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CalE6 from Micromonospora echinospora is a (pyridoxal 50 phosphate)

PLP-dependent methionine c-lyase involved in the biosynthesis of calicheamicins.

We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid

complex showing ligand-induced rotation of Tyr100, which stacks with PLP,

resembling the corresponding tyrosine rotation of true catalytic intermediates

of CalE6 homologs. Elastic network modeling and crystallographic ensemble

refinement reveal mobility of the N-terminal loop, which involves both tetrameric

assembly and PLP binding. Modeling and comparative structural analysis of

PLP-dependent enzymes involved in Cys/Met metabolism shine light on the

functional implications of the intrinsic dynamic properties of CalE6 in catalysis and

holoenzyme maturation. VC 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4948539]

I. INTRODUCTION

Structural dynamics on various time and length scales are inherent properties of biological

macromolecules and are often related to their functions. For example, enzymes, which are

chosen by nature to lower the energy barrier of transition state conformations, ultimately

require finite structural flexibility to advance the catalytic cycle and avoid being trapped in

either substrate bound or product bound states. Protein dynamics can be probed not only by

solution approaches like nucleic magnetic resonance (NMR) and other spectroscopies but also

by a combination of X-ray crystallography and computational modeling.1,2 Recent advances in

time-resolved serial femtosecond crystallography (TR-SFX) using pulsed ultra-bright X-ray free

electron lasers (XFELs) show promise in capturing photoactive proteins in action at atomic

level by taking data within a very short time courses (in the order of 100 fs) during which

light-induced conformational changes have been previously initiated.3,4 Among many
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computational structural biology methods, molecular dynamics (MD) simulation, elastic net-

work models (ENMs), and ensemble refinement offer ways complementary to experiments to

identify motions that occur at a wide range of temporal and spatial scale relevant to biomole-

cule function. Unlike MD simulation, which yields a time course of conformational trajectory,

ENM performs low-frequency normal mode analysis (NMA) based on an harmonic approxima-

tion around the starting reference model, which is assumed as a minimum energy conforma-

tion.5–7 Ensemble refinement describes protein dynamics by fitting ensemble models to diffrac-

tion data which accounts for both anisotropic and anharmonic distributions.8–10 We have

applied ENM and ensemble refinement approaches to extract the dynamic information from the

experimental structure of CalE6, a PLP (pyridoxal 50 phosphate)-dependent methionine c-lyase

from Micromonospora echinospora, which is encoded by the calicheamicin biosynthetic gene

cluster.11

Calicheamicin c1
I (Figure 1) is a prototype of the 10-membered enediyne family of antibiotics

that contains a characteristic bicyclo[7.3.1]tridecadiynene core.12–15 Like all 9- and 10-membered

enediynes, calicheamicin-induced oxidative DNA strand scission is enabled by cycloaromatization

of the enediyne core to form a highly reactive diradical species.15,16 In calicheamicin, this cycloar-

omatization event is initiated via reductive activation of a unique allylic trisulfide “trigger” and

the corresponding reactive diradical is exquisitely positioned by the calicheamicin aryltetrasacchar-

ide, which contains multiple distinctly functionalized sugars that contribute to DNA minor groove

recognition and affinity.15–20 Given its incredible potency, calicheamicin also served as the war-

head of the very first clinically approved monoclonal antibody (mAb) drug conjugate for targeted

cancer therapies.21,22 Despite that various enzymes involved in biosynthesis of the enedyine

core,22–27 glycosyltransferation28,29 and sugar modification30–32 have been biochemically or struc-

turally characterized, the putative enzymes responsible for sulfur mobilization and installation

during the formation of enediyne trisulfide and thiosugar (boxed in Figure 1) remain unknown.

Protein BLAST-based functional annotation indicates that the calicheamicin biosynthetic cluster

contains at least three candidate genes that may encode for enzymes involved in the requisite

sulfur biochemistry [calE4 (putative cysteine desulfurase), calS4 (putative selenocysteine

lyase/cysteine desulfurase), and calE6 (methionine c- lyase)].23 It cannot be ruled out that partici-

pation of sulfur-transfer genes from primary-metabolism as reported for the biosynthesis of

FIG. 1. The utilization of sulfur in 10-membered enediynes. The sulfur-containing substructures within calicheamicin (1),

esperamicin (2), namenamicin (3), and shishijimicin (4) are highlighted within the boxed areas.
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2-thiosugar-containing natural product BE-7585A33 also occurs during biosynthesis of the 4-

thiosugar moiety of calicheamicin. Among the putative genes responsible for sulfur transfer during

calicheamicin biosynthesis, the corresponding gene product CalE6 was recently confirmed to

show methionine c lyase activity.34 However, the contribution of this enzymatic activity to cali-

cheamicin thiosugar and/or trisulfide formation remains unknown.

CalE6 structure was first determined in the 2-(N-morpholino)ethanesulfonic acid (MES)

bound form by our group as part of the Protein Structure Initiative (PDB code: 4Q31),35 which

showed the same homotetrameric overall structure and space group as the phosphate complex

structure subsequently reported by Song et al. (PDB code: 4U1T).34 Despite little structural

difference between the two ligand bound forms, all four subunits consistently showed nontrivial

local conformational changes involving �17� side-chain rotation of the active site residue Tyr

100, a highly conserved residue structurally stacking with the pyridine ring of the cofactor in

PLP-dependent enzymes. We further simulated the dynamics and sampled the conformational

space of this enzyme using both coarse-grain elastic network models and ensemble refinement

methods based on the CalE6-MES complex structure. We demonstrated that computational

analysis, complementary to X-ray crystallography not only consistently identified the global

distribution of protein mobility but also allowed deriving multiple-conformer ensemble models

from diffraction data to properly represent the local dynamics including the rotation mode of

active site Tyr 100 of CalE6, as probed by the latter method.

II. MATERIALS AND METHODS

A. Cloning and protein expression

Cloning and expression protocols of CalE6 followed the standard high throughput proce-

dures of Midwest Center for Structural Genomics, the details of which are also available at

TargetTrack database (www.sbkb.org/tt/) under Project Target ID APC109014, as a Protein

Structural Initiative target. A brief summary was provided here. The full length calE6 gene

from M. echinospora (gi: 22255867) was amplified from the genomic DNA using forward

primer 50-TACTTCCAATCCAATGCCGTGAGCGGTATGCGCTTCGAC-30 and reverse primer

50-TTATCCACTTCCAATGTTAGGTGCCGCCCGCCAG-30. The PCR product was cloned into

vector pMCSG73 according to the ligation-independent procedure and transformed into the

E. coli BL21(DE3)-Gold strain (Stratagene). The vector pMCSG73 is derived from vector

pMCSG53 and contains tRNA genes covering rare codons Arg (AGG/AGA) and Ile (AUA).36

DNA sequencing identified a mutation corresponding to D7G variation at the N-terminus, which

was subsequently confirmed to show no effect on the overall or remote active site structure of

the protein. Supplementary Figure S1 shows the local loss of a salt bridge with Arg 253 from a

neighbor subunit and concomitant side-chain reorientation of Arg 253 due to D7G variation

without affecting the overall structure.61 Selenomethionine labeled protein was overexpressed

from E. coli BL21 (DE3) culture grown in M9 minimal media supplemented with inhibitory

amino acid cocktail and Se-Met under induction condition of 0.5 mM IPTG at 18 �C overnight.

The fusion product contains a TVMV-cleavable N-terminal NusA tag followed by a TEV-

cleavable N-terminal 6xHis tag (NusA-ETVRFQ/S-HHHHHH-WSHPQFEK-ENLYFQ/SNA-

TARGET). After cell lysis by sonication, the Se-Met labeled protein was purified by Ni-NTA

affinity chromatography using AKTAxpress system (GE Health Life Sciences, USA), TEV

protease cleavage, followed by an additional subtractive IMAC step to remove the protease,

uncut protein, and affinity tag. The purified untagged protein was concentrated to 11 mg/ml

with Amicon Ultra-15 centrifugal concentrators (Millipore, Bedford, MA, USA) and stored in

20 mM HEPES pH 8.0, 250 mM NaCl, 2 mM dithiothreitol, and 1 mM PLP at �80 �C.

B. Protein crystallization

Several commercially available crystallization screens (MCSG-1–4, Microlytic, Inc. MA,

USA)37 were used, which led to identification of multiple CalE6 crystallization conditions. The

best diffracting CalE6 crystal was obtained using the sitting drop vapor diffusion method by
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mixing 0.4 ll of 11 mg/ml protein solution containing 1 mM PLP with 0.4 ll of reservoir solu-

tion containing MCSG-2 screen B1 condition (12% w/v PEG 20000 and 0.1 M MES, pH 6.5)

using the mosquito liquid dispenser (TTP Labtech, Cambridge, MA, USA). The crystallization

drop was equilibrated against a reservoir solution of 140 ll. Crystals were grown at 289 K for 2

weeks, cryoprotected with 25% glycerol and flash-frozen in liquid N2.

C. Data collection and refinement

A set of single-wavelength anomalous diffraction (SAD) data was collected to 2.10 Å reso-

lution at Argonne National Laboratory on the SBC-CAT (19-ID) beamline with the program

SBCcollect38 using a wavelength 0.97915 Å and an ADSC QUANTUM 315r CCD detector.

The dataset was integrated and scaled with HKL3000.39 Selenium sites were located using

SHELXD40 and used for phasing with MLPHARE.41 Following density modification,42 a partial

model was built by three cycles of ARP/wARP.43 The structures were completed with alternat-

ing rounds of manual model building with COOT44 and refinement with PHENIX 1.8.2_1309.45

Data collection and refinement statistics were summarized in Table I. All the images of protein

models were generated with PyMOL.46 The structure factors and refined model were deposited

in Protein Data Bank (PDB, www.rcsb.org) as entry 4Q31.35 Protein quaternary assembly and

buried surface were calculated by PISA server.47 Model quality was assessed using

MolProbity.48 Visualization of 3D structures with PyMOL and COOT was facilitated by stereo-

scopic HDTV.49

D. Elastic network model

The elastic network model (ENM) of CalE6 was performed using the ElNemo server.7 The

reference state was set as homotetramer of CalE6 (chains A–D) of crystal structure (PDB code:

4Q31) with removal of water and non-covalent bound molecules, replacement of selenomethionine

Se atoms with methionine S, and change of all HETATM records to ATOM. Four PLP cofactors

covalently bound to Lys were kept the same as residues LLP 197 in the original PDB model.

Default parameters were used from the server. Top five slowest normal modes were analyzed.

E. Ensemble refinement

The ensemble refinement of CalE6 was run on PHENIX dev_1839.10,45 Each subunit of the

homotetramer was assigned as a single TLS group. While the extent of ensemble dispersion

depends largely on the crystallographic data, global harmonic restraints were applied with a

weak weight of 10�5 to penalize aberrant movement of the protein segments in the poor elec-

tron density regions only beyond a default distance threshold value of 1 Å. Three empirical pa-

rameters were optimized during ensemble refinement, where wxray_coupled_tbath_offset¼ 5.0,

ptls¼ 0.8, and tx¼ 0.5. The output model number of the ensemble was defined to be 10 to both

allow reasonable sampling of the conformations and avoid overfitting to the diffraction data.

The refined ensemble models were deposited in PDB as entry 4XQ2. Ensemble refinement

moderately improved both Rcryst and Rfree statistics (Table I).

F. Dynamics analysis of ensemble models

The ensemble models were analyzed with Mobi server50 to extract relative dynamics prop-

erties of each residue represented by “average scaled distance” between the same Ca atoms in

all the superposed models. The larger the average scaled distance, the higher relative mobility

of the residue in the ensemble models.

III. RESULTS AND DISCUSSION

A. The crystal structure of CalE6 and ligand induced rotation of Tyr 100

The crystal structure of CalE6 was determined and refined to a resolution of 2.1 Å. Two

homotetramers were found in the asymmetric unit displaying essentially the same
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conformational state with overall Ca RMSD of 0.143 over 1509 residues of four chains (A–D

vs. E–F). The buried surface area of individual tetramer is 24,505 6 325 Å2. Each tetramer

harbors four molecules of PLP, each bound in a cleft formed at C-2 symmetry-related dimer

interfaces (Figure 2(a)). Within the dimer, one subunit provides Lys 197 as the Schiff-base

anchor for PLP and forms multiple non-covalent interactions with the cofactor from residues Ser

75, Gln 77, Tyr 100, Glu 143, Asp 172, Thr 174, Ser 194, Thr 196 (Figure 2(b)). The adjacent

subunit provides additional charge-charge and hydrogen-bonding interactions with the phosphate

group of PLP from residues Arg 480 and Tyr 460 located on an extended loop (residues 14–51).

The same loop also forms quaternary interactions with symmetry-related loops from a distant

subunit to hold together the tetramer (Figure 2(b)). A solvent molecule 2-(N-morpholino)ethane-

sulfonic acid (MES) was identified in each putative substrate site based on clear electron density

(Figure 2(c)), with the sulfonic group of MES located at an equivalent position to the

TABLE I. Statistics for X-ray data collection and structural refinement of CalE6. (Values in parenthesis are for the highest

resolution shell.)

Statistic Single model refinement Ensemble refinement

Protein Data Bank ID code 4Q31 4XQ2

Spacegroup I222

Cell dimensions

a, b, c (Å) 146.9, 147.0, 349.9

a, b, c (deg) 90.0, 90.0, 90.0

Wavelength (Å) 0.97915

Resolution of data collection (Å) 34.0–2.10 (2.14–2.10)

No. of unique reflections 218967 (21668)

Completeness % (Å) 99.9 (99.0)

Redundancy 7.4 (7.3)

Rsym
a 0.14 (0.72)

I/rb 16.6 (2.9)

Resolution range in refinement (Å) 34.0 – 2.10 (2.12–2.10)

No. of unique reflections (work/test) 218929/10997

Rcryst
c 15.3 (19.5) 14.5 (17.7)

Rfree
d 19.1 (26.2) 18.3 (24.4)

Mean coordinate errore (Å) 0.19 0.14

Rmsd bond length (Å) 0.007 0.009

Rmsd bond angles (deg) 1.07 1.34

Average B value (Å2)

(overall/protein/waters/ligand)

29.7/29.1/33.5/48.3 25.3/24.8/24.7/71.6

No. of non-hydrogen atoms 24719 243453

No. of protein atoms 22606 226060

No. of waters 1823 14543

No. of ligands and sugars 8 MES, 28 glycerol, 5 formic

acid, 12 Cl�
80 MES, 280 glycerol, 30 formic

acid, 120 Cl�

Ramachandran Statisticsf (%) 97, 2.5, 0.5 92, 6.3, 1.7

aRsym¼
P

hkl

P
i jIi(hkl)�hI(hkl)ij/

P
hkl

P
i Ii(hkl), where Ii(hkl) is the intensity of an individual measurement of the sym-

metry related reflection and hI(hkl)i is the mean intensity of the symmetry related reflections.
bI/r is defined as the ratio of averaged value of the intensity to its standard deviation.
cRcryst¼

P
hkl jjFobsj � jFcalcjj/

P
hkl jFobsj, where Fobs and Fcalc are the observed and calculated structure-factor amplitudes.

dRfree was calculated as Rcryst using randomly selected small fractions (5%) of the unique reflections that were omitted from

the structure refinement.
eMean coordinate error was calculated based on maximum likelihood.
fRamachandran statistics indicate the percentage of residues in the most favored, additionally allowed and outlier regions

of the Ramachandran diagram as defined by MolProbity.48
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a-carboxylic group of an L-Met aldimine catalytic intermediate reported for a homologous me-

thionine c-lyase 1 from Entamoeba histolytica (PDB entry 3AEM) (Figure 2(c)).51

Despite overall structural similarity between the current CalE6-MES complex and the

recently reported CalE6-phosphate complex (PDB 4U1T),34 we consistently found a distinct

conformational change of Tyr 100 between the two structures for all the subunits of the two

tetramers in the asymmetric unit. The major movement of Tyr 100 involves rotation around

Cb-Cc bond with minor shift of backbone positions resulting in a 16.5� decrease of Ca-Cb-Cc-

Cd1 dihedral angle from 67.4 6 0.7� to 50.9 6 2.4� (Figure 3) (Table II). Similar ligand induced

conformational changes of the PLP-stacking tyrosine residues were observed for external aldi-

mine reaction intermediates of structural homologs including E. histolytica methionine c-lyase

1 (PDB entries 3AEM and 3ACZ, 34% sequence identity with CalE6),51,52 Xanthomonas oryzae
cystathionine c-lyase (PDB entries 4IY7 and 4IXZ, 45% identity),53 and Citrobacter freundii
methionine c-lyase (PDB entries 4HF8, 4OMA, 2RFV, 39% identity) (Figure 3).54–56 In all the

cases, only the substrates/structural mimics were able to induce the corresponding Tyr

FIG. 2. CalE6 overall structure and the active site. (a) Tetrameric structure of CalE6 holoenzyme. Four subunit chains were

shown as secondary structure cartoons A (green), B (cyan), C (magenta), and D (yellow). PLP was shown as spheres, with

carbon in white, oxygen red, nitrogen blue, phosphorus orange. (b) Active site residues within 4 Å from PLP shown as

sticks. 2Fo-Fc electron density map contoured 1.8 Å around PLP was shown at 1.0 r level. The N-terminal extended loops

(residues 14–51) were highlighted as thick ribbons for chains B and D. (c) Stereo images of active site structures of CalE6

(cyan) and E. histolytica methionine c-lyase 1 (green) (PDB entry 3AEM).51 PLP aldimine complexes and adjacent tyrosine

residues were shown as sticks. 2Fo-Fc density map was shown for MES at 1.0 r level. Structures were aligned using

PyMOL46 based on the tetrameric form (chains A–D).
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side-chain rotation, but not the small anions like sulfate or bicarbonate, which occupy the

equivalent positions of the a-carboxylic groups of the aldimine intermediate. The Ca-Cb-Cc-

Cd1 (v2) dihedral angles of the corresponding PLP-stacking tyrosine residues in these structures

were summarized in Table II. The tyrosine side-chain v2 dihedral angles of CalE6 structural

homologs analyzed here all fall into statistically allowed but less favored region based on side-

chain angle distribution in rotamer libraries derived from high resolution protein structures in

Protein Data Bank.60 The ligand induced tyrosine v2 angles of CalE6 homologs (49�–59�) devi-

ate further away from the most populated range of around 85�–90� than the corresponding

native angles (67�–73�).60 These dihedral angle statistics potentially suggest a physically

“tensed” or higher energy state of the tyrosine near PLP upon ligand binding compared to the

native state. Despite the variation in the ligand-induced torsional angle of the tyrosine, it

appears that the proper p-p stacking interactions between the tyrosine and PLP were mostly

maintained in the external aldimine intermediates as seen for the case of E. histolytica methio-

nine c-lyase 1 (Figure 3(c)).51,52 Ngo et al. have proposed that the catalytic cycle of PLP-

FIG. 3. Stereo drawing showing a structural comparison of CalE6 complexes with homologous complexes. Structures were

aligned using PyMOL46 based on chain A. CalE6 active site residues Tyr 100 and Lys 197-PLP were shown as sticks, in

the MES (orange) or sulfate (light pink) bound forms. The corresponding residues of homologs in both internal aldimine

(magenta group) and external aldimine (cyan group) forms were shown as lines. MES were shown as sticks, and sulfate

ions were shown as spheres. Aldimine linkage nitrogen atoms were colored blue. Similar rotation modes of conformational

change of tyrosine and PLP (referring to different forms of an individual enzyme member) were indicated as black arrows.

Substrate mimic MES but not small sulfate ion is able to induce rotation of Tyr 100 of CalE6 independent of external aldi-

mine formation and PLP rotation. Concerted rotation motions of the conserved Tyr PLP pair of the homologous structures

were observed from internal aldimine to external aldimine transition. Structures aligned include CalE6 (PDB entries 4Q31

and 4U1T),34,35 E. histolytica methionine c-lyase 1 (PDB entries 3AEM and 3ACZ),51,52 X. oryzae cystathionine c-lyase

(PDB entries 4IY7 and 4IXZ),53 and C. freundii methionine c-lyase (PDB entries 4HF8, 4OMA, 2RFV).54–56 Xaa repre-

sents not a particular amino acid.

TABLE II. Ca-Cb-Cc-Cd1 dihedral angle values of the conserved tyrosine stacking with PLP in CalE6 and homologs.

Protein name and function Induced angle (deg)a Native angle (deg)a

Difference

angle (deg) PDB entries

MES complex Sulfate complex

CalE6 methionine c-lyase 50.9 6 2.4 67.4 6 0.7 16.5 4Q31, 4U1T34

External aldimine Internal aldimine

E. histolytica methionine c-lyase 59.4 6 2.3 72.8 6 2.2 13.4 3AEM,51 3ACZ52

X. oryzae cystathionine c-lyase 49.4 6 3.4 67.7 6 2.6 18.3 4IY7,53 4IXZ53

C. freundii methionine c-lyase 58.1/58.0 66.7 8.6/8.7 4HF854/4OMA,55 2RFV56

aThe absolute angle values and standard deviations were calculated by averaging for all the monomer copies in the asym-

metric unit of each crystal structure. For C. freundii methionine c-lyase, a single value without deviation was used because

all the tetramer subunits were related by crystallographic symmetry.

034702-7 Cao et al. Struct. Dyn. 3, 034702 (2016)



dependent enzymes may actively involve PLP conformational changes upon formation of exter-

nal aldimine as observed in Xanthomonas oryzae cystathionine c-lyase.53 This PLP conforma-

tional change was not observed in the CalE6-MES complex likely because the substrate mimic,

lacking the a-amino group, is unable to form the external aldimine linkage with PLP.

It is widely accepted that PLP stabilizes the Ca anion intermediate through extended p
system delocalization and facilitates catalysis following the formation of the Schiff base linkage

with the substrate.57,58 The current comparative structural analysis further supports the common

mechanism of PLP-dependent enzymes by providing dynamics insights that substrate binding not

only induces PLP conformational changes but also causes the concomitant rotation of tyrosine

residue that maintains proper p-p stacking interactions with the conjugated system extended by

the Schiff base linkage. We propose that this concerted motion of PLP and tyrosine pair in

response to external aldimine formation significantly contributes to catalysis. The prevalence of

this proposed mechanism in PLP-dependent enzymes, if confirmed experimentally, is expected to

provide specificity control on the dynamic level in addition to extensively studied stereoelectronic

effects, protonation state of the external aldimine intermediates, and specific protein carbanion

interactions, which together determine the catalytic outcome.57,58

FIG. 4. Dynamics modeling and analysis of CalE6. (a) Combination of all top 5 low frequency normal modes simulated by

ElNemo server7 and colored based on scaled variational distance (x100) using Mobi server.50 (b) The top slowest normal

mode from ElNemo simulation analyzed by Mobi. (c) Crystallographic ensemble refinement models analyzed by Mobi

(PDB entry 4XQ2). (d) Single model crystal structure shown as B-factor putty using PyMOL preset.46 B factors of Ca
atoms are represented by both the color spectrum and scaled thickness of the ribbon. All analyses show similar mobility

distribution, with normal mode analysis (a, b) showing additional C-terminal region dynamics attributable to crystal con-

tact. The spectrum bar indicates relative mobility from low (blue) to high (red) and covers the range of minimum to maxi-

mum values of the corresponding parameters.
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B. Structural dynamics of CalE6

We next examined dynamic properties of the CalE6 through two orthogonal approaches,

normal mode analysis, and crystallographic ensemble refinement. The methods revealed similar

mobility distribution as analyzed with Mobi Server50 based on scaled RMSD of atomic position

in the ensemble models and with B-factor based mobility distributions of the single model crys-

tal structure (Figures 4(a)–4(d)). The N-terminal extended loop for tetrameric assembly and

PLP phosphate binding of CalE6 consistently showed relatively high mobility from all the anal-

yses above, which agrees well with the conformational change of the corresponding N-terminal

region from disordered to structured upon PLP recruitment into human cystathionine c-lyase

(hCSE) (PDB entries 2NMP and 3ELP, 41% sequence identity with CalE6).59 A brief survey of

crystallographic B-factor distribution of homologs of CalE6 available in PDB (sequence identity

27–45%) suggests nontrivial conservation of intrinsic mobility of the same N-terminal region

that links PLP binding to tetramer assembly (data not shown), which is consistent with experi-

mental observation by Sun et al. that apo-hCSE exists as a weaker tetramer compared with

PLP�hCSE complex in solution.59 Elastic network model analysis suggests a similar mobility

distribution of the slowest normal mode of CalE6 to the combined ensemble of all top 5 slow

modes, both showing additional spatially clustered mobile elements near the C-terminus that

are absent in the crystallographic ensemble models (Figures 4(a)–4(c)). This discrepancy

between local mobility from normal mode analysis and crystallographic modeling can likely be

explained by crystal packing effect where the otherwise mobile elements aforementioned were

restricted by interactions between neighbor molecules in the crystal lattice (data not shown).

While normal mode analysis simulates overall protein mobility at the backbone level, experi-

mentally based ensemble refinement proves to be useful to extract both major and minor

FIG. 5. Analysis of ensemble refinement models with reference to two different conformations of CalE6. Structures of the

sulfate bound and MES bound forms were aligned using PyMOL46 based on the tetrameric form (chains A–D). All four

active site residues were shown, with Lys 197-PLP and Tyr 100 highlighted as sticks and the other side chains as lines.

Structures were differently colored based on carbon atoms, with ensemble models (teal), MES bound form (cyan), and sul-

fate bound form (magenta). Non-covalent ligands were omitted. 2Fo-Fc density map was shown for PLP and active site res-

idues at 1.0 r level.
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conformations at the side chain level. Ensemble refinement was able to identify the different

rotamers of Tyr 100 of CalE6 covering the conformational space as observed in the static crys-

tal structures of different ligand complexes (MES vs. sulfate) (Figure 5). As expected, the pyri-

dine ring of PLP is restricted to a limited conformational space by the internal aldimine linkage

with Lys 197 that is distinct from the conformer observed for external aldimine intermediates

(Figure 5). This, in essence, reflects the presence of a minor population of alternative conform-

ers per residue in 100 K cryogenic crystal conditions. In agreement, there is clear variation in

side-chain mobility for different residues in the vicinity of PLP cofactor and the active site, like

the flexible Tyr 100 vs. barely mobile Arg 48 (Figure 5).

IV. CONCLUSION

We demonstrated through comparative structural analysis of CalE6 and its homologs that

the conserved tyrosine residue stacking with PLP is subject to ligand-induced rotation. The

same type of concerted motion of PLP and tyrosine pair of PLP-dependent enzymes involved

in Cys/Met metabolism is found in multiple external aldimine intermediate structures with

respect to their native states,51–56 emphasizing a possible dynamic role of this functional side

chain during catalysis. The overall dynamics of CalE6, revealed consistently through elastic

network model analysis and ensemble refinement, resembles the conformational flexibility of

human cystathionine c-lyase required for holoenzyme maturation, which involves both structur-

ing of the otherwise disordered N-terminal loop responsible for PLP phosphate binding and the

swing motion of the active site loop to bring the conserved tyrosine closer to PLP for stacking

with the pyridine ring.59 In summary, the intrinsic dynamics of Tyr 100 of CalE6 can be possi-

bly understood in the context of PLP enzyme function at two levels—catalytic role as an indi-

rect electrostatic modulator or direct proton donor and structural role contributing to cofactor

affinity during holoenzyme maturation. Future work of direct observation of these transient

dynamic events via pulse-triggered time-resolved experiments can further elucidate the

sequence and time scale of individual steps and their functional relevance.
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