modification. For protein inference mini-
mization, an in-house grouping scheme was applied, reporting only proteins with substantial
peptide information [31]. Target/decoy searches were performed to experimentally estimate
the protein false discovery rate, which was determined to be <1%. Protein identifications with
at least two unique tryptic peptides were considered [31]. The mass spectrometry data have
been deposited to MassIVE(MSV000079511).

Raw data from individual sample tandem mass spectrometry runs were converted to peak
list (mgf format) using MSConvert (ProteoWizard 3.0.4243; Jan 3, 2013). The default parame-
ters were used, including ‘Prefer Vendor for Peak Picking’. These mgfs were searched with
Mascot (v2.4.1; Matrix Sciences) using the following parameters: trypsin as the enzyme with a
maximum of two mis-cleavages; 1+, 2+, and 3+ charged peptides; carbamidomethyl (C) as a
fixed modification, and protein N-term acetylation, deamidation (NQ) and oxidation (M) as
variable modifications; instrument type was ESI-TRAP; a precursor tolerance of 2 Da and frag-
ment jon tolerance 0.5 Da. These thresholds were chosen based on a test analysis which
resulted in a <0.1% local FDR (above identity threshold) while maintaining the highest num-
ber of protein hits. The database used was a Homo sapiens database (taxon ID: 9606) retrieved
from the 2013_04 release of the UniProtKB SwissProt database along with the SwissProt
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varsplic database, a cRAP database (common Repository of Adventitious Proteins, v
2012.01.01; The Global Proteome Machine) and the entry E. coli malE (POAEX9), resulting in
38,480 sequences. A separate search was also performed against a reversed decoy version of
this database in order to calculate global FDR. Resulting.dat files were loaded into ProteoIQ
(v2.3.08; NuSep, Inc; Bogart, GA) and protein results were filtered by requiring a 5% FDR and
minimum of two peptides per protein identification. Following this step, there were 350,630
identified peptides (10,590 unique) belonging to 786 proteins. Three of these proteins were
contaminants and malE, which were removed from the analysis resulting in 783 proteins iden-
tified experiment wide. Spectral counts were normalized according to total spectral counts per
sample and exported from ProteolQ for downstream analysis. The mass spectrometry proteo-
mics data have been deposited to the ProteomeXchange Consortium [32] via the PRIDE part-
ner repository with the dataset identifier PXD003271 and 10.6019/PXD003271.

Affymetrix Human Genome U133 Plus 2.0 array data (.CEL files) were retrieved from the
NCBI Gene Expression Omnibus (GSE 53757), which contains data for the 144 arrays used by
von Roemeling et al. [20]. Prior to analysis, a subset was created of just the 94 arrays (paired
tumor normal-adjacent samples) that correspond directly to samples used in the current prote-
omic study. The data were processed with the affy R-package using RMA normalization. The
array was annotated with the hgu133plus2.db, annotate, and R2ZHTML R-packages. A key link-
ing sample IDs and mzIdentML files between this proteomic analysis and the transcriptomic
analysis can be found in S1 Table.

Data analysis

Proteomic data from the pooled samples were evaluated by calculating adjusted spectral counts
(asp), as recently described [33]. The asp values for each protein were used to perform a Wil-
coxon rank sum test using the exact method (Matlab, v8.5.0.197613; MathWorks) followed by
a Benjamini-Hochberg (BH) procedure to correct for multiple hypothesis testing. Proteins
were considered differentially abundant between tumor and normal-adjacent samples at BH
adjusted p < 0.05. Normalized protein spectral count data from patient matched tumor and
normal-adjacent samples were used to calculate a tumor to normal-adjacent ratio for each pro-
tein, which was log, transformed. These log, transformed ratios were evaluated with a moder-
ated t-test (limma package [34]; R v3.2.1) followed by a BH procedure to correct for multiple
hypothesis testing. This comparison was performed within tumor stages or by using data from
all stages. Proteins were considered differentially abundant at a BH adjusted p < 0.05. These
results were analyzed through QIAGEN’s Ingenuity® Pathway Analysis IPA®), QIAGEN,
Redwood City) by specifying human as a species, experimentally observed confidence, and not
limiting the search space to a tissue or cell line. All other parameters were defaults within IPA.
Pathway enrichment was performed within IPA using a Fisher's exact test (right-tailed), and
pathways were considered significant at BH adjusted p < 0.05, and at least two proteins per
pathway. Results were evaluated within stages and across all stages. Upstream regulator analy-
sis was performed in IPA which uses a z-score algorithm, such that an activation z-score > 2 is
considered activated and < -2 is considered inhibited. Regulator effects were predicted using
the regulator effects algorithm in IPA that links upstream regulator analysis (upstream regula-
tors) and downstream effects analysis (disease or functions) and merges networks with over-
lapping targets. Array data were also evaluated in IPA by using RMA normalized values and a
moderated ¢-test. Probes with an absolute log, fold-change > 2 and BH adjusted p < 0.001
were used for IPA analysis (n = 1003) using the same parameters as the proteomic IPA analysis.
These transcriptomic results were compared to identify overlapping patterns of pathway
enrichment and/or upstream regulator effects. These same parameters were used to evaluate
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the following comparable published proteomic data sets: Perroud et al.[25] Supp. Table 3 (180
proteins), Masui ef al.[35] Supp. Table 5 (29 proteins), White et al.[22] Supp. Table 7 (55 pro-
teins), and Zhao et al.[24] Online resource 1 (213 proteins).

Results
Molecular phenotype of ccRCC

In order to characterize proteomic changes related to ccRCC, two proteomic approaches were
employed. The first approach was to catalog proteins in ccRCC tissue samples by using in-line
multi-dimensional separation techniques prior to high resolution bottom-up shotgun proteo-
mic analysis [30]. This approach was used on pooled samples from tumor or normal-adjacent
tissues: four stage I tumor, two stage I normal-adjacent, two stage II tumor, two stage II nor-
mal-adjacent, two stage III tumor, two stage III normal-adjacent, two stage IV tumor and two
stage IV normal-adjacent. The average Pearson's linear correlation coefficient (r) within repli-
cates was 0.8835 demonstrating low intra-condition variability (S2 Fig). From these pooled
samples, 1551 proteins were identified (S2 Table), and by comparing label-free quantification
between tumor and normal-adjacent tissues, 290 were detected as differentially abundant at
BH adjusted p < 0.05 (Wilcoxon rank sum test). Of these, 249 (85.9%) were decreased and 41
(14.1%) were increased in tumor samples. To further characterize the molecular changes
involved in the progression of ccRCC, samples from tumor and normal-adjacent tissues from
84 individuals with stage I (17 pairs), IT (20 pairs), III (21 pairs), and IV (26 pairs) ccRCC were
evaluated individually using a shorter separation gradient than the pooled analysis. Nine indi-
viduals with stage IV ¢ccRCC had samples from metastasized tissue in addition to tumor and
normal-adjacent tissues. Using this approach, 783 proteins were identified (global protein
FDR < 5%) and normalized spectral counts were calculated (S3 Table). In order to normalize
data across the individual analysis data set, each patient’s normal-adjacent tissue was used as a
reference to calculate fold-change values for each protein in the tumor tissue (or metastasis tis-
sue). These values were log-transformed and 344 proteins were identified as being differentially
abundant (moderated t-test, BH adjusted p < 0.05; Fig 1A). Similar to the pooled analysis, 245
(71.2%) were decreased, and 99 (28.2%) were increased in tumor samples.

Initially the pooled and individual analysis approaches were compared by evaluating over-
lap of identified proteins. To directly compare the two datasets, seven isoforms were removed
from the individual analysis to eliminate ambiguity in assignments, leaving 776 proteins. Of
the proteins identified in the individual analysis, 663 (85.4%) were identified in the pooled
analysis (S3A Fig). Next, the fold-change of each of these shared proteins in each analysis was
visualized using a scatter plot (S3C Fig), and 540 (81.5%) of the proteins exhibited conserved
directionality change, showing good agreement between the analyses. Then the 290 proteins
that were differentially abundant in the pooled analysis were compared to the 342 proteins that
were differentially abundant in the individual analysis (S3B Fig). There was considerable over-
lap between the analyses (169 proteins), with 58.3% and 49.4% of the differentially abundant
proteins in the pooled analysis or individual analysis being shared, respectively. Overall this
showed good agreement between analyses, and the individual analysis was used for further bio-
informatic interrogation.

Since a subset of these tissues had previously been analyzed using gene expression arrays
[20], we were interested in identifying parsimony between the analytical domains. Previously
144 samples were analyzed, and 94 samples (47 individuals) of these were directly related to
the 84 individuals used in the current proteomic study. Therefore a subset analysis comparing
tumor and normal-adjacent tissues was performed with just data from these 94 arrays. Of the
54,677 probes present, 37,334 had a BH adjusted p < 0.05 (moderated t-test; S4 Fig). Similar to
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Fig 1. Differential protein abundance and gene expression between tumor and normal-adjacent
ccRCC tissues. (A) Heatmap of 344 proteins with differential abundance between tumor and normal-
adjacent samples (moderated t-test, Benjamini-Hockberg adjusted p-value < 0.05). (B) Heatmap of 1003
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genes with differential expression between 94 tumor and normal-adjacent samples (moderated t-test BH
adjusted p < 0.001 and absolute fold-change > 4). Scale bar is standard deviation units around the mean of
each protein abundance or gene expression level.

doi:10.1371/journal.pone.0154074.g001

von Roemeling et al. [20], we applied an additional fold-change cutoff to identify a subset of
highly differentially expressed genes. Whereas von Roemeling applied a cutoff of log, fold-
change of 1 (resulting in 5937 genes), in the current comparison a log, fold-change cutoff of 2
was used to identify 1003 differentially expressed genes between tumor and normal-adjacent
tissues (Fig 1B). Genes with increased and decreased expression were approximately evenly dis-
tributed (54 Fig).

After performing a subset analysis on the gene expression data to identify differentially
expressed genes, we evaluated the correlation between protein abundance and gene transcript
levels. Of the 783 proteins identified, there were 770 unique HGNC gene symbols, of which
725 overlapped with 1764 gene probes. The majority of these were positively correlated (1285;
72.8%), and the average Pearson's linear correlation coefficient (r) was 0.157 (Fig 2A). When
only proteins that were differentially abundant between tumor and normal-adjacent tissue
were interrogated (344, of which 318 had complementary expression data), the majority were
positively correlated (301; 94.7%) with only 17 negatively correlated, and an average r of 0.347
(Fig 2B). Interestingly, 287 of the 318 probes that corresponded to differentially abundant pro-
teins were also differentially expressed (BH adjusted p < 0.05). This provided evidence that
important changes at the protein level were largely a reflection of signal at the transcript level,
although the relatively low average correlation indicates this relationship was not linear.

Pathway enrichment analysis

Differentially abundant proteins identified in the analysis of individual samples were used to
identify 88 canonical pathways that were enriched in ccRCC. The top enriched pathways were
those related to metabolism (Fig 3). There was decreased abundance of proteins involved in
ketolysis, the TCA cycle, ketogenesis, fatty acid B-oxidation, oxidative phosphorylation and
degradation of isoleucine, valine, glutaryl-CoA, and ethanol, while glycolysis and gluconeogen-
esis had increased protein abundance. Pyruvate fermentation to lactate via LDH was more
complicated with LDHA and LDHAL6B being increased in tumor tissues (2.55 and 0.69 log,
fold-change, respectively), while LDHB and LDHAL6A were decreased (-2.11 and -0.24 log,
fold-change, respectively). Likewise, sucrose degradation had increased levels of ALDOA,
ALDOC, and TPI1 (0.90, 0.27, and 0.61 log, fold-change, respectively), and decreased levels of
ALDOB, KHK, and TKFC (-3.36, -0.74, and -0.90 log, fold-change, respectively; TKFC was
previously listed as DAK in the UniProtKB entry Q3LXA3 in S3 and S4 Tables, and was modi-
fied to TKFC in August 2015 after this analysis was completed). Also, although all the TCA
cycle proteins identified were significantly decreased, the degree of change varied. Specifically,
proteins responsible for transforming citrate and malate to cis-aconitate and oxaloacetate,
respectively, were the most decreased proteins in the TCA cycle (ACO2-1.9 log, fold-change
and MDH2-1.6 log, fold-change, respectively), supporting accumulation of these two sub-
strates for fatty acid biosynthesis (similar to [22]).

To better understand the metabolic dysregulation in ccRCC, we evaluated protein abun-
dance changes in glycolytic proteins (Fig 4). Contrary to previous metabolomic studies indicat-
ing the top-half of glycolysis being asynchronously increased in ccRCC [27], at the protein
level there were widespread increases in glycolytic proteins. Many of these proteins were
increased by relatively the same fold-change at all stages (similar to [25, 28]), although some
proteins were highest at stage IV (GPI, ALDOA, ALDOC, TPI, GAPDH, PGK1, PGAM,
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Fig 2. Correlation of differentially abundant proteins and respective gene expression levels in matched samples. (A) There were 725 proteins
identified which had 1764 corresponding probes in the corresponding transcriptomic data. Pearson's linear correlation coefficient was used to
correlate normalized spectral count levels and RMA normalized microarray data in matched samples (94 samples). The average Pearson's linear
correlation coefficient (r) was 0.157 (dotted line). (B) Distribution of r for just the 344 differentially abundant proteins, of which 318 were also measured
in the corresponding transcriptomic study. The average r was 0.347 (dotted line).
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Fig 3. Enriched pathways related to metabolic dysfunction in ccRCC. Pathway enrichment analysis using IPA was performed using the 344
proteins with differential abundance between normal and tumor samples. Of the 88 pathways identified at an FDR < 5% and containing more than one
protein, the following top 13 pathways are shown based on their relationship to Warburg effect related changes. The ratio of enrichment (or % observed)
is further divided into those proteins increased or decreased in tumor samples. The total number of possible (or expected) proteins in each pathway is
given to the right of the bar.
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Fig 4. Protein abundance changes with stage in the glycolysis pathway. Using only proteins that were differentially abundant at each stage, the
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two proteins, PFKP and PKM, were confirmed using IHC staining of stage | ccRCC tissue (other stages were not evaluated by IHC). A representative IHC
image is shown for PFKP and PKM along with average staining intensity (H value) + standard error of a stage | ccRCC TMA. For both PFKP and PKM the
average log, fold-change (FC) levels + standard error for protein abundance (stage I-IV and metastasis tissue) and gene expression (stage I-IV) are
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ENOI, ENO3 and PKM). Using IHC, increased levels of PFKP and PKM in stage I ccRCC
were confirmed. Using a TMA of stage I ccRCC tumor and normal-adjacent tissue, PFKP was
increased 1.64-fold in tumor tissue (¢-test, p < 0.001), and increased 3.63-fold in tumor (¢-test,
p < 0.001). Expectedly, the protein immunohistochemistry levels aligned with protein abun-
dance changes, but not transcript expression changes, though both transcript and protein levels
were mildly correlated (r of 0.503 and 0.576 for PFKP and PKM, respectively). These results
indicate increased glycolytic flux in ccRCC consistent with the Warburg effect.

Upstream target activation and inhibition

Using fold-change data for the 344 differentially abundant proteins, upstream regulator analy-
sis was performed with IPA using data for each stage, as well as all 84 pairs, to predict activa-
tion or inhibition of regulators based on changes in protein abundance. There were six
upstream targets predicted to be activated or inhibited in tumor versus normal-adjacent sam-
ples (Fig 5A). Of these, three were likely activated (activation z-score > 2), estrogen-related
receptor-o. (ESRRA), ESRR-y (ESRRG), and HIF1A, and three were likely inhibited (activation
z-score < -2), WNT1 inducible signaling pathway protein 2 (WISP2; also referred to as
CCNS5), FOXAL, and MAPKI. Except for ESRRG and MAPK]1, the activation score was only
significant when the complete data set was used (i.e., “all”). To further evaluate the predicted
upstream changes, the downstream stage specific protein abundance changes associated with
HIF1A, ESRRA, ESRRG, WISP2, FOXA1, and MAPK1 were plotted (S5 Fig). The activated
networks (HIF1A, ESRRA, ESRRG) had many proteins that were increased in tumor tissues
that overlapped between the three targets, such as ENO1/ENO2, ALDOA, and LDHA.
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Fig 5. Upstream regulation with stage. (A) Heatmap of six upstream targets predicted to be activated/inhibited in tumor versus normal at each
ccRCC stage and using all stage data together. Scale is activation z-score, with > 2 being likely activation and < -2 being likely inhibition. Using
all stage data together, activated or inhibited upstream targets (ESRRA, ESRRG, HIF1A, FOXA1, MAPK1, and WISP2) are shown. (B)
Heatmap of six upstream targets predicted to be activated/inhibited in tumor versus normal-adjacent tissues using the proteomic data set.
Corresponding activation z-scores from transcriptomic data analysis are included to demonstrate conserved trends at each ccRCC stage and
using all stage data together.

doi:10.1371/journal.pone.0154074.9005
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Next, the transcriptomic results were subjected to the same analysis in order to evaluate
whether the proteomic based activation/inhibition predictions were supported at the transcript
level. Only data for the six upstream targets identified with the proteomic dataset were com-
pared to the activation z-scores calculated using the proteomic data (Fig 5B). Of the six
upstream targets found to be activated/inhibited based on the proteomic data, only HIF1A,
WISP2, and MAPKI1 were supported by the analysis based on transcriptomic data (the other
three upstream targets were absent from the transcriptomic based upstream regulator analysis
results). Interestingly, for all three of these targets, activation/inhibition is predicted by the
transcript data at an earlier ccRCC stage when using transcriptomic data. Specifically, HIF1A
is predicted to be activated at all stages using transcript data, while using protein data, HIF1A
is only predicted to be activated when all the data is used. Similarly, WISP2 is predicted to be
inhibited at stage IT and III when using the transcriptomic data, while only the full protein data
set predicted it to be inhibited. On the other hand, MAPKI1 is predicted to be inhibited at stage
III and IV based on the transcript data, which aligns well with predictions based on the protein
data. The agreement between the two analyses provided increased confidence in the proteomic
results and highlights potential therapeutic targets of ccRCC.

Candidate markers of aggressive ccRCC

In addition to evaluating the proteomic and transcriptomic data to better understand the sys-
tematic molecular changes in ccRCC, we were also interested in whether there were proteins
that could be used to discriminate stage IV ccRCC specifically. Of the 344 differentially abun-
dant proteins, 50 were significantly different at stage IV only. To evaluate the discriminatory
power of these 50 proteins, receiver operator characteristic (ROC) curves were constructed and
area under the curve was estimated (AuROC). Of the 50 proteins, four had an AuROC > 0.7:
cofilin-1 (CFL1), profilin-1 (PFN1), nicotinamide N-methyltransferase (NNMT), and fruc-
tose-bisphosphate aldolase A (ALDOA). All four proteins were increased at stage IV (Fig 6),
yet CFL1, PEN1, and ALDOA were decreased at early stages relative to normal tissue. In the
case of NNMT and ALDOA these trends were also reflected in metastasis tissues, while CFL1
and PFN1 levels were only slightly increased in metastasis tissues. These results highlight the
dynamic nature of the molecular progression of ccRCC in addition to identifying candidate
markers of ccRCC aggressiveness.

Discussion

We present here the results of a comprehensive proteomic analysis of ccRCC tissues grouped
by histopathology stages along with proteotranscriptomic analysis using previously reported
gene expression array data from the same tissues. The goal of this analysis was not only to cata-
log proteins responsible for the molecular phenotype of ccRCC, but also evaluate stage depen-
dent changes that reflect the molecular pathogenesis of ccRCC progression. These results
confirm previous studies characterizing metabolic dysfunction in ccRCC [19, 21, 22, 24, 27, 28,
35], while also highlighting upstream gene targets that are predicted to be activated/inhibited
using multi-domain analysis. Utilizing data across heterogeneous biological domains of the
same samples not only strengthened these conclusions but also demonstrated the complemen-
tary nature of such an approach. Additionally, general ccRCC candidate biomarkers were
observed, as well as stage specific markers related to high mortality metastatic ccRCC. These
results highlight the benefits of a combined proteotranscriptomic approach and lay the founda-
tion for future studies to confirm candidate therapeutic targets.

A hallmark feature of ccRCC is that cells undergo a metabolic shift consistent with the War-
burg effect. These changes have been confirmed at the gene transcript level in ccRCC [19], and
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Fig 6. Candidate markers of advanced stage ccRCC. Heatmap of log, fold-change in protein abundance of four candidate markers of late
stage ccRCC, cofilin-1 (CFL1), profilin-1 (PFN1), nicotinamide N-methyltransferase (NNMT), and fructose-bisphosphate aldolase A
(ALDOA), in paired tumor and normal-adjacent tissues from 84 individuals, as well as 9 pairs that also included metastasis tissue.

doi:10.1371/journal.pone.0154074.g006

recently a series of proteomic analyses have confirmed similar widespread effects at the protein
level [22-25, 35]. These studies identified between 770 and 1900 proteins with 30 to 350 differ-
entially abundant between normal and tumor ccRCC tissues. Similarly, in the current study
using a pooled sample approach we identified 1551 proteins, 290 of which were differentially
abundant, while using individual samples we identified 783 proteins, 344 of which were differ-
entially abundant. Using pathway enrichment analysis metabolic dysfunction was evident in
ccRCC at all stages, as well as pathways involved in biosynthesis. Using data from recent prote-
omic studies of ccRCC [22, 24, 25, 35], similar pathway enrichment patterns were observed (S5
Table). In the current study we found that the key glycolytic enzyme PFKP was increased in all
stages of ccRCC by both proteomic analyses and IHC. The companion transcriptomic analysis
and prior proteomic studies [24, 25] also identified PFKP as being increased in ccRCC. This
protein regulates an important control point in glycolysis and is an essential enzyme to drive
glycolysis despite downstream feedback (as reviewed by [14]). Additionally, we observed
increased PKM at all stages by both proteomic analyses and ITHC, similar to other studies [22,
24,25, 28, 35], which is another key change driving pyruvate production, highlighting potential
roles PKM can play in tumor progression (as reviewed by [36]). In the current study we also
observed decreased abundance of TCA cycle proteins, similar to results at the transcript level
[19], specifically MDH2 and ACO2, which is similar to other proteomic studies [22, 24, 25,
35]. A recent metabolomic study found increased levels of citrate, cis-aconitate and succinate
in ccRCC [27]. This could be partly explained by significantly decreased ACO2 protein
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abundance, but highlights that discrepancies between metabolite and proteotranscriptomic or
proteomic and transcriptomic results should be investigated by acquiring data across domains
in parallel on the same sample set. Overall, these results provide detailed empirical support for
metabolic dysregulation and the Warburg effect in ccRCC and will help to improve our under-
standing of the underlying metabolic changes associated with ccRCC.

Relative to other cancers, VHL inactivation is relatively specific to ccRCC and is both critical
to ccRCC evolution [37] and common across ccRCC [6, 7]. Inactivation of VHL leads to the
stabilization of HIF1A and HIF2A (also referred to as EPASI) [8, 9], with the former being
responsible for many downstream changes related to the Warburg effect [13]. In the current
study, HIF1A activation was evident by proteomic analysis of all tissue samples, but not within
stages. In contrast to this, the companion transcriptomic data indicated increasing HIF1A acti-
vation with ccRCC stage, though HIF1A mRNA levels were significantly decreased 1.25-fold in
tumor tissue. Alternatively, in the transcriptomic data HIF2A expression was significantly
increased 1.4-fold and was predicted to be activated in stage IV ccRCC samples (activation
scores increased with stage from 1.3 at stage I to 2.2 at stage IV). This apparent HIF2A activa-
tion is supported by the analysis of the proteomic data that indicated activation of ESRRA and
ESRRG. Interestingly, although there is relatively low overlap between differentially abundant
proteins detected in the current study and previous proteomic analyses [22, 24, 25, 35] (7 to
38%; S6 Fig), upstream analysis of these studies indicates ESRRA and ESRRG activation (S6
Table). Both of these nuclear receptors have increased expression in breast cancer [38] and
ovarian cancer [39], while in neuroblastoma ESRRA expression has been shown to increase
HIF2A expression and correlates with poor survival [40]. Given the additional involvement of
ESRRA and ESRRG predicted by the proteomic data, HIF2A likely plays a key role in ccRCC,
especially in later stages. A survey of 160 ccRCC tumors found that VHL-deficient tumors
expressed either HIF1A and HIF2A or just HIF2A, and that tumors expressing only HIF2A
had higher c-Myc activity and higher stage [9], correlating with the known proliferative effects
of c-Myc in ccRCC [41]. Clearly the VHL/HIF1A/HIF2A axis is important in ccRCC develop-
ment and proliferation, and these results highlight the potential involvement of ESRRA and
ESRRG in driving these changes.

In addition to identifying upstream targets related to HIF1A and HIF2A, the proteomic
data analysis predicted WISP2 (also referred to as CCN5) inhibition in ccRCC tissues. Using
the transcriptomic data, WISP2 was predicted to be activated at stage II, and was significantly
increased at the transcript level at stage I and III (1.5- and 2.7-fold, respectively). At the pro-
tein level, WISP2 activation was supported by increased vimentin and fibronectin levels, which
have been previously reported in ccRCC [21, 25, 42, 43] (S6 Table), and decreased keratin 8 lev-
els. In gastric [44], breast [45] and pancreatic cancer [46], WISP2 is a known tumor suppressor
and likely regulates invasion and motility through MMPs [47]. The involvement of WISP-2 in
ccRCC has not been reported,and additional targeted experiments should be performed to con-
firm its possible role in ccRCC progression. Overall, these results highlight the complementary
nature of proteomic and transcriptomic analyses when used in conjunction to identify and
confirm molecular changes.

To date there have been numerous genomic, transcriptomic, and proteomic analyses of
ccRCC tissue, but there has not been a study that interrogates multiple biological domains of
the same samples. In a prior study, similar ccRCC tissues were analyzed by cDNA arrays and
2D-GE, identifying 119 and 334 significantly different genes and proteins, respectively, with an
overlap of only 12 genes/proteins [48]. Companion proteomic studies to the seminal TCGA
studies are being published, such as the follow up proteomic analysis of colorectal cancer by
Zhang et al. [26]. Similar to the analysis presented in the current study, they evaluated the cor-
relation of mRNA levels and protein abundance and found the mean Spearman’s rank
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correlation coefficient of 0.23, which is similar to our results (average r = 0.157) and other simi-
lar study designs [49, 50]. This low level of correlation is not entirely surprising since it is
understood that the transcriptome and proteome are not linearly related [49]. For example, in
the Zhang et al. proteomic study only 60% of a small group genes of interest identified at the
mRNA level were also significant at the protein level. In the current study we utilized the tran-
scriptomic data to support changes seen in the proteomic data, but, as is evident with the
ESRRA and ESRRG findings (i.e., activation is not predicted using transcriptome data),
changes at the protein level may not be directly mirrored at the transcriptome level. Protein
changes are likely more indicative of broader phenotypic changes, and also likely represent a
non-linear composite effect of many upstream message level changes. Using data from both
biological domains of the same samples has improved the confidence of our findings and may
serve to limit false discoveries in future confirmation experiments.

Early diagnosis of ccRCC significantly improves patient outcomes, and for this reason there
have been numerous studies looking for transcriptomic, peptidomic, proteomic, miRNA, and
metabolomic signatures of late stage ccRCC in tissue, serum, and urine (reviewed by [51-53]).
To date there are no confirmed biomarkers that can be used for screening late-stage ccRCC,
though there are many candidate markers of ccRCC relative to normal tissue. Many of these
markers were detected in the current study, such as MnSOD [24, 54] and vimentin [55] (to
name a few), but our focus was to investigate candidate markers specific to late-stage ccRCC.
After eliminating non-stage specific markers of ccRCC, four proteins were identified that were
specific to stage IV. Three of these proteins have been confirmed by western blotting and/or
IHC in ccRCC. Cofilin (CFL1) has been confirmed to be increased in ccRCC [54] but has not
been confirmed in late-stage ccRCC, though it is known to be associated with metastasis in
many solid tumors [56-58]. Profilin (PFN1) has been shown to be increased in metastatic
ccRCC by IHC [35] and is also a candidate marker of bladder cancer metastasis [59], though it
is also down-regulated in numerous other cancers (as discussed by [35]). Nicotinamide N-
methyltransferase (NNMT) has recently been shown to be an interesting candidate marker of
aggressive ccRCC by two recent studies: Lebdai et al. demonstrated NNMT overexpression by
western blotting in ccRCC tissues with high SSIGN scores [23], while Zaravinos et al. identified
NNMT following a large meta-analysis of five published transcriptomic data sets and con-
firmed overexpression by IHC in ccRCC tissues [60]. Our data also indicate fructose-bispho-
sphate aldolase A (ALDOA) is a candidate marker of late-stage ccRCC, which has been
observed in other ccRCC studies, but not specifically as a marker of late-stage ccRCC. ALDOA
has been identified as a marker of late-stage colorectal cancer [61] and lung squamous cell car-
cinoma [62], and is involved in osteosarcoma metastasis [63]. Further studies are required to
confirm that increased abundance of these four proteins correlate specifically to late-stage
ccRCC.

One of the most defining traits of ccRCC is late-stage tumor diversity [37] along with intra-
tumor heterogeneity [64]. Developing molecular tools to subtype ccRCC beyond TNM staging
are key, but also developing ways to accurately evaluate a heterogeneous genomic, and there-
fore molecular, landscape are key. Based on the results herein, it is evident that there are many
shared traits among ccRCC stages related to the Warburg effect, but it seems likely that there
are major differences between tumor stage related to the VHL/HIF1A/HIF2A axis that likely
affect tumor aggressiveness and treatment. Developing study designs that focus on stratified
samples (by VHL and/or HIF1A/HIF2A status) along with multiple samples from tumors and
a multi-domain approach (such as proteotranscriptomic) is necessary to more clearly define
the molecular pathogenesis of ccRCC and identify new therapeutic targets that are required for
metastatic ccRCC.

PLOS ONE | DOI:10.1371/journal.pone.0154074  April 29,2016 16/22



@’PLOS ‘ ONE

Proteotranscriptomic Analysis of Clear-Cell Renal Cell Carcinoma

Supporting Information

S1 Fig. Positive and negative controls of immunohistochemical staining. (A-C) Controls for
6-phosphofructokinase (PFKP antibody): (A) Negative control on breast cancer tissue. (B) Pos-
itive control at 1:1000 and (C) 1:2000 on breast cancer tissue. (D-F) Controls for and pyruvate
kinase (PKM2 antibody): (D) Negative control on normal lung tissue. (E) Positive control at
1:2500 and (F) 1:3000 on lung cancer tissue. Scale bar is 200 pm.

(TIF)

S2 Fig. Replicate variability within pooled analysis. Variability between biological replicates
in the pooled analysis was visualized using scatter plots of adjusted spectral counts for the 1551
proteins identified, and the Pearson's linear correlation coefficient (r) was calculated for each
pair. There from four stage I tumor (t1_#), two stage I normal-adjacent (nl1_#), two stage II
tumor (t2_#), two stage II normal-adjacent (n2_#), two stage III tumor (t3_#), two stage III
normal-adjacent (n3_#), two stage IV tumor (t4_#) and two stage IV normal-adjacent (n4_#)
pooled samples. The axis identifiers are the same used in S2 Table. The average r within repli-
cates was 0.8835.

(TIF)

S3 Fig. Comparison of proteomic results from pooled and individual samples. (A) Overlap
between the proteins identified in the pooled and individual sample analysis. (B) Comparison
of directionality agreement between the 663 overlapping proteins using log, fold-change
(tumor/normal-adjacent). There were 123 proteins changing in different directions but these
differences were not dramatic. (C) Overlap of differentially abundant proteins identified using
each approach.

(TTF)

$4 Fig. Distribution of mRNA expression levels across all stages. Data from 94 arrays with
54,677 probes was RMA normalized and evaluated using a moderated ¢-test comparing all
tumor normal-adjacent pairs. RMA normalized expression values were plotted against Benja-
mini-Hockberg (BH) adjusted p-values. Emphasized in red are probes with BH adjusted

p < 0.001 and absolute fold-change > 4 (1003 genes).

(TTF)

S5 Fig. Predicted upstream effects. Using protein abundance data from all four stages,
HIF1A, ESRRG, and ESRRA were predicted to be activated and WISP2, FOXA1, and MAPK1
were predicted to be inhibited. Bar graphs are four stage and all stage comparisons. Image gen-
erated with QIAGEN’s Ingenuity® Pathway Analysis.

(TIF)

S6 Fig. Similarity of other shotgun proteomics studies with the current proteotranscrip-
tomic study. Differentially abundant proteins and genes from this study (pooled, individual
and 94 array) were compared to differentially abundant proteins identified in four other studies
(granular proteomic results from Lebdai et al.[23] were not available): Perroud et al.[25] Supp.
Table 3 (180 proteins), Masui et al.[35] Supp. Table 5 (29 proteins), White et al.[22] Supp.
Table 7 (55 proteins), and Zhao et al.[24] Online resource 1 (213 proteins). Two separate list of
unique gene symbols for proteins or genes that increased (n = 458) or decreased (n = 719) in
ccRCC tissue across data sets were created, and a binary matrix of presence/absence was con-
structed for these across experiments. A dendrogram for each list was created using the
unweighted pair group method with arithmetic mean method (euclidian distance; Matlab).
Specifically, of the increasing proteins the overlap of each study with the individual analysis
presented herein was 28.4%, 10.5%, 12.6%, and 21.1% for Perroud, Masui, White, and Zhao
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respectively, and of the decreasing proteins the overlap of each study with the individual analy-
sis was 35.7%, 7.0%, 8.2%, and 37.7% respectively. The overlap between the individual and
pooled analysis described in S3 Fig is due to the 59% overlap in decreasing proteins resulting in
their proximity on the dendrogram.

(TTF)

S1 Table. Data organization key. The tissues analyzed in this study were also part of two pre-
vious expression array studies. The proteomic data has been deposited to the ProteomeX-
change Consortium via the PRIDE partner repository with the dataset identifier PXD003271
and 10.6019/PXD003271. The PRIDE repository assigns assay numbers, but maintains mzI-
dentML filenames (.mzid) for each run. These correspond directly to the array data that was
deposited on the NCBI Gene Expression Omnibus (GSE 53757). These.cel files have been
linked to the respective proteomic mzIdentML files.

(XLSX)

S2 Table. Proteomic analysis of pooled samples. Proteomic data from the pooled samples
were evaluated by using the asp values for each protein to perform a Wilcoxon rank sum test
using the exact method followed by a Benjamini-Hochberg (BH) procedure to correct for mul-
tiple hypothesis testing. Whether the sample is from pooled tumor tissues or normal-adjacent
is indicated by a 't' or 'n’, respectively, followed immediately by a number which refers to stage.
Fold-change (FC) values were determined by taking the log2 of each spectral count (in case of
zero, 0.5 was used), and log2 fold-change was the difference in averages.

(XLSX)

S3 Table. Proteomic analysis of individual samples. Normalized spectral count values for the
783 proteins identified across 177 samples is given along with sample information and protein
information.

(XLSX)

$4 Table. Statistical analysis of fold-change protein differences between tumor and nor-
mal-adjacent pairs. For each of the 783 proteins identified in the individual analysis log, fold-
change is given as well as p-value (moderated t-test) and BH adjusted p-value for each stage
and using all samples.

(XLSX)

S5 Table. Pathway enrichment analysis of previously published proteomic analyses of
ccRCC. Differentially abundant proteins from this study (pooled and individual analyses) were
compared to differentially abundant proteins identified in four other studies (granular proteo-
mic results from Lebdai et al.[23] were not available): Perroud et al.[25] Supp. Table 3 (180
proteins), Masui et al.[35] Supp. Table 5 (29 proteins), White et al.[22] Supp. Table 7 (55 pro-
teins), and Zhao et al.[24] Online resource 1 (213 proteins). Pathway enrichment analysis was
performed using IPA as described in the current study and the top 15 pathways with more
than one molecule and p < 0.05 are given (ranked by p-value).

(XLSX)

$6 Table. Upstream regulator analysis of previously published proteomic analyses of
ccRCC. Differentially abundant proteins from this study (pooled and individual analyses) were
compared to differentially abundant proteins identified in four other studies (granular proteo-
mic results from Lebdai et al.[23] were not available): Perroud et al.[25] Supp. Table 3 (180
proteins), Masui et al.[35] Supp. Table 5 (29 proteins), White et al.[22] Supp. Table 7 (55 pro-
teins), and Zhao et al.[24] Online resource 1 (213 proteins). Upstream regulator analysis was
performed using IPA as described in the current study and the top 15 targets are given (ranked
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by p-value). The activation z-score is given and an activation z-score > 2 is considered acti-
vated and < -2 is considered inhibited. The six targets identified in the current study as being
activated or inhibited (ESRRA, ESRRG, HIF1A, FOXA1, MAPK1, and WISP2; Fig 5) are
highlighted in bold or listed in bolded italics below the top 15 targets if not included in the top
15 (ranked by p-value). Also, EPASI (also refered to as HIF2A) is listed if present since its acti-
vation is implied by ESRRA/ESRRG activation and the transcriptomic analysis in the current
study.

(XLSX)
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