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Abstract

The purpose of this study was to 1) develop and present a technique to quantitatively assess three-

dimensional distribution and clustering of intramuscular fat and 2) use the technique to compare 

spatial characteristics of intramuscular fat in rotator cuff muscles of older adults with and without 

a supraspinatus tear. Moran’s Index (I), an existing quantitative measure of clustering, was 

extended for use with MRI to allow comparisons across individuals with different size muscles. 

Sixteen older adults (>60yrs) with (N=6) and without (N=10) a degenerative supraspinatus tear 

participated. Following 3D Dixon MRIs of the shoulder, which separates fat from water, rotator 

cuff muscles were segmented and sectioned and fat% and Moran’s I were calculated to assess 

distribution and clustering, respectively. Moran’s I ranged was 0.40–0.92 and 0.39–0.76 for the 

tear and control subjects, respectively. Compared to uninjured controls, tear subjects demonstrated 

increased fat distribution (p=0.036) and clustering (p=0.020) distally in the supraspinatus. Tear 

subjects had more pronounced distribution (p<0.001) and clustering distally (p<0.001) than 

proximally. Other rotator cuff muscles exhibited different patterns of fat clustering and 
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distribution. This technique, which we applied to quantify spatial characteristics of intramuscular 

fat, can be applied to assess clustering of fat in other pathologies and tissues.
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Introduction

Increased intramuscular fat is a common sequelae of musculoskeletal and neuromuscular 

pathologies including healthy aging,
1,24,36

, stroke,
28

 muscle dystrophy,
32

 chronic obstructive 

pulmonary disease,
25

 and injuries to the spinal cord
11

 and rotator cuff.
12

 Increased 

cardiovascular risk,
15

 deficits in central muscle activation,
39

 and poor outcomes of rotator 

cuff surgery
16

 are all associated with increased intramuscular fat levels. Intramuscular fat 

reduces the proportion of the muscle belly containing contractile tissue, limiting overall 

force-generating capacity,
18

 and has been independently correlated to declines in strength 

and function beyond losses to muscle volume.
36

 Further, the positive effects of resistance 

training are mitigated by the presence of intramuscular fat.
21

 Quantitative measures of 

intramuscular fat in humans have traditionally been estimated using only a portion of the 

muscle (e.g. a single image slice) and are represented as a perceived proportion of fat or an 

average percentage acquired from an isolated region.
12,18,21,22

An increase in the level of intramuscular fat following a tear of one or more rotator cuff 

tendons (supraspinatus, infraspinatus, subscapularis, and teres-minor) is particularly 

problematic in light of its association with negative consequences following surgical 

intervention.
12

 Clinicians employ semi-quantitative metrics to rate the amount of 

intramuscular fat, such as the Goutallier score for rotator cuff tears,
12

 which are limited by 

intra- and inter-observer error.
16

 Because current techniques used to examine the rotator cuff 

only use a small region of the muscle,
12,23

 information regarding characteristics of the fat 

morphology throughout muscle is limited. Previous quantitative measurements in isolated 

muscle regions using animal models
14,26,27,29

 and qualititative observations in human 

subjects
2
 suggest that volumetric distribution and spatial clustering of intramuscular fat vary 

throughout a given rotator cuff muscle. However, these quantities have not been quantified in 

human muscle, and no method has been described that quantifies both volumetric 

distribution and spatial clustering continuously throughout the entire muscle belly in either 

animals or humans. Such information would be valuable for discerning whether specific 

injuries or pathologies alter the spatial characteristics of fat within the muscle, and where 

within the muscle such alterations occur. In addition, the distribution of fat and the way it is 

clustered within the muscle may alter the way in which forces are transmitted through the 

muscle-tendon unit,
35

 and may have physiological implications for the processes by which 

intramuscular fat develops.

Although there does not currently exist any method to quantify spatial clustering of fat 

throughout the entire muscle belly, Moran’s Index (I) presents a promising tool to 

accomplish this quantification. Moran’s I is a measure of spatial autocorrelation that extends 

Santago et al. Page 2

Ann Biomed Eng. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pearson’s correlation coefficient into multiple dimensions to account for spatial 

variations.
4,20

 Moran’s I has been used to validate clustering of brain networks
7
 and quantify 

clustering of lesions associated with failure of Transanal Endoscopic Microsurgery.
8 

However, in its current form, Moran’s I cannot be directly applied to compare datasets of 

differing sizes with spatially adjacent nodes, such as imaging data describing intramuscular 

fat. Extending Moran’s I for use with MRI would provide quantitative clustering information 

that is not currently obtainable.

The goals of this study were: 1) to develop and present a new technique to quantify 

volumetric distribution and spatial clustering of fat within muscle tissue; and 2) apply this 

technique to determine if a degenerative supraspinatus tear in older adults alters the spatial 

characteristics of intramuscular fat in rotator cuff muscles compared to uninjured older 

adults. It is hypothesised that older adults with a degenerative supraspinatus tear will have 

different patterns of volumetric distribution and spatial clustering compared to the uninjured 

control subjects.

Methods

We describe our approach, which extends previously validated techniques, in three parts: 1) 

extension of Moran’s I to quantify clustering, 2) calculation of fat% and Moran’s I within 

each muscle section, and 3) the statistical model used to evaluate the pattern of distribution 

and clustering. Subject demographics and imaging protocols are also described below.

Spatial clustering methodology

Moran’s I is a previously developed and validated mathematical tool to quantify spatial 

clustering. We extended the formulation of Moran’s I to allow comparison of spatial 

clustering of intramuscular fat across data sets of differing sizes. Moran’s I ranges from −1 

to 1, where −1 indicates 100% diffuse, 1 indicates complete clustering, and 0 indicates a 

random spatial configuration (Figure 1).

The calculation of Moran’s I uses the following approach.
4
 Given a network of size n 

(number of voxels within a muscle or muscle section) with measurable variables xi (fat%), a 

vector x containing the measurable variable is created.

Equation 1

Average (μ) and standard deviation (σ) of the values of x are defined. The standard 

formulation of Moran’s I is then given by Equation 2, where vij represents a measure used to 

judge the degree of nearness between locations i and j. We used the Euclidian distance 

between the two points.
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Equation 2

We implemented the matrix formulation of Moran’s I in this work (Equations 3–6).
4

Equation 3

Equation 4

Equation 5

Equation 6

Extension of Moran’s Index for quantifying spatial clustering of intramuscular fat

To appropriately compare Moran’s I across muscles and segments containing different 

numbers of voxels, it was critical to ensure that the range of possible Moran’s I values were 

consistent for all segments. Because both the number of voxels (n) in a particular region of 

interest (i.e. the muscle or muscle section) and β could affect the maximum and minimum 

potential values for the Moran’s I calculation (Figure 2), values for β were determined to 

ensure that the range of Moran’s I was consistent. Typically, β=1 when implementing the 

weighting methodology we applied here (Vij
−β) (cf. Equation 6). This allows for spatial 

weights to be based purely on Euclidian distance and represents a more global measure of 

spatial clustering.
3
 As β increases, the calculation of Moran’s I becomes more of a local 

measure of spatial clustering
3
 which may not be appropriate in other spatial applications in 

which Moran’s I is commonly used. To calculate an appropriate β value for application to 

imaging analysis, we constructed two matrices M1 and M2 with a total number of cells s. M1 

represented the checker board condition and M2 represented the black and white divided 

condition (Figure 1), such that when Moran’s I was calculated it should equal −1 and 1 for 

M1 and M2, respectively (Figure 2). We varied s from 20 to 10,000 (a lower limit for voxel 

count in a muscle section), and β was varied from 1 to 200. Moran’s I was calculated for 

each s by β combination to determine how close the calculations were to the expected values 
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of −1 and 1 for M1 and M2, respectively (Figure 2). From this analysis, it was determined 

that a value of β = 200 allows for the range of possible Moran’s I to be consistent regardless 

of voxel count (Figure 2), enabling comparison between subjects and muscles regardless of 

muscle size.

Subject population

A total of 16 older adults – 6 (63.8 ± 1.1 years) with a magnetic resonance imaging (MRI) 

confirmed supraspinatus tear (RCT) and 10 (63.5 ± 1.7 years) uninjured controls - were 

recruited from the local community (Table 1). This study was approved by the Wake Forest 

Baptist Health Institutional Review Board and all subjects provided informed consent. 

Inclusion criteria for the participants were 1) age > 60 years old, 2) no contraindication to 

undergoing an MRI scan, and 3) no history of neuromuscular disorder or other injury that 

might affect the upper limb, such as stroke, Parkinson’s disease, spinal cord injury, or 

confinement to a wheelchair. RCT subjects must not have had previous surgery or history of 

prior injury on the affected shoulder. Control subjects were screened for an asymptomatic 

rotator cuff tear with a telephone questionnaire to ensure there was no history of injury and a 

modified Jobe’s test
9
 was performed prior to imaging.

Magnetic resonance imaging protocol

All study participants underwent an MRI on a 3T Skyra scanner (Siemens Munich, 

Germany). Participants were scanned in a supine position using the 18 channel body matrix 

coil. The affected shoulder was evaluated for the patient group, while the dominant shoulder 

was evaluated for the control group. MR images were acquired using the standard Dixon 

imaging sequence
38

 available on the scanner. Voxel dimensions were 1mm × 1mm × 1mm. 

The Dixon technique allowed the signal for each voxel to be separated into signal intensity 

from fat (SIfat) and signal intensity from water (SIwater), from which a fat% is calculated for 

each voxel (Equation 7).

Equation 7

Signal-to-noise ratio
17

 and random noise
10

 corrections were made offline within Matlab 

(The Mathworks, Natick, MA) using standard techniques.
34

 The anatomical boundaries of 

the supraspinatus infraspinatus, subscapularis, and teres minor were manually segmented 

(3D-Doctor, Able Software Corp., Lexington, MA) on every image slice using methods 

previously described.
13,33

Voxel segmentation

We determined the volumetric distribution and spatial clustering of fat within the muscles 

using a custom Matlab script. Manually segmented muscle boundaries were used to identify 

the image voxels within a given muscle. For voxels on the muscle boundary, an entire voxel 

was considered to be within the boundary (i.e. part of the muscle) if the center of the voxel 

was within the segmented boundary. The most proximal and distal points of the muscle were 
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manually selected and the muscles were divided into sections along the line connecting 

proximal and distal points to determine volumetric distribution and spatial clustering of fat. 

The supraspinatus, infraspinatus, and subscapularis muscles were divided into 5 equal length 

sections (Figure 3). Teres minor was divided into three sections due to its small volume. 

Volumetric distribution of fat was represented by the percentage of volume occupied by fat 

for each section. Fat% for each section was calculated as the average fat% across voxels 

contained in a given section.

Statistical analysis

To evaluate the volumetric distribution of intramuscular fat within each rotator cuff muscle 

and the effect of tear status (group), we created a generalized linear model for each of the 

four muscles in which fat% of each section was the dependent variable. An initial model was 

created that included the effects of group and section and the interaction of group and 

section. If the interaction was found to be significant, the RCT and control groups were 

separated and regression analyses were performed for each group separately, with section as 

the independent variable. If the interaction effect was not significant, it was removed from 

the model and the regression analysis was performed again. The same analysis technique 

was performed for spatial clustering of intramuscular fat with Moran’s I of each section 

being used as the dependent variable. To evaluate correlation between Moran’s I and fat% 

for all sections from all muscles, we used a linear regression analysis. Holm-sequential 

Bonferroni correction was performed for all follow-up analyses, with overall significance set 

to p<0.05. All statistical analyses were performed using SAS (Cary, NC).

Results

Volumetric distribution

Fat distribution and spatial clustering within the supraspinatus - the muscle with tendon tear 

- differed between groups (Figure 4). Average fat% within all sections of the supraspinatus 

ranged from 4.8% to 18.2% for RCT subjects and from 2.5% to 8.5% for the control 

subjects (Table 2). The interaction between group and section for fat% was significant for 

the supraspinatus (p=0.036) (Figure 5), indicating that the two groups should be considered 

separately. The control group exhibited no dependence of fat% on distal-proximal section, 

indicating that the volumetric distribution of intramuscular fat is consistent across the 

supraspinatus (p=0.910). However, for those with a torn supraspinatus tendon, fat% was 

increased in distal sections closer to the location of the tear (p<0.001).

Group by section interaction was not significant for the infraspinatus (p=0.433) or 

subscapularis (p=0.852) but was significant for teres minor (p=0.034). Section was not 

significant for the infraspinatus (p=0.132) indicating consistent volumetric distribution 

across the muscle. Section was significant for subscapularis (p<0.001), with increasing fat% 

from the distal to the proximal portion of the muscle, the reverse of the pattern seen in the 

supraspinatus. Section was not significant for either the control (p=0.711) or rotator cuff tear 

groups (p=0.075) for the teres minor, indicating no significant pattern of volumetric 

distribution.
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Spatial clustering

All muscle sections from all subjects had values of Moran’s I above 0.39, indicating that 

intramuscular fat tends to be more clustered than a random configuration (Table 2). In the 

supraspinatus, Moran’s I ranged from 0.40 to 0.92 for RCT subjects and from 0.39 to 0.76 

for the control subjects (Table 2). Group by section was signficant for the supraspinatus 

(p=0.020); both RCT (p<0.001) and control subjects (p=0.001) demonstrated increased 

spatial clustering (Moran’s I) distally, toward the torn tendon (Figure 6). For infraspinatus 

(p=0.109), subscapularis (p=0.699), and teres minor (p=0.166), there was no significant 

group by section interaction effect. Similar to the supraspinatus, spatial clustering increased 

from proximal to distal in the infraspinatus (p=0.007); in contrast, the subscapularis 

exhibited spatial clustering increasing from distal to proximal (p<0.001). Teres minor did not 

exhibit a marked difference in spatial clustering with muscle section (p=0.050). Correlation 

between Moran’s I and fat% for the RCT and control groups were r2 = 0.454 (p<0.001) and 

r2 = 0.343 (p<0.001) respectively (Figure 7). Muscle sections with similar fat values (within 

0.5%) had variable Moran’s I (range as much as 0.43). Similarly, sections with similar 

Moran’s I value (within 0.05) had variable fat% (range up to 19.1%).

Discussion

Here we demonstrated the altered spatial characteristics of intramuscular fat in the rotator 

cuff after an RCT using a new technique which extends existing validated approaches for 

describing spatial characteristics of three dimensional data. We developed an 

implementation allowing the specific application of analysis of imaging data wherein 

datasets of different sizes must be compared, permitting a quantitative measure of spatial 

clustering of fat within the entire muscle belly. We demonstrated the application of this 

approach, which revealed that both the volumetric distribution and spatial clustering of 

intramuscular fat within the torn supraspinatus are more pronounced in the distal end near 

the supraspinatus tendon tear. These data also suggest that patterns of fat differ across 

muscles; for example, the subscapularis exhibited fat distribution and clustering that was 

pronounced at the proximal end of the muscle in all subjects. High levels of intramuscular 

fat may reduce the overall amount of contractile tissue available to produce force, while 

different patterns of clustering may influence the way in which force propagates throughout 

the muscle tissue.
35

 Low correlation between Moran’s I and fat% indicate that the measures 

offer different information regarding the spatial characteristics of intramuscular fat and both 

features should be examined.

The supraspinatus fat distribution patterns shown in this study are consistent with results 

seen in animal models of rotator cuff tears, in which increased fat% in the distal portion of 

the muscle has been observed following an inflicted tear of the corresponding 

tendon.
14,26,27,29

 However, the animal studies measured fat% using a small number of 

histological slices. Complete spatial information regarding the location of intramuscular fat 

within the whole muscle is unavailable with a histological approach limited to a small 

number of slices. Additionally, no prior studies in animals considered spatial clustering of 

intramuscular fat. Future animal studies should consider applying the methodology 
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presented here; the fat% and Moran’s I values that were present for human muscle may 

provide a baseline for animal model validation where intramuscular fat is of interest.

The current study provides quantitative confirmation of prior qualitative descriptions of 

distal clustering of intramuscular fat within the supraspinatus of patients with chronic rotator 

cuff tears.
2
 However, the approach presented here provide a robust and repeatable measure 

of intramuscular fat clustering compared to the qualitative method employed by the previous 

study, which relied on clinician interpretations of two parasagittal MRI slices. Other 

qualitative findings in the prior work differ from the results reported here. For example, the 

previous study did not observe increased clustering distally in the infraspinatus following a 

rotator cuff tear,
2
 which may be the result of differing patient populations and tear 

characteristics. The same study did report increased clustering distally in the subscapularis 

in 54% of patients with subscapular neuropathy. These discrepancies support our conclusion 

that patterns of intramuscular fat may differ among muscles and for different pathologies. In 

addition, the qualitative approach from the previous work may not have been able to detect 

differences even if they existed due to the paucity of information provided by only two 

images.

Current biological explanations for progression of intramuscular fat within the supraspinatus 

suggest that it originates from the distal portion of the supraspinatus; this is consistent with 

the results of the current study.
14

 It has been suggested that the musculo-tendinous junction 

might be abundant in pluripotent stem cells, which could be causing the increased gene 

expression and adipogenic markers distally.
14

 Interestingly, expression of myogenic and 

adipogenic genes was variable with regard to injury type and severity.
6
 For example, 

myogenic gene expression was upregulated in patients with bursitis and tendinopathy but 

down regulated in patients with massive tendon tears, while adipogenic gene expression was 

upregulated in patients with a full-thickness tear but down regulated in patients with massive 

tears. Future work should consider using the quantitative metrics described in this study to 

probe gross differences in intramuscular fat due to these differing patterns of gene 

expression.

The mechanism driving higher proportion and clustering of intramuscular fat near the 

injured supraspinatus tendon is currently unclear. Two common explanations for increases in 

intramuscular fat in rotator cuff muscles are fatty infiltration and fatty degeneration. Fatty 

infiltration suggests fat “infiltrates” from outside the muscle belly and occupies 

intramuscular pockets created as muscle architecture changes following a rotator cuff tear.
19 

Fatty degeneration suggests myoblasts trans-differentiate into PPARγ (proliferator-activated 

receptor γ), which express adipocytes.
14

 Although both mechanisms offer explanations for 

increased proportion of intramuscular fat, neither directly explains fat clustering. Recent 

work suggests a third possibility, that muscle tissue is atrophying around existing fat 

deposits, leading to an apparent increase in proportion of fat without a corresponding 

increase in total fat content.
34

 Additional research into the mechanisms resulting in both 

increased levels and clustering of intramuscular fat distally is needed.

Fat patterns in the infraspinatus, subscapularis, and teres minor differed from that of the 

supraspinatus. There were also limited differences between RCT and control subjects for 
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these muscles. While infraspinatus overall had more clustering distally like the 

supraspinatus, the subscapularis had both higher fat content and more clustering proximally. 

Tears of the infraspinatus, subscapularis, and teres minor were not controlled for in this 

study, which may provide some explanation for these differences. The small subject 

population inhibited the ability to control for these tears in the statistical analyses. In 

addition, despite a common insertion tendon for the rotator cuff muscle-tendon units,
31

 these 

muscles have substantially different muscle architecture,
37

 which may influence their 

mechanosensitivity.
6
 These muscles also have differing gene expressions,

30
 suggesting that 

other inherent factors may contribute to the differences in fat distribution and clustering in 

the rotator cuff, which should be explored further.

These findings are also pertinent clinically, as they may provide guidance as to where in the 

muscle fat content should be evaluated for specific muscles when making treatment planning 

decisions, since high fat content is typically a contraindication for surgical repair of tendon 

and is associated with higher failure rates following repair.
5,12

 An important consideration 

concerning this methodology is that the current segmentation and data processing takes in 

excess of 10 person-hours per subject and therefore is not a practical approach for clinicians 

making patient-related decisions. Automatic segmentation of muscle boundaries would 

reduce processing time to make this methodology clinically viable. Work is currently 

underway to automate the segmentation process. One recent study suggests that standard 

approaches for selecting imaging planes for clinical scoring of intramuscular fat resulted in 

scores that were not significantly associated with fat percentage measured from the entire 

muscle belly.
34

 However, the current work provides a foundation for improved selection of 

appropriate slices for clinical evaluation that may be sufficient to fully comprehend the full 

spatial characteristics of intramuscular fat.

Limitations

There are several limitations to this work which should be considered. We demonstrated the 

application of a new three-dimensional method to analyze the spatial characteristics of 

intramuscular fat throughout the entire muscle belly in a small cohort of older adults with 

and without degenerative rotator cuff tears. The specific conclusions regarding fat patterns 

exhibited by this group may have limited generalizability to other age groups, traumatic 

tears of the rotator cuff, and other pathological changes to muscle. We defined proximal to 

distal sections using equal length segments. Other methods for sectioning the muscles, 

including anatomical landmarks such as the scapula and humerus should be considered, 

especially for clinical applications.

The analysis methods described here depend on the accuracy of the input data. It also 

requires that the Euclidian distance between adjacent nodes must be identical for all nodes in 

the set to compare clustering values on the same scale. For example, a 3mm image slice 

thickness would reduce the magnitude of clustering values compared to 1mm slice of the 

same data. However, relative clustering across specimens all scanned using the same size 

voxel would be consistent, no matter the scanning resolution chosen. An advantage to 

current implementation is that it does not require datasets of equal total size (number of 

voxels) for comparison across muscles, and can be generally applied to any three-
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dimensional dataset from any imaging or histological method that has spatial characteristics. 

For example, it is not restricted to use with the specific MR sequence used in this study; 

rather other sequences (e.g. T2 weighting to capture fibrosis or scarring) or modalities (e.g. 

CT) are appropriate for use with the analysis as long as nodal information is provided with 

equal spacing. These extensions increase the utility of this technique for application to 

biological data.

Conclusion

The new approach proposed here quantitatively describes the three-dimensional spatial 

characteristics of intramuscular fat. This is achieved by providing a quantitative measure of 

volumetric distribution and for the first time, a quantitative measure of spatial clustering. 

Spatial clustering was calculated by extending the formulation of Moran’s Index, a 

commonly implement mathematical technique, to permit analysis of datasets with adjacent 

data nodes and comparison of differently sized datasets. We have demonstrated the utility of 

the approach in conjunction with MR images to produce three-dimensional descriptions of 

intramuscular fat morphology and the influence of fat presentation after a rotator cuff tear. It 

was determined that older adults with a degenerative supraspinatus tendon tear have more fat 

that is more clustered in the distal portion of the supraspinatus compared to uninjured older 

adults. The approach described here is applicable to other pathologies which may 

demonstrate spatial characteristics within biological tissues.
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Figure 1. 
A: Moran’s I = −1, B: Moran’s I ~ 0, C: Moran’s I = 1. Each of the images has exactly 50% 

of the pixels black and 50% of the pixels white. Moran’s I gives a quantitative value of the 

spatial autocorrelation of the black pixels in the images that cannot be accurately determined 

by a total percentage. Moran’s I below 0 indicates a diffuse pattern of fat and Moran’s I 

above 0 indicates a clustered pattern of fat. Values of Moran’s I closer to −1 and 1 are more 

diffuse and clustered, respectively, than values closer to 0.
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Figure 2. 
Surface plots of the maximum (A) and minimum (B) Moran’s I that can be reached given 

the number of voxels and the value for β. Setting β = 200 for the calculations of Moran’s I in 

this study, ensures that Moran’s I has the ability to reach −1 and be as close to 1 as possible 

regardless of muscle volume.

Santago et al. Page 14

Ann Biomed Eng. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A supraspinatus divided into five sections. A line connecting the most proximal and most 

distal points was then divided into 5 equal length segments. Planes perpendicular to the line 

at the ends of each segment were used to separate the muscle into 5 equal length sections. 

Voxels were assigned to each section based on their locations relative to the dividing planes. 

Using this same approach, infraspinatus and subscapularis were divided into five sections, 

while teres minor was divided into three sections, due to its small size.
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Figure 4. 
A representative supraspinatus muscle from a control subject and a rotator cuff tear (RCT) 

subject demonstrating fat% for each voxel. Rotator cuff tears are located at the distal end. 

The RCT subjects exhibited a distinct volumetric distribution with fat% decreasing from 

distal to proximal, but this was not observed in the control subjects.
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Figure 5. 
Fat% within each section of the supraspinatus for both the rotator cuff tear subjects (RCT) 

(black) and control (gray) subjects. Intramuscular fat has a homogenous volumetric 

distribution in the control subjects (p=0.910), but increases distally in the RCT group 

(p<0.001).
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Figure 6. 
Moran’s Index for each section of the supraspinatus for the rotator cuff tear subjects (RCT) 

(black) and control (gray) subjects. Intramuscular fat is more clustered in the more distal 

portions of the muscle than the proximal portions for the control (p=0.001) and the RCT 

groups (p<0.001). However, the RCT group demonstrates a greater increase in spatial 

clustering from the proximal to distal portion than the control group (p<0.001).
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Figure 7. 
Moran’s Index versus fat% for each section of all muscles for the rotator cuff tear (RCT) 

subjects (black) (p<0.001) and control (gray) subjects (p<0.001). Poor fit between the two 

measures reveals that volumetric distribution and spatial clustering provide different 

information regarding the spatial characteristics of intramuscular fat.
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Table 1

Demographics for rotator cuff tear (RCT) and control subjects.

Group Sex Age (years) Height (cm) Body mass (kg)

RCT Male 64 183 108.0

RCT Male 64 150 88.5

RCT Male 62 160 95.3

RCT Female 65 150 53.5

RCT Female 63 160 73.5

RCT Female 65 163 65.8

Control Male 64 173 70.3

Control Male 61 178 99.8

Control Male 64 183 86.2

Control Male 62 173 73.5

Control Male 61 175 70.3

Control Female 64 152 74.8

Control Female 63 173 54.4

Control Female 67 173 70.8

Control Female 65 163 65.8

Control Female 64 160 60.3
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Table 2

Maximum, minimum, and median fat% and Moran’s Index for each section.
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