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Abstract

Mechanical rigidity in the tumor microenvironment is associated with a high risk of tumor 

formation and aggressiveness. Adhesion-based signaling driven by a rigid microenvironment is 

thought to facilitate invasion and migration of cancer cells away from primary tumors. Proteolytic 

degradation of extracellular matrix (ECM) is a key component of this process and is mediated by 

subcellular actin-rich structures known as invadopodia. Both ECM rigidity and cellular traction 

stresses promote invadopodia formation and activity, suggesting a role for these structures in 

mechanosensing. The presence and activity of mechanosensitive adhesive and signaling 

components at invadopodia further indicates the potential for these structures to utilize myosin-

dependent forces to probe and remodel their ECM environments. Here, we provide a brief review 

of the role of adhesion-based mechanical signaling in controlling invadopodia and invasive cancer 

behavior.
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Introduction

Cells sense the biomechanical properties of the ECM through interactions facilitated by 

matrix adhesions [1]. Intracellular adhesion proteins link ECM receptors to downstream 

force-sensing pathways, including non-muscle myosin II (NM II)-dependent contractility of 

adhesion-associated actin [2] and conformational changes of mechanosensitive proteins [3]. 

Changes in mechanical signaling pathways can alter cellular phenotypes and contribute to a 

number of diseases, including deafness, cardiac hypertrophy, and muscular dystrophy [4]. In 

breast cancer, increased ECM rigidity during tumorigenesis has been shown to drive a 

malignant phenotype through biomechanical adhesion signaling [5-8], including enhanced 

invasion and metastasis [8-11]. ECM rigidity changes in breast cancer are thought to occur 

as a result of a number of factors, including tumor cell packing, ECM deposition and 

crosslinking, and higher fluid pressures [12]. These factors are common features of many 

types of cancers [7, 12-14], and several other tumor types have also been quantitatively 

shown to have greater mechanical properties than neighboring normal tissues [15-17]. 

Recent studies have shown that mechanical factors alter the invasive properties of diverse 

cancer cell types in vitro [18-21] suggesting common rigidity-dependent regulatory 

pathways.

Proteolytic degradation of ECM promotes cancer cell invasion by allowing migration 

through dense cross-linked tissues such as the basement membranes that surround 

carcinomas and underlie blood vessels [22]. In addition, proteolytic remodeling of stromal 

collagen may allow collective migration of cancer cells through tissues [23]. In order to 

degrade ECM, cancer cells form actin-rich adhesive protrusions called invadopodia (Fig. 1) 

[24]. Invadopodia are cellular hotspots for secretion of matrix-degrading proteinases 

[25-27]; thus, formation of invadopodia greatly accelerates matrix remodeling. The ability of 

cancer cells to form invadopodia correlates well with their in vitro and in vivo invasive 

behavior [28-35]. In addition, upregulation in tumors of key invadopodia molecules, such as 

the matrix metalloproteinase MT1-MMP, and the actin assembly protein cortactin, are 

associated with poor patient prognosis [36, 37]. Similar structures called podosomes are 

formed in a variety of other cell types that need to remodel tissue or cross tissue barriers, 

including osteoclasts, endothelial cells, and macrophages [38].

In addition to invadopodia and podosomes, invadopodia-independent proteolytic degradation 

mechanisms have been described in normal and cancer-associated fibroblasts (CAFs) [39, 

40]. Matrix degradation by fibroblasts at focal adhesions was regulated by signaling 

mechanisms that also control invadopodia (e.g. Src, FAK, p130Cas) [40]. However, 

invadopodia-independent plasma membrane sites were identified that do not depend on the 

critical invadopodia regulators Cdc42 or Src [39]. These data suggest some flexibility in the 

mechanisms controlling proteinase expression on the plasma membrane. In contrast, 

pancreatic CAFs expressing high levels of palladin have been shown to enhance invasion 

and metastasis of tumor cells through invadopodia-dependent ECM degradation [41]. While 

invadopodia appear to be the dominant mechanism used by invasive cancer cells to degrade 

ECM, further investigation is required to elucidate the role and regulation of proteolytic 

structures in tumor-associated stromal fibroblasts.
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Invadopodia formation and structure

Invadopodia are formed in response to signaling events that lead to dynamic branched actin 

assembly at membrane sites [25, 32, 42]. Shortly thereafter, proteinases are secreted and 

promote ECM degradation. MT1-MMP has been the most studied proteinase in invadopodia 

and is essential for degradation of in vitro crosslinked gelatin substrates [43-45] (Fig 1). 

However, many proteinases are secreted at invadopodia and could collaborate to promote 

degradation of ECM in tissues. These proteinases include MT1-MMP, MMP-2, MMP-9, 

seprase, cathepsin B, ADAM12, and uPAR [27, 28, 44, 46-50]. Some of these proteinases 

are also likely to activate latent ECM- and cell-associated growth factors [51-56].

By electron microscopy (EM), invadopodia are long, slender protrusions that are typically 50 

nm in diameter and ~0.5-2 μm in length [30, 32, 57, 58]. While dynamic branched actin is 

found at the cortex and is an essential part of the formation process, the resemblance to 

filopodia by EM suggests that the actin found within the invadopodial protrusion is likely to 

be unbranched. Indeed, key filopodia proteins including fascin, Myosin X, mDia1, and 

fimbrin have been shown to be essential for invadopodia stabilization and elongation [32, 59, 

60]. Thus, both the branched and unbranched actin nucleation machineries collaborate to 

form stable, active invadopodial protrusions.

Many signaling proteins localize to and regulate invadopodia formation and stability, 

including tyrosine kinases such as Src, EGFR, and Arg, adhesion proteins such as integrins, 

focal adhesion kinase (FAK), p130Cas, and integrin-linked kinase (ILK), and scaffold 

proteins such as Tks5 [24, 25, 61]. Many of these molecules also control podosome and 

focal adhesion formation and activity [62] (reviewed elsewhere in this issue). Src kinase is a 

particularly important regulator, as exemplified by the spontaneous formation of 

invadopodia-like structures in cells engineered to exogenously express constitutively active 

Src [63-65]. Given their similarities, invadopodia, podosomes, and Src-induced invadopodia-

like structures are often referred to collectively as invadosomes [66].

ECM rigidity and cellular contractility control invadopodia formation and activity

One of the first indications that invadopodia might be involved in mechanical signaling came 

from our work demonstrating that ECM rigidity increases invadopodia numbers and activity 

[67]. At the same time, podosomes were found to exert shear stresses on flexible substrates 

and to participate in mechanosensing [68], suggesting general regulation of invadosome 

structures by substrate rigidity. Interestingly, we found that phosphorylated forms of the 

mechanosensing proteins p130Cas and FAK localize at actively degrading invadopodia, and 

their levels are reduced with inhibitors of nonmuscle myosin II (NM II) and myosin light 

chain kinase (MLCK) [67]. Overexpression of FAK and p130Cas also enhanced invadopodia 

activity on rigid but not soft substrates. While we did not find significant localization of 

phosphorylated MLC at invadopodia, in 40% of cells NM IIA was present in a ring-like 

structure around invadopodia [67]. Combined with the dependence of invadopodia activity 

on NM II activity, the localization data suggest regulation through the contractile machinery 

[67, 69]. Using tunable rigidity substrates as well as tissue-derived scaffolds, we further 

found that substrate rigidity controls invadopodia numbers and activity across a wide elastic 

modulus range [70]. The peak modulus for invadopodia-associated ECM degradation of our 
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breast cancer model cell line was ~30 kPa which is in the rigidity range of tumor stroma 

[70]. In contrast, formation of MT1-MMP-positive membrane protrusions by several types 

of malignant cancer and fibrosarcoma cell lines has been shown to be inversely proportional 

to ECM rigidity [71]. The impact of these structures on ECM degradation was not 

quantitated; thus, further study is required to determine how they relate to invadopodia and 

invasion.

Cellular contractility plays an important role in mechanosensing by distinguishing the levels 

of ECM rigidity in the microenvironment and adjusting the amount of exerted cellular 

tension [72, 73]. Actomyosin-generated contractile forces [74] that are transmitted to the 

ECM can be measured as traction forces or stresses [75, 76]. Using traction force 

microscopy on substrates of different rigidities, the Parekh group found that the magnitude 

of overall cellular traction stress within a cell line is predictive of ECM degradation by 

invadopodia [77]. Across cell lines, the Reinhardt-King group found that the average cell 

traction stress produced on a substrate of a given rigidity correlates with the metastatic 

capacity inherent to a given cancer cell line [19]. These data suggest that cellular 

contractility is an important regulator of invasive behavior.

While the mechanical properties of the ECM may be one significant factor that influences 

cancer cell invasiveness, cells may exhibit varying responses to the same rigidity level. Thus, 

invadopodia dynamics may ultimately be dictated by the level of cellular force generation. 

The Varghese laboratory has recently shown that compressive traction stresses must reach a 

threshold level to induce invadopodia-like structures capable of ECM degradation [78]. 

These compressive stresses occurred at the protruding plasma membrane into the underlying 

substrate and were accompanied by shear and tensile stresses that together triggered 

proteolytic activity in response to mechanical resistance. These results complement our 

findings that NM II activity and augmented cellular traction stresses increase invadopodia 

numbers and induce more ECM degradation [67, 77]. They also suggest that ultimately it is 

the cellular response that matters, which could differ between cancer cells depending on the 

baseline signaling state and resultant contractility.

Adhesion components control invadopodia activity

Traction stresses generated by the actomyosin cytoskeleton are transduced to and from the 

ECM through adhesion complexes [75]. Multiple adhesion and contractility molecules 

localize to and around invadopodia, suggesting that some of the ECM rigidity response may 

occur directly at invadopodia [26, 62, 67, 70, 79]. While CD44 and β3 integrins have been 

found at invadopodia [80, 81], β1 integrins appear to be the predominant adhesion molecules 

found at or around their actin cores [49, 79, 82-85]. Although this localization could be due 

to the predominant use of fibronectin matrix for in vitro invadopodia assays, β1 integrins are 

frequently associated with cancer progression [49, 79, 82-85]. β1 integrins have been found 

to regulate invadopodia by forming signaling complexes with Src, EGFR, and/or FAK [82, 

85]. In addition, β1 integrins have been shown to promote invadopodia maturation to actively 

degrading structures by mechanisms that include signal complex formation with ezrin at 

lipid rafts, regulation of actin dynamics by Arg, docking of the gelatinolytic enzyme seprase, 

and promotion of MMP secretion via integrin-linked kinase-IQGAP interactions (Fig. 2) 
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[49, 79, 83, 84]. While these studies did not directly investigate mechanical signaling, many 

of these processes may be enhanced by ECM rigidity similar to the maturation of focal 

adhesions and podosomes that occurs in response to stiff matrices [68, 86]. For example, β1 

integrins are known to regulate strength of cellular adhesions while β3 integrins reinforce 

force-dependent responses through talin-dependent mechanical signaling [87]. Similar 

mechanisms might operate at invadopodia, through the same molecules.

Similar to podosomes, invadopodia can organize adhesion proteins in rings around the actin 

cores [49, 67, 79, 88-90]. Using live cell imaging, Branch et al. showed that adhesion rings 

form shortly after formation of an invadopodial actin core [79]. Furthermore, β1 integrins 

found in invadopodial adhesion rings specifically enhanced the rate of MT1-MMP secretion 

[79]. Live cell imaging also revealed oscillations of actin at invadopodia that were paralleled 

by oscillations of GFP-paxillin-labeled adhesion rings [79]. Oscillatory behavior has been 

shown to be an important part of podosome mechanosensing and force generation [68, 91] 

and is regulated by actin polymerization and NM II activity [92, 93]. These data are 

consistent with a key role for adhesion-induced mechanical signaling in invadopodia 

maturation [49, 79, 83, 84].

Future Directions

Potential Methods for Studying Mechanical Signaling at Invadopodia

While multiple lines of evidence support the model that local mechanical signaling takes 

place at invadopodia [30, 49, 67, 70, 77, 79, 82-85, 94], further investigation is required to 

understand the molecular and biophysical mechanisms that regulate and respond to 

invadopodia mechanosensing. While studies with tunable rigidity substrates have been 

useful, more sophisticated methods to measure and manipulate force production at the 

subcellular level would allow closer investigation of local mechanical control of 

invadopodia. The standard method for measuring two-dimensional cellular forces is traction 

force microscopy in which stresses are calculated based on substrate deformations of elastic 

surfaces or pillars [75, 95, 96]. This method has been used to study podosomes; however, 

these structures can form large groups or rosettes which allows for easier measurements over 

a bigger area [68]. In contrast, invadopodia are often found isolated from each other making 

force generation more difficult to detect in such a small area [69]. However, traction force 

methods in which forces have been fitted to fluorescently-labeled focal adhesions [97] could 

be applied to invadopodia puncta in a similar manner. In addition, a novel method using the 

deformations in Matrigel networks has recently been developed to calculate the three-

dimensional stresses generated by cells [78]. Such a method could potentially be further 

utilized to understand the role of adhesion-based mechanisms in regulating force-dependent 

proteolysis at invadopodia. In addition, other techniques adapted to study the mechanical 

nature of podosomes could be applied to invadopodia. For example, atomic force 

microscopy has been utilized to study the dynamics and stiffness of individual podosomes 

[92]. This technique was further developed into protrusion force microscopy in which 

protrusive forces exerted by individual podosomes during mechanosensing were measured 

based on deformations in polymeric films [91]. Such techniques could be complemented 

with advanced microscopy methods such as spinning disk confocal, FLIM, FRAP, and 
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STORM with fluorescently tagged mechanosensitive proteins and/or tension biosensors [32, 

93, 98, 99]. These techniques could be used to enhance our understanding of the molecular 

mechanisms that govern or respond to mechanical forces at invadopodia.

Understanding the Role of Local Forces at Invadopodia

One area that remains unclear is the role of different stress components during invadopodia 

mechanosensing and their part in invadopodia formation and/or maturation (Fig. 2). Focal 

adhesions generate traction forces via myosin contraction of actin stress fibers running 

parallel to the ECM surface that promotes their maturation [86, 100]. Similarly, invadopodia 

have been hypothesized to generate shear stresses through radial arrays of actin that 

surround their individual cores [62], similar to podosome rosettes [68]. Individual 

podosomes have recently been shown to exert protrusive or “pushing” stresses at their cores 

as a result of actin polymerization [91, 93], similar to what occurs at the leading edge of 

cells [101, 102]. These pushing stresses were accompanied by tensile or “pulling” stresses 

generated by actomyosin contractility surrounding the podosome cores [91, 93] suggesting 

that they occurred at the adhesion-based rings. This combination of pushing and pulling lead 

to oscillatory force generation at podosomes indicating a dynamic mechanism by which 

these structures are constantly mechanosensing their local microenvironment [91-93]. 

Similar 3D traction stresses may also regulate mechanosensing at invadopodia since they 

also exhibit oscillatory behavior (Fig. 2) [79]. However, the consequence of these forces is 

unclear. For example, the relationship between oscillatory forces, mechanotransduction 

signaling, and proteinase secretion is unknown.

Determining the Roles of Contractility Regulators in Invadopodia Dynamics

Another area of interest is how actomyosin contractility interfaces with other signals to 

control invadopodia. For example, molecules that regulate actin dynamics and cellular 

contractility such as the Rho GTPases act in a multitude of additional signaling pathways 

that may affect invadopodia independent of NM II-based force generation [26, 61, 103, 104]. 

For example, Rho-associated kinase (ROCK) is a classic activator of NM II via 

phosphorylation of MLC [4-6, 105]; however, ROCK has other downstream targets that 

regulate invadopodia such as LIM kinase, ezrin, and moesin [84, 89, 94, 106, 107]. While 

these are all actin regulators, they control other aspects including actin polymerization and 

linking actin to the plasma membrane. Therefore, it will be important to determine how 

contractile forces in cancer cells synergize with other signals to control invadopodia.

Developing New Models to Study Invadopodia

Validation of new findings regarding mechanical signaling by invadopodia requires models 

that capture the properties of the tissues encountered by invading cancer cells. The classic 

model for studying invadopodia has been the in vitro invadopodia assay, which relies on 

cancer cells plated on fluorescently labeled and cross-linked ECM for detecting degradation 

(Fig. 1) [108]. While this assay can be modified, e.g. by altering substrate rigidity using 

tunable synthetic substrates [76, 109], such systems do not fully recapitulate the tumor 

microenvironment. However, studying invadopodia in more complex environments has 

presented significant technical challenges given their size, dynamics, and lack of markers for 

ECM degradation in physiologic systems that can capably be monitored and imaged. Over 
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the last several years, significant progress has been made to overcome some of these issues 

[110]. For example, Gligorijevic et al. recently identified cellular protrusions as invadopodia 

in vivo based on the presence and functionality of markers such as cortactin, Tks5, and 

MMP activity. Using high-resolution multiphoton microscopy of human breast carcinoma 

xenografts in SCID mice, they found that a variety of microenvironmental factors, including 

the density of collagen fibers, regulated the locomotion speed of invading cancer cells and 

resulting disease progression. In particular, slower moving cells required invadopodia in 

spatially distinct regions of the tumor microenvironment such as near collagen fibers and 

blood vessels [111]. Using photoconversion of cells expressing invadopodia and an MMP-

activated fluorescent substrate, they demonstrated that invadopodia formation and ECM 

degradation directly correlated with subsequent intravasation and metastasis.

While clinical evidence and animal studies provide strong correlations between tumor ECM 

density and metastasis [8-11], other microenvironmental factors may significantly contribute 

to the phenotype of invading cancer cells and their expression of invadopodia [111]. Thus, 

invasion is influenced by matrix organization and pore size, hypoxia, extracellular vesicles 

and growth factors, and other cells in the microenvironment [27, 50, 54, 111-115]. In some 

cases, paradoxical relationships between ECM density and tumor aggressiveness exist. For 

example, unlike breast cancer, fibrosis appears to play an inhibitory role for pancreatic 

cancer [116-118]. In one study, depletion of myofibroblasts in a transgenic mouse model of 

pancreatic cancer resulted in increased invasion and decreased survival despite decreased 

tumor rigidity [116]. Alteration in immune cell phenotypes was found to account for the 

aggressive phenotype of pancreatic cancers lacking myofibroblasts, suggesting complex 

relationships in vivo. Therefore, further studies are required to elucidate how tissue rigidity 

impacts the aggressiveness of diverse cancer types and the role of invadopodia in that 

process.

Conclusion

Adhesions and mechanotransduction pathways control a variety of cellular phenotypes. The 

identification of invadopodia as mechanosensitive organelles suggests that the interface 

between adhesion signaling and additional molecular pathways can greatly enhance invasive 

behavior. Understanding that unique interface may help identify novel targets for therapeutic 

intervention. Future studies should combine a variety of state-or-the-art techniques and pre-

clinical models to overcome previous biological and technological limitations and further 

elucidate molecular pathways. These models will be critical for providing the additional 

support necessary to link invadopodia to metastasis and explore the relevance of purported 

molecular mechanisms for therapeutic intervention.
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Figure 1. 
Invadopodia are actin-rich proteolytic protrusions that are often identified through 

colocalization of markers with ECM degradation. The in vitro invadopodia assay typically 

consists of invasive cancer cells cultured on fluoroscently-labeled ECM, in this case FITC-

fibronectin-coated crosslinked gelatin. After 6-48 h, the cells are fixed and stained for 

molecular markers of invadopodia including actin filaments, cortactin, Arp2/3 complex, 

Tks5, and/or MT1-MMP [44, 45, 76, 99, 108, 109, 119]. In this case, invadopodia are 

identified by colocalization (purple) of actin filaments (blue) and MT1-MMP (red) using 

confocal microscopy imaging. Mature invadopodia are further recognized by colocalization 

of invadopodia markers with areas of ECM degradation (black holes in the green FITC-

labeled fibronectin).
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Figure 2. 
Adhesion-based signaling in invadopodia. Signaling through β1 integrins at and/or around 

the actin cores of invadopodia regulates their maturation and ability to degrade ECM with 

proteases such as MT1-MMP and seprase [49, 79]. Adhesion rings are strongly correlated 

with invadopodia activity and are dependent on adhesion and signaling components such as 

vinculin, paxillin, ILK, and FAK [67, 79]. In addition, invadopodia activity is also regulated 

by the interactions of β1 integrins with other proteins and/or complexes that include ezrin, 

Arg, and EGFR [83-85]. Each of these pathways is regulated by Src kinase, which is thought 

to control early signaling cascades necessary for invadopodia formation [25, 61]. Adhesion 

rings may anchor and thus stabilize nascent invadopodia and generate NM-II generated 

shear and tensile stresses. Actin polymerization in the core may generate protrusive stresses, 

similar to those identified in podosomes [78, 91-93]. Periodic fluctuations in the stresses 

perpendicular to the ECM surface induce oscillations of invadopodia core and ring proteins 

[79, 91-93]. Together, these processes may be coordinated to constantly sense and respond 

to local ECM rigidity. Overall, adhesion based signaling in response to ECM rigidity is an 

important control point for invadopodia.
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