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Abstract Despite considerable advances in the research and
treatment, the precise relationship between inflammation and
cardiovascular (CV) disease remains incompletely under-
stood. Therefore, understanding the immunoinflammatory
processes underlying the initiation, progression, and exacer-
bation of many cardiovascular diseases is of prime impor-
tance. The innate immune system has an ancient origin and
is well conserved across species. Its activation occurs in re-
sponse to pathogens or tissue injury. Recent studies suggest
that altered ionic balance, and production of noxious gaseous
mediators link to immune and inflammatory responses with
altered ion channel expression and function. Among plausible
candidates for this are transient receptor potential (TRP) chan-
nels that function as polymodal sensors and scaffolding pro-
teins involved in many physiological and pathological pro-
cesses. In this review, we will first focus on the relevance of
TRP channel to both exogenous and endogenous factors re-
lated to innate immune response and transcription factors re-
lated to sustained inflammatory status. The emerging role of
inflammasome to regulate innate immunity and its possible
connection to TRP channels will also be discussed.
Secondly, we will discuss about the linkage of TRP channels
to inflammatory CV diseases, from a viewpoint of inflamma-
tion in a general sense which is not restricted to the innate
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immunity. These knowledge may serve to provide new in-
sights into the pathogenesis of various inflammatory CV dis-
eases and their novel therapeutic strategies.
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Introduction

In the past two decades, growing attention has been directed to
the pivotal roles of immunoinflammatory processes in the
initiation, progression, and exacerbation of many cardiovas-
cular diseases including atherosclerosis, post-injury vascular
stenosis, myocardial infarction, heart failure, myocarditis, vas-
culitis, and allograft vasculopathy [1—4]. This view originates
from a remarkable paradigm shift made by Ross in 1990s who
first described that “excessive inflammatory-fibroproliferative
response to various forms of insult to the endothelium and
smooth muscle of the artery wall” is essential for the patho-
genesis of atherosclerosis [5]. There is now paramount evi-
dence that both innate and adaptive immune reactions avidly
contribute to many pathological changes in the cardiovascular
system, which not only involve the remodeling of the major
cellular components of cardiovascular tissues but also activat-
ed immune cells migrating and accumulating therein [6]. Of
particular note, solid evidence is now rapidly accumulating for
the central significance of “inflammasome,” which serves as a
platform mediating many innate immune reactions. The
inflammasome is composed of pattern recognition receptors,
apoptosis-associated speck-like protein containing a CARD
(ASC) [7], and caspase-1, which by cleaving their inactive
precursors generate major inflammatory cytokines interleukin
(IL)-B1 and IL-18. Because of its interesting connections to
both pathogen- and non-pathogen-derived cell-toxic signals
such as infection, tissue damage, metabolic disorders, and
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other dysfunctional states of cells (see below), the activation
of inflammasome is thought to be a key process leading to
chronic inflammatory and autoinflammatory diseases [8]. Yet,
the mechanism(s) of the activation still remains poorly under-
stood. There are however intriguing suggestions that activa-
tion of inflammasome may depend crucially on altered ionic
balance (Ca®", K', CI") and production of noxious gaseous
mediators and its downstream mediators (ROS, NO) [9-11].
At a first glance, besides other types of channels transporting
K", CI', and Ca*", these properties are strongly reminiscent of
transient receptor potential (TRP) channels.

This review paper aims to promote our understanding about
this rapidly developing field, i.e., the emerging significance of
TRP channels for immunoinflammatory mechanisms in the
cardiovascular (CV) system, with particular interest in innate
immunity. To this end, in the first parts, we will focus on both
exogenous and endogenous factors related to innate immunity
and its sustained status, i.e., chronic inflammation, which pos-
sibly connect to TRP channel activities. The emerging role of
autophagy to regulate innate immunity and its possible connec-
tion to TRP channels will also be discussed. In the last part, we
will discuss about the linkage of TRP channels to CV inflam-
matory diseases, but rather from a viewpoint of inflammation in
a general sense which is not restricted to the innate immunity,
because the available information in this field is still greatly
limited. Readers interested in another important topic, the con-
nection of adaptive immunopathophysiology to various Ca®'-
mobilizing mechanisms, are advised to consult with a few ex-
cellent reviews published elsewhere [12].

Connection between TRP channels and innate
immunity

The innate immune system has an ancient origin and is well
conserved across species (plants, invertebrates, and verte-
brates). This system defends on the frontline against microbial
infection and tissue damage, consisting of environmental sen-
sors, cellular signaling cascades, and production of antimicro-
bial peptides [13—16]. The recognition of pathogen-associated
molecular patterns (PAMPs) or non-pathogen-associated (or
danger- or damage-associated) molecular patterns (DAMPs)
is the first step of activating the innate immune response, which
is fulfilled via their specific receptors called the pattern recog-
nition receptors (PRRs). The PRR family is comprised of
membrane-bound Toll-like receptors (TLRs), C-type lectin re-
ceptors, retinoid acid-inducible gene (RIG)-1-like receptors,
and nucleotide-binding oligomerization domain (NOD)
receptor-like receptors (NLRs). TLRs have been shown to be
expressed ubiquitously in cells constituting or residing in the
CV system such as cardiomyocytes (TLRS), endothelial cells
(TLR2/4), and macropharges/monocytes and dendritic cells
(TLR1/2/4/5/8 and TLR1/2/3/7/9, respectively) [17].
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Activation of PRRs by PAMPs or DAMPs is known to subse-
quently activate inflammasomes, whereby to promote the pro-
duction of highly proinflammatory cytokines such as IL-1f3
and IL-18 [18]. A variety of inflammatory factors are suggested
to activate the inflammasome. These include both direct and
indirect signal recognition factors such as virus, bacterial
toxins, particle matters, autoantibodies, and other products re-
leased from cells in dysfunction. Although there is no biochem-
ical or morphological evidence for the coexpression with these
PPRs, recent studies have suggested that TRP channels may
functionally act as a cofactor PAMP/DAMP-mediated signal-
ing for a multitude of ligands of both endogenous and exoge-
nous origins [19]. Available evidence suggests that the connec-
tion of TLRs to TRP channels occurs through directly by LPS
(TRPA1; [20]); diacylglycerol (DAG) (TRPC6; [21]); ROS
(TRPM4 and TRPMT7; [22], [23]); and PKC (TRPVTI; [24]).

TRP channels are a family of non-selective cation channels
that function as polymodal signal detectors [25, 26] and in-
volved in a variety of body functions and diseases [27]. TRP
channels are membrane proteins with six putative transmem-
brane segments (S1-S6) and a pore region between S5 and S6.
About 30 different mammalian TRP channels have been iden-
tified and classified into six subfamilies on the basis of se-
quence homology: canonical or classical (TRPC; TRPC1-7),
vanilloid (TRPV; TRPV1-6), melastatin (TRPM; TRPM1-8),
polycystin (TRPP; TRPP2, TRPP3, TRPPS), mucolipin
(TRPML; TRPMLI1-3), and ankyrin (TRPA; TRPA1) [28].
Different TRP channels show distinct cation selectivities and
gating mechanisms and can be activated by a wide array of
physical and chemical stimuli [26, 28, 29]. The regulation of
TRP channels occurs at transcriptional, translational, and post-
translational levels, which frequently depends on the ionic
balance, microbial ligands, cytokines, or reactive oxygen spe-
cies (ROS). Indeed, inflammatory transcription factors such as
nuclear factor-kappa B (NF-«kB), signal transducer and activa-
tor of transcription 3 (STAT3), and hypoxia-inducible factor
(HIF)-1 are linked to ROS and elevated intracellular Ca*"
concentration. These features render TRP channels potentially
effective to modulate inflammations.

In the following, we will discuss about how TRP channels
are connected to respective factors and mechanisms that can
activate/modulate inflammation through innate immunity.

Factors that affect innate immune response via TRP
channels (see Fig. 1)

Viral and bacterial infections

Viral and bacterial infections are logical candidates for envi-
ronmental triggers of immune reactions associated with TRP
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Fig. 1 Factors affecting innate immune response via TRP channels. An
incoming microorganism or virus infection can induce inflammasome
activation by stimulating innate immune receptors, such as Toll-like
receptors (TLRs). Alternatively, TRP channel can be activated by the
constituents of microorganism (e.g., LPS) directly or indirectly through
TLR activation. TRP channel is also activated by potentially toxic/
harmful environmental factors, such as MSU, silica, Alum, Af3, and
PM. In addition, an essential nutrient and a cellular constituent
cholesterol can modulate TRP channel activity. Abnormal TRP channel
activity causes Ca®” influx and thereby produces ROS. The resultant

Inflammasome

channel-dependent signaling and inflammasome activation.
Upon recognition of microbial pathogens, TLRs serve as
germline-encoded PRRs that play a central role in host cell
recognition and responses. However, how TLR-dependent
signaling links to TRP channel was unclear until very recently.

Several studies in the past few years revealed intriguing
connections of TLRs to TRP channels. One study reported
that hemolytic streptococcal infection affects the expression
levels of at least seven TRP members, i.e., TRPC4, TRPM6,
TRPM7, TRPMS, TRPV1, TRPV4, and TRPA1 [30, 31].
Another study showed that TRPC1 plays a functional role in
host defense against gram-negative bacteria. Upon infection,
TRPCI1 (—/-) mice exhibited decreased survival, severe lung
injury, and systemic bacterial dissemination. Furthermore,
siRNA silencing of TRPC]1 resulted in decreased Ca>" entry,
reduced proinflammatory cytokine production, and lowered
bacterial clearance. Importantly, bacterium-mediated
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intracellular Ca®" elevation and ROS may induce inflammasome
activity. Moreover, dysfunction of TRP channel in mitochondria or
lysosome can also activate inflammasome. It should be noted that
appropriate operation of autophagy is essential to suppress the caspase-
1 activity, which would prevent the production of inflammatory cytokine
(IL-1p and IL-18). How TRP channel-mediated Ca”" influx regulates the
inflammasome activation is not fully understood; but quite conceivably, it
would play a key role in innate immune response. Question marks denote
the hypothetical pathways that will require further proof

activation of TRPC1 was coupled with a cascade of TLR4
signaling; TLR4-dependent, TRPC1-mediated Ca®* entry
triggers PKCax activity to facilitate NF-kB/c-Jun N-terminal
kinase (JNK) activation and augment the proinflammatory
response, leading to tissue damage and eventually mortality.
These findings favor the view that activation of TRPC1 is
required for the host defense against bacterial infections
through the TLR4-TRPC1-PKCw signaling pathway, but its
excessive activity may lead to exacerbation of inflammation
[32]. A similar but in-opposite-direction involvement of
TRPCl-mediated Ca>" entry in TLR-mediated inflammation
has been demonstrated in microglia and macrophages from
mice intracranially inoculated with a helminth
Mesocestoides corti [33, 34]; it has been known that humans
infected with a related helminth cestode Taenia solium have
immunosuppressive rather than inflammatory responses in the
asymptomatic phase after the infection. Experiments using
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soluble parasite factors from Mesocestoides-infected mice
showed that suppression of TRPC1-mediated store-operated
Ca”" entry by these factors and consequent inhibition of
NF-kB, JNK, and MAPK pathways are likely responsible
for the immunosuppression. This novel immunosuppressive
mechanism appears therapeutically useful to prevent the initi-
ation of TLR-dependent inflammatory response via suppres-
sion of TRPCI activity. In cultured macrophages, however,
degradation of TRPCI1 by caspase-11, an inducible caspase
which is activated by NLRP3 inflammasome activator lipo-
polysaccharide (LPS), was found to increase the secretion of
IL-183. This negative regulation by TRPC1 occurred indepen-
dently of caspase-1 cleavage or cell death [35] and thus likely
reflects a distinctive mechanism from those described above.
Consistently, a higher IL-13 secretion was observed in the
sepsis model of TRPC1-deficient mice made by intraperitone-
al LPS injection [35]. Although there is always a caveat to the
relevance of knockout studies such as compensatory expres-
sion of homologous or other types of molecules which might
affect downstream signaling (similar arguments may also hold
for other TRP knockout models; see below), these results col-
lectively imply the presence of multiple signaling pathways
involving TRPC1 that regulate TLR-mediated inflammation.
Further detailed analyses will be necessary to understand how
manipulation of TRPC1 activity could be utilized for immune-
modulatory interventions of inflammation.

In addition, there is evidence linking other TRP members to
TLR-mediated signaling. In airway smooth muscle (ASM)
cells, exposure to a proinflammatory cytokine TNF alpha
(TNF«) or a mixture of allergens (ovalbumin, house dust mite,
Alternaria, and Aspergillus extracts) causes both acute and
chronic inflammations. These inflammatory responses involve
at least in part increased secretion of brain-derived neurotrophic
factor (BDNF) in a manner dependent on TRPC3-mediated
Ca®" entry [36]. In endothelial cells (ECs), endotoxin (LPS)
induces pathological vascular leakage. This occurs through
the interaction between TLR4 signaling and TRPC6-mediated
Ca®" entry, which causes increased endothelial permeability via
activation of non-muscle myosin light chain kinase (MYLK)
and NF-kB. Genetic deletion of TRPC6 rendered mice resistant
to endotoxin-induced barrier dysfunction and inflammation and
protected against sepsis-induced lethality [21].

TRPM4 is causally related to LPS-induced endothelial cell
death via intracellular Na™ overloading. Pharmacological in-
hibition of TRPM4 activity with 9-phenathrol or
glibenclamide was found to attenuate this consequence, sug-
gesting a therapeutic potential of TRPM4 for endotoxin shock
[22]. TRPM7-mediated intracellular concentration of Ca®"
([Ca*'];) elevation serves as a key regulator for endotoxin-
induced endothelial fibrosis through endothelial to mesenchy-
mal transition [23]. This channel is also implicated in LPS-
induced endothelial cell migration via TLR4/NF-«kB pathway
[37]. TRPM2-deficient mice shows compromised innate
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immunity against Listeria monocytogenes infection which al-
lows uncontrolled replication of the bacteria with significantly
reduced production of IL-12 and interferon-y [38]. Consistent
with this finding, in a cecal ligation and puncture (CLP)-in-
duced mouse sepsis model, genetic disruption of TRPM2 was
found to cause impaired host defense, leading to increased
mortality associated with increased bacterial burden, organ
injury, and systemic inflammation. Interestingly, this finding
appears to reflect failed upregulation of heme oxgenase (HO)-
1 in macrophages which is normally induced by TRPM2-
mediated Ca®" influx and essential for bacterial clearance [39].

In recent years, the potential benefits of TRPV1 activation
have been recognized for the abatement of inflammatory re-
sponse. For example, in Helicobacter pylori-positive patients,
the genetic polymorphism of TRPV1 945G>C has been sug-
gested to be one of the pathophysiological factors of function-
al dyspepsia [40]. In murine sepsis models, genetic or phar-
macologic disruption of TRPV1 can affect mortality, blood
bacteria clearance, and cytokine response, in such a pattern
that may vary according to the sepsis-inducing events and the
methods of TRPV1 disruption [41, 42]. In salivary glands,
polyinosinic-polycytidylic acid or LPS activates, via TLR4
activation, NF-«kB by IkB-oc degradation and phosphorylation
to release highly proinflammatory cytokines TNFx and IL-6.
Capsaicin inhibits this process by interacting with the NF-xkB
pathway whereby to potentially alleviate inflammation of sal-
ivary glands [43]. Indeed, in healthy human subjects as well as
patients, capsaicin has been suggested to have a therapeutic
potential alone or in combination with other non-steroidal
anti-inflammatory drugs [44], and in a mouse CLP model,
capsaicin is shown to relieve the damaging impact of sepsis
through TRPV1 activation [44, 45]

MSU, cholesterol, amyloid-3, and ambient particle matter
MSU

A uric acid crystal, monosodium urate (MSU), has emerged as
an important factor for both gouty arthritis and immune regu-
lation. This simple crystalline structure appears to activate
innate host defense mechanisms in multiple ways and trigger
robust inflammation and immune reactions. When MSU en-
ters the cell, MSU further triggers NLRP3 inflammasome ac-
tivation, but the activation mechanism responsible is still elu-
sive. A number of reports suggested that sensory TRP chan-
nels such as TRPV1 and TRPA1 may contribute to this acti-
vation process [46, 47]. However, this interesting hypothetical
link relies on the intracellular Ca>* measurements, and wheth-
er MSU crystals can directly activate TRPV1 [46] or TRPA1
[47] has not been shown. Considering that MSU crystal acts as
an oxidative stress to facilitate ROS production, it may acti-
vate TRPA1 and TRPV1 via ROS production. Nevertheless,
the fact that TRPV1 and TRPA1 mediate MSU crystal-
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induced inflammation and pain in experimental models
strongly supports their undoubted roles as inflammatory me-
diators [46-50].

Cholesterol

A high serum level cholesterol (hypercholesterolemia), a risk
factor for CV disease, promotes inflammatory responses in-
cluding TLR signaling, inflammasome activation, and the pro-
duction of monocytes and neutrophils in bone marrow and
spleen [51]. Cholesterol was also shown to have a significant
impact on several different types of TRP channel activities
[52]. Cellular cholesterol affects arterial reactivity to
endothelin-1 (ET-1). In endothelium-denuded caudal artery,
cholesterol depletion by methyl-3-cyclodextrin (mf3cd) treat-
ment attenuated vasoconstriction to ET-1, with paralleled re-
duction of store-operated Ca>" entry via TRPC1 [53].
Similarly, cholesterol-mediated activation was observed for
other TRP channels. In TRPC3 expressing HEK cells, appli-
cation of cholesterol enhanced TRPC3 activity [54]. In pros-
tate cancer cells which endogenously express TRPM7,
cholesterol-mediated activation of TRPM?7 is important for
initiation and/or progression of the cancer [55]

In vascular smooth muscle cells (VSMCs), TRPM3 ex-
pression was detected at both mRNA and protein levels. In
freshly isolated aorta, constitutively active TRPM3 channel
positively modulated the contractile responses independently
of L-type calcium channels; elevation of cholesterol sup-
pressed TRPM3 channel activity [56].

These results collectively suggest that an appropriate level
of cholesterol may be requisite for normal contractility of ar-
teries, and its excess level may lead to CV diseases as well as
makeup of microenvironments propensitive for cancer
development.

Amyloid-(3

The fibrillar peptide amyloid-3 (Af3) is a main pathogenic
factor of Alzheimer’s disease (AD). It has been reported that
activation of TRPM2 contributes to A3- and oxidative stress-
induced striatal cell death in rat striatum [57]. The activation
of TRPM2 is thought to occur through direct and indirect
pathways. Accumulation of A3 which increases vascular ox-
idative stress via mitochondrial dysfunction results in sequen-
tial occurrences of DNA damages, poly-ADP-ribose polymer-
ase activation, and ADP-ribose production in ECs, which
leads to their dysfunction via TRPM2-mediated intracellular
Ca*" overload [58]. The resultant cerebrovascular dysfunction
may accelerate the AD pathogenesis by reducing the cerebral
blood and glucose supply, increasing susceptibility to vascular
insufficiency, and further promoting A3 accumulation [59].
The other oxidative stress-sensitive TRP channels such as
TRPV1, TRPV4, and TRPC1 are also implicated in Ap-

induced damages of other cell types including glia [60—63],
smooth muscle cells [64], and ECs [65].

Ambient particle matter

Exposure to ambient particulate matters (PMs) is a significant
risk factor to increase respiratory and cardiopulmonary mor-
bidity and mortality, but the mechanism underlying remains
largely unknown. In addition to the implications of sensory
nerve TRPV1 and TRPAL1 in airway hypersensitivity and in-
flammation which involve environmental noxious stimuli
[66], there is evidence that PM acts as a proinflammatory
agent to the endothelium and increases vascular permeability
in vitro and in vivo via ROS generation. This suggests the
possibility that oxidative stress-sensitive TRP channels may
be involved in PM-mediated pathophysiology. Indeed,
TRPM2, TRPV1, TRPV4, and TRPA1 have been implicated
in cellular and tissue damages caused by PM-mediated oxida-
tive stresses associated with diesel exhaust, wood smoke, and
other concentrated ambient particles [67-75].

Autophagy and lysosomal function

Autophagy is a highly evolutionarily conserved catabolic pro-
cess to degrade and recycle cytoplasmic contents via a lyso-
somal route for reuse in downstream metabolism. It becomes
increasingly clear that insufficiency of autophagy is an impor-
tant pathogenic mechanism for inflammatory diseases [76].
Recently, a possible link between autophagy deficiency and
increased inflammasome activation was suggested. The mech-
anism proposed includes the following causal sequence of
cellular events: inefficient mitophagy, accumulation of dam-
aged mitochondria, increased ROS production, and ROS-
mediated inflammasome activation which occurs either direct-
ly or indirectly via DNA damage and secondary inflammatory
signaling(s). Autophagy deficiency also reduces the efficiency
of lysosomal degradation and thereby facilitates the accumu-
lation of intra-lysosomal lipids and cholesterol crystals. This
then leads to lysosomal membrane destabilization, lysosomal
leakage, and inflammasome activation [77]. A similar conse-
quence of autophagy deficiency can be expected for ineffi-
cient lysosomal degradation of damaged organelles and pro-
teins. Therefore, normal function of the autophagy system is
indispensable for keeping the cell healthy.

TRPMLI is an important player in endosomal sorting and
transporting processes at the late endocytotic phase, specifi-
cally the formation of late endosome-lysosome hybrid vesi-
cles [78-81]. In other words, the role of this channel is to
control the delivery of cellular materials to lysosomes, an es-
sential process of autophagy [82—-84]. Altered activity of
TRPMLI1 has been implicated in lysosomal dysfunction and
impaired autophagy associated with AD-linked presenilin-1
mutations. In this pathological state, disrupted lysosomal
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acidification due to defective vesicular ATPase activity are
thought to be primarily responsible for lysosomal and autophagy
deficits, but concurrently, abnormal cytosolic Ca®* elevation oc-
curs via facilitated Ca®" efflux through TRPMLI channel.
However, correcting this abnormal Ca®" homeostasis alone is
not sufficient to restore normal lysosomal proteolytic and au-
tophagic activities, thus suggesting that TRPML1 may play a
permissive role in this process [85]. In this regard, it may deserve
to mention that in humans, mutations in the gene encoding
TRPMLI1 channel (MCOLNT) are the cause of the neurodegen-
erative disorder mucolipidosis type IV (MLIV) [86].

TRPML3 is anovel Ca”* channel that plays a crucial role in
the regulation of cargo trafficking along the endosomal [87,
88] and autophagosomal maturation [89] pathways. In infect-
ed bladder epithelial cells (BECs), TRPML3 triggers a non-
lytic expulsion of bacteria (which is a powerful cell-
autonomous defense strategy) to rapidly reduce infectious bur-
den. This lysosomal channel is capable of sensing
uropathogenic Escherichia coli-mediated lysosome neutrali-
zation and, in turn, releasing Ca’, thereby triggering lyso-
somal exocytosis to expel the bacteria.[90]

The full-length form of TRPM2 channel (TRPM2-L) has a
short splice variant consisting of only the N terminus and the
first two transmembrane segments and lacking a pore domain
(TRPM2-S). In expression system, coexpression of TRPM2-S
suppressed oxidant-induced Ca®" entry through TRPM2-L
and subsequent cell death, presumably through a negative
physical interaction [91]. Although its pathophysiological sig-
nificance had been unclear, a recent study has revealed an
interesting connection of this short variant (TRPM2-S) to au-
tophagy. Mitochondrial homeostasis is dynamically regulated
by the processes of autophagy/mitophagy and mitochondrial
biogenesis. As compared with tumor cells expressing
TRPM2-L isoform abundantly, those expressing TRPM2-S
showed the accumulation of damaged mitochondrial DNAs
with increased levels of unremoved heat shock protein 60
(Hsp60) and a mitochondrial protein translocase of outer
membrane 20 (Tom20) in mitochondria. These results are
interpreted to suggest that oxidant-induced Ca>" entry medi-
ated by TRPM2 may be crucial to maintain normal autophagy/
mitophagy activity [92].

Oxidative stress induces pleiotropic responses ranging
from cell survival to death. A recent study has given an inter-
esting explanation about these differential cell fates, i.e., in-
volvement of distinct poly(ADP-ribose) polymerase (PARP)
isoforms (PARP1, PARP2) and distinctive cellular localiza-
tion of TRPM2 channel. PARPs are enzymes producing
poly(ADP-ribose) and, in conjunction with poly(ADP-ribose)
glyocohydorase, capable of activating TRPM2 channel via
immediate conversion of poly(ADP-ribose) into monomeric
ADP-ribose. Under moderate oxidative stress conditions
(5 mM H,0,), plasma membrane TRPM2 is under the control
of PARP1, activation of which leads to the phosphorylation of
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p38, SAPK/INK, and cAMP response element-binding
protein (CREB)/ATF-1. This ultimately induces autophagy,
thereby allowing cell survival. In contrast, high oxidative
stress (10 mM H,0,) triggers late autophagy steps and
PARP?2 activation, leading to cell death with the activation
of lysosomal TRPM2 channel [93].

TRP channels may link to persistent activation
of inflammasome (see Fig. 2)

The early inflammatory response is absolutely essential for
the elimination of pathogens, but the termination of the pro-
cess is equally an important step. Failure to control inflamma-
tion leads to immunopathology, including CV diseases and
organ dysfunctions. Over time, this leads to fibrotic or cancer-
ous transformation or chronic inflammation.

There are three aspects in the progression of inflammation
with respect to inflammasome activity. The first is the
“priming” signal that enhances the gene expression of
inflammasome components. The second is the “activation”
signal that promotes the assembly of inflammasome compo-
nents. And the last is the “amplification” signal that drives a
feedback signal amplification loop. The NLRP3
inflammasome activates caspase-1, which then promotes mat-
uration and secretion of two potent inflammatory cytokines:
IL-1$3 and IL-18. The NLRP3 inflammasome responds not
only to pathogens but also to a variety of “danger signals”
released in inflamed tissues including cytokines, tissue degra-
dation products, etc. This leads to the formation of a danger-
ous positive feedback loop which continuously exacerbates
the NLRP3 inflammasome response. Under these pathologi-
cal conditions, the activation of transcription factors, e.g.,
NF-kB, nuclear factor of activated T cell (NFAT), STATS3,
and HIF-1, by inflammatory cytokines appears crucial for
the amplification loop of inflammasomes [94-97].
Therefore, the suppression of this amplification loop is of
key importance to effectively eliminate infection by stopping
acute inflammation and/or restoring homeostatic regulation.

Concentrations of both extracellular and intracellular Ca®*
can increase at the sites of infection, inflammation, or immune
cell activation. It has been shown that increased extracellular
calcium could act as a danger signal and an amplifier of in-
flammation via activation of the G protein-coupled calcium
sensing receptor—phosphatidylinositol/Ca**—NLRP3
inflammasome signaling pathway [98]. Therefore, Ca®" influx
may serve as an important control point for inflammasome
activity that needs to be tightly regulated by the host in order
to avoid an excessive production of cytokines or overt cell
death. Moreover, proinflammatory transcription factors, in
particular, Ca**-dependent ones, may play central roles in this
control. In this section, we attempt to summarize the
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Fig. 2 Possible link of TRP channels to persistent inflammasome
activation. Inflammation are mediated by signal transduction from both
inflammation-related receptors and stress-sensing TRP channels to
transcription factors. The “Receptor” pathway is activated via alteration
of internal or external environmental factors in affected cells, including
abnormal upregulation or persistent activation of receptors (e.g., cytokine
receptors, growth factor receptors, Toll-like receptors) with increased
kinase activity, excessive ROS production, and intracellular Ca**
perturbation. The “TRP” pathway can also be activated by alteration of
internal or external environmental factors and is susceptible to the
regulations at functional and expression levels. Importantly, both
pathways may intersect to modulate each other, since many of the
environmental factors associated with inflammation are physical and
chemical cell-stressing stimuli. Besides being involved in proliferation,
survival, migration, and differentiation, transcription factors can induce
the expression of many proinflammatory cytokines and other
inflammatory mediators. Importantly, the receptors for many of these
cytokines, chemokines, and mediators can further activate the
inflammatory transcription factors, thereby forming autocrine and
paracrine feedback loops. This would then result in the continuous
amplification and promotion of inflammatory reactions leading to
chronic inflammation

connection between inflammatory transcription factors and
TRP channels.

NF-«B
NF-kB consists of a family of transcription factors that play

critical roles in inflammation, immunity, cell proliferation, dif-
ferentiation, and survival [99]. One of the factors known to

activate NF-kB is an elevation in [Ca®']; [100, 101]. There
are several papers linking Ca**-permeable TRP channels to
NF-«kB-mediated inflammatory reactions; suppression of
TRPC1-mediated Ca*" entry inhibited NF-kB activation,
which is associated with immunosuppressive mechanism in
helminth infections [34]; pharmacological inhibition of
TRPM?7 channel suggested its involvement in LPS-induced
EC migration via the TLR-NF-«B signaling [37]; endotoxin-
induced lung injury involves TLR4-mediated NF-kB activation
in a manner dependent on TRPC6-mediated Ca** entry [21].
Therapeutic potential of targeting NF-kB has been validat-
ed by its decoy treatments in a number of inflammatory CV
diseases, including myocarditis, post-stenting coronary reste-
nosis, and coronary hypertophic proliferation [102—104].

STAT3

The STAT3 has a dual role: both transducing signals through
the cytoplasm and functioning as a transcription factor in the
nucleus. STAT3 can be activated by extrinsic pathways, i.e.,
environmental factors, such as ultraviolet (UV) radiation,
chemical carcinogens, infection, stress, and cigarette smoke,
through growth factor, cytokine, Toll-like, adrenergic, and
nicotinic receptors, respectively [95]. Persistently activated
STAT3 mediates cell proliferation, survival, and invasion dur-
ing inflammasome activation. Several studies suggest that
TRP channels may regulate STAT3 activity.
Receptor-induced phosphorylation of cellular Janus kinase
2 (JAK2) or c-Jun and STAT3 are regulated by TRPC1- and
TRPC6-mediated Ca®" influxes [105-108]. This could cause
persistent inflammation, resulting in chronic inflammation
with global tissue changes and injury. The Ca®" transporting
activity of TRPM7 is closely associated with the activation of
the JAK2/STAT3 and/or Notch signaling pathways, which, in
turn, induces ischemic neuronal cell death, metastatic trans-
formation of breast cancer cells or proliferation, migration and
invasion of glioma stem cells, and the fingerprints of sustained
or chronic inflammation [109—111]. Albeit little evidence, it is
tempting to speculate that constitutive Ca®" permeating activ-
ity TRPM7 channel might effectively drive, via Ca®"-depen-
dent activation of STAT3, a feedback cycle of persistent acti-
vation of inflammasome toward chronic inflammation. A dif-
ferent line of evidence suggests that TRPV1 activates the
STAT3 and NF-kB signaling pathways and thereby facilitates
the expression of anti-inflammatory neuropeptides [112]. This
hints a unique protective role of TRPV1 against inflammation,
which is rarely seen for the other types of TRP channels.

HIF-1
HIFs are transcription factors that respond to changes in avail-

able oxygen in the cellular environment. However, a recent
research suggests that, in certain pathological settings, HIF
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induction in normoxia likely causes serious consequences
encompassing chronic inflammatory components. Chronic in-
flammation can be a self-perpetuating process so that it may
continuously distort cellular microenvironments as the result of
aberrantly active transcription factors. Consequent alterations
in growth factors, chemokines, cytokines, and redox balance
occur within the cellular milieu that, in turn, provide the axis of
growth and survival needed for de novo development of cancer
and metastasis [113]. In addition, a recent study suggested that
cAMP/PKA/CREB/HIF-1 & pathway is important for sustained
inflammasome activity [114]. Considering that TRP channels
serve as important Ca>" entry routes associated with cellular
stresses, it is possible that abnormal TRP channel activity
would damage the intracellular microorganelles and disturb
the redox balance. In fact, there are many reports found for
the linkage between HIF-1 and TRP channels (e.g., TRPC1
[115-117], TRPC3 [118], TRPCS [119], TRPC6 [120, 121],
TRPM2 [92, 122], and TRPM7 [123]).

NFAT

The calcineurin-NFAT signaling plays a pivotal role in the
transcription of cytokine genes and other genes critical for
the T cell-mediated adaptive immune responses [124].
However, later studies identified its more ubiquitous roles in
other organ systems [125]. For example, an established role of
NFAT in the CV system is a hub mediator of hypertrophic
signaling. In the heart, both mechanical and neurohormonal
stresses activate the calcineurin-NFAT signaling to induce
prominent pathological hypertrophy. The members of TRPC
subfamily have been implicated in the activation step of this
signaling as the stress-sensing Ca®"-permeating channels
[126-128]. In blood vessels, therapeutic benefits of an immu-
nosuppressant cyclosporin A is known for transplant vascu-
lopathy, part of which is causally related to the inhibition of
calcineurin-NFAT signaling in ECs [129]. In diabetic mice,
pharmacological inhibition of NFAT (by A-285222) reduced
atherosclerotic lesion by inhibiting cytokine release and adhe-
sion molecule expression [130]. Albeit scanty information,
involvement of TRPC members has been suggested for in-
flammatory responses in renal podocyte injury and structural
and functional remodeling after myocardial infarction via ac-
tivation of the calcineurin-NFAT signaling [131, 132]. There is
however little evidence yet obtained that directly links TRP
channels to chronic inflammatory diseases (e.g., atherosclero-
sis) through this signaling pathway.

TRP inflammation relationship in CV diseases
Many CV diseases are tightly associated with inflammatory/

immune responses in their pathogenesis. This include a wide
range of vascular diseases (endotoxin shock, acute vasculitis,
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atherosclerosis, post-operative stenosis, allograft vasculopa-
thy), cardiac diseases (cardiac hypertrophy, dilated cardiomy-
opathy, myocardial infarction or ischemia/reperfusion injury,
and myocarditis) [133—142], and several autoimmune dis-
eases in the CV system [8]. In the final section of this review,
we will briefly overview what is presently known about some
of these CV diseases in terms of TRP channel physiology and
pathophysiology (see also Table 1).

Atherosclerosis

Atherosclerosis is a progressive inflammatory disease that dis-
integrates the structure and function of blood vessels through
lipid deposition and activation of innate/adaptive immune re-
actions. There are good evidence to suggest that TRP channels
are involved in the respective stages of atherosclerosis. This
will be described below, in a stage-by-stage manner.

The main initiation factor for atherosclerosis is the oxidized
low-density lipoprotein (ox-LDL), which affects the endothe-
lial surface and thereby induces EC dysfunction. But, other
inflammatory components/elements (virus, bacteria, toxins,
toxic nutrients and metabolites, ambient particles, autoanti-
body, heat shock protein [187]; see also above) also promote
atherosclerosis. Among TRP channels expressed in the CVS,
two reports suggest proatherogenic potential of TRPC6 chan-
nel. It is reported that a cardiovascular risk factor,
lysophosphatidylcholine (LPC), facilitates TRPC6 transloca-
tion to cell membrane causing a rapid Ca®" influx in EC. This,
in turn, induces the externalization of TRPCS, thereby
allowing sustained Ca®" influx through TRPC6/TRPC5 com-
plex. This cascaded TRPC6/TRPCS activation causes the in-
hibition of EC migration which is essential for the healing of
atherosclerotic arteries [147]. Endothelial expression of
microRNA miR-26a is reduced in the aortic intima of athero-
genic ApoE (—/—) mice and ox-LDL-treated human ECs,
whereas overexpression of miR-26a induces EC apoptosis.
miR-26a acts as a negative regulator of TRPC6, activation
of which allows Ca®" influx activating the mitochondrial ap-
optotic pathway associated with atherosclerosis. Thus, abnor-
mal TRPC6 activity can induce apoptotic EC death, and ap-
plication of miR-26a may be able to reduce the atherosclerotic
lesion [148]. These results provide, albeit indirect, evidence to
support non-trivial roles of TRPC6 in the progression of
atherosclerosis.

At the site of injury, ECs allow the entry of monocytes and
lymphocytes into the vessel wall. In the early stage of this
process, the adhesion of monocytes to the endothelial surface
is supported by increased intracellular Ca®" concentration in
ECs. When the monocyte contacts EC, Ca®" influx into EC is
activated, which further strengthens the adherence of mono-
cytes. Pharmacological inhibition of TRPV1 reduces the num-
ber of adherent monocytes, so that activation of TRPV1-
mediated Ca®" influx likely enables strong adhesion of
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Table 1  Therapeutic potential of TRP channel in cardiovascular disease

Disease TRP  The potential benefit for disease Ref.
(+): positive regulation is good, (—): negative regulation is good

Atherosclerosis Cl C1(+): Vascular contractility in cholesterol depletion [53, 143,

C1(—): Coronary artery disease in metabolic syndrome 144]

C3 C3(—): The size of atherosclerotic lesions [145, 146]
C3(—): Adhesion of monocyte in coronary artery ECs

C6 C6(—): Migration and apoptosis of EC in atherosclerotic arteries (by microRNA-26a) [147, 148]

Ce, C6(—): V1(-): Lysophosphatidylcholine-induced infiltration of monocyte [149]

V1
Vi V1(+): Evodiamine-induced angiogenesis and atherosclerosis [150-153]

V1(+): ox-LDL-induced foam cell formation by inducing autophagy in vascular SMC
V1(+): ox-LDL-induced lipid accumulation and TNFa-induced inflammation in macrophages
V1(+): Adhesion monocyte and EC

Neointimal hyperplasia Cl C1(-): Remodeling of SM [154]
M2 M2(-): Remodeling of SM [155]
Hemorrhagic Shock C1/C4 C1/C4(-): Development of vasospasm after subarachnoid hemorrhage [156]
Vi1 V1(-): Survival rates in hemorrhagic shock model [157]
Cardiovasculitis ND
Cardiac hypertrophy, dilated ~ C1 C1(-): Related to cardiac fibrosis in Duchenne muscular dystrophy model mice [158-161]
cardiomyopathy CI1(-): Increasing endothelin-1 vasoconstrictor reactivity through Ca*>*/ROS/NFATc3

C1(-): Maladaptive cardiac hypertrophy and failure thorough Ca®"/calcineurin/NFAT pathway
C1(-): Development of cardiac hypertrophy through Ca**/calcineurin/NFAT pathway in hypertension in
sleep apnea
C3 C3(-): Ca**-dependent production of CaMK II and ROS in dilated cardiomyopathy [162—-164]
C3(-): Cardiac hypertrophy via GATA4 and TRPC3 (antagonist: miR-26b)
C3(-): Cardiac hypertrophy via a positive feedback mechanism through Ca**/calcineurin/NFAT signaling

C3/C6 C3/C6(-): Hypoxia-induced HIF1«, leading to expression, enhanced Ca®‘/calcineurin signals [118, 165]
C3/C6(-): Ang Il-induced cardiac hypertrophy through Ca®*/calcineurin/NFAT signaling
Co C6(-): Ca*"/calcineurin/NFAT regulatory loop that drives pathologic cardiac remodeling [166—168]

C6(—): Ang Il-induced cardiac hypertrophy
C6(—): Development of cardiac hypertrophy through GATA4 and NFATc4

V1 V1(+): Long-term high-salt diet-induced cardiac hypertrophy and fibrosis [169, 170]
V1(+): Pressure overload-induced cardiac hypertrophy and fibrosis

V2 V2(—): Ventricular dilation and fibrosis through CaMK II and ROS in DCM patients and three DCM model [171]

mice
M4 MA4(+): Hyperplasia in the cardiac hypertrophy [172, 173]
M4(+): Ang Il-induced cardiac hypertrophy through Ca**/calcineurin/NFAT pathway
Allograft ND
Coronary, myocardial C3/ C3/C4/C6(-): After MI induce Ca"/calcineurin/NFAT pathway pathway, activate cardiac hypertrophy, [132, 174]
infarction C4/ reduces contractility reserve
C6 C3/C6(+): Ml-induced injury and cardiomyocyte apoptosis are alleviated by BDNF/TrkB axis

M4 M4(—): MI cause cell death and decrease (3-adrenergic cardiac reserve [175]

V1 V1(+): Post-MI enhances fibrosis and impairs myocardial contractile performance [176, 177]

V1 V1(+): Acute myocardial ischemia augments the Bezold—Jarisch reflex

V2 V2(+): M1 macrophage infiltration after MI [178]
Ischemia reperfusion V1 V1(+): Myocardial I/R injury can be protected by 12-lipoxygenase-derived eicosanoids [179-182]

V1(+): PAR2-induced cardiac protection against I/R injury
V1(+): Cardiac performance in I/R-injured diabetic heart
V1(+): Acute MI
M2 M2(—): Myocardial I/R injury in neutrophil [183, 184]
M2(-): I/R induce TNF«, caspase-8 activation, ROS production, PARP-1 activation, ADP-ribose
production, that contribute to cardiomyocyte cell death

M4 M4(-): I/R injury [185]
Stenosis, systemic lupus C5/C6 C5/C6(-): Linkage analysis data for infantile hypertrophic pyloric stenosis [186]
erythematosus
Autoimmune, autoantibody ND
Hypertension, diabetes ND

EC endothelial cell, SMC smooth muscle cell, ox-LDL oxidized low-density lipoprotein, TNF« tumor necrosis factor, /R ischemia reperfusion, ND no
data, Ang II angiotensin II, miR microRNA, ADP adenosine diphosphate, PARP-1 poly[ADP-ribose] polymerase-1, DCM dilated cardiomyopathy, ROS
reactive oxygen species, MI myocardial infarction, BDNF brain-derived neurotrophic factor, 7rkB tropomyosin receptor kinase B, PAR2 protease-
activated receptor-2, NFAT nuclear factor of activated T cells
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monocytes to EC. In a similar context, TRPC3-mediated Ca®"
influx has been implicated in ATP-induced expression of vas-
cular cell adhesion molecule-1 (VCAM-1) which is critical to
recruit monocytes to EC [145, 150].

After injury, monocytes transmigrate across the damaged
endothelium and enter the intimal layer of the vessel wall.
Thus, reducing monocyte infiltration is thought to be one of
the powerful strategies to attenuate the progression of athero-
sclerosis. A major atherogenic agent LPC can induce a strong
chemotaxis of monocytes which appears to require Ca>* influx.
Pharmacological characterization of LPC-activated Ca”"-per-
meable currents strongly suggested that activation of both
TRPC and TRPV1 is necessary for the optimal chemotaxic
activity [149]. In this regard, these two TRP channels could
be good molecular targets for anti-atherosclerotic therapy.

The monocytes that have migrated into the intima differen-
tiate into macrophages and uptake ox-LDL. These lipid-laden
macrophages are known as foam cells. Although the main
foam cells are derived from macrophages, VSMCs can also
transform to foam cells. Interestingly, activation of TRPV1 by
capsaicin impedes the transformation of ox-LDL-treated
VSMCs to foam cells by rescuing otherwise impaired autoph-
agy by ox-LDL [151]. Moreover, TRPV1 activation protected
macrophages from ox-LDL-induced lipid accumulation and
TNF«-induced inflammation. These results indicate that acti-
vation of TRPV1 by capsaicin is another effective strategy to
inhibit atherosclerosis.

After transformation, foam cells start to produce inflamma-
tory cytokines. The released inflammatory cytokines trigger
further transformation of VSMCs which gain the ability to
migrate from the medial to intimal layer. These inflammatory
responses make atherosclerotic plaques through necrosis and
apoptosis, completing the clinical picture of atherosclerosis. In
cultured RAW264 macrophages, LPS-induced production of
cytokines (TNFe, IL-6) was shown to depend on TRPV2-
mediated Ca" influx. Thus, in this late stage of atherosclero-
sis, targeting TRPV2 may be another novel strategy to sup-
press inflammatory cytokine production and thus formation of
atherosclerotic lesions [188].

Vascular stenosis after bypass surgery and angioplasty

Bypass surgery and angioplasty with stenting often causes the
vascular injury. Injured VSMCs then undergo transformation
from quiescent and contractile to invasive and proliferative
states. Such phenotype switching is an important process to
recover vascular contractility but can also be part of the cause
of occlusive vascular diseases including atherosclerosis and
adverse responses accompanying neointimal hyperplasia.
Several lines of evidence suggest that excessive (constitutive-
ly active) TRPC1 and (ROS-induced) TRPM?2 activities in
VSMCs are involved in the neointimal hyperplasia induced
after vascular cuff injury in rat and mouse models,
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respectively. These changes were accompanied by enhanced
cell cycle activity and inhibited by specific antibodies raised
against the third extracellular loop of TRPC1 or TRPM2 chan-
nel (E3 antibodies). Similar increased expression of TRPC1
was also observed in the intimal layer of human vein graft
samples. Thus, these channels may be novel therapeutic tar-
gets for occlusive vascular diseases [154, 155].

Cardiac hypertrophy, dilated cardiomyopathy

In cardiomyocytes, Ca®" transients convey information to both
contraction and gene transcription. Changes of cytoplasmic
Ca”" in cardiomyocytes are controlled by a variety of ion chan-
nels, the Na"/Ca®" exchanger, Ca®" pumps, and Ca®"-binding
proteins. Several recent studies using animal models have im-
plicated TRP channels in the development of hypertrophy. It
has been shown that hypertrophic agonists upregulate the ex-
pression of TRPC1, TRPC3, and TRPC6 channels in cardiac
myocytes, leading to activation of the Ca**-(and ROS)—cal-
modulin—calcineurin-NFAT pathway which eventually results
in cardiac hypertrophy. These hypertrophic changes are a path-
ological process basically involving inflammatory reactions
[136, 189] and ultimately reduce the cardiac function increasing
the mortality of experimental animals [118, 158—168].

More recent studies have added a new connection of TRP
channels (TRPV2 and TRPM4) to cardiomyopathy. In the
patients of cardiomyopathy as well as in its genetic and chem-
ically induced animal models which typically show ventricu-
lar dilation, fibrosis, and severely compromised heart func-
tion, the expression of TRPV2 was found to be concentrated
on the ventricular sarcolemma. Specific abrogation of TRPV2
activity by either overexpression of the amino-terminal do-
main of TRPV2 (amino acids 1-387) or treatment with chem-
ical inhibitors ameliorated these pathological changes and the
contractile function of the heart and improved the survival of
the affected animals [171]. Since the excessive activity of
TRPV2 was associated with increased production of ROS
and phosphorylation of Ca**/calmodulin-dependent protein
kinase II (CaMK II), participation of inflammatory process
is strongly suggested for these pathological changes. Thus,
targeting TRPV2 may become a new clinical option to treat
cardiomyopathy-associated heart failure.

In addition, a recent gene invalidation study showed that
the activity of TRPM4 may be a prerequisite to preventing the
development of eccentric ventricular hypertrophy of the heart.
Indeed, TRPM4 has been shown to negatively regulate angio-
tensin II-induced cardiac hypertrophy owing its membrane
depolarizing ability whereby the magnitude of store-operated
Ca”" entry which activates the calcineurin-NFAT hypertrophic
pathway is negatively controlled [172, 173]. The correlation
of these findings with inflammation is however unclear, since
immunohistological examination revealed no obvious sign of
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fibrosis or hypertrophy but rather hyperplasia of smaller sized
cardiomyocytes compared with normal ones.

Myocardial infarction (MI)

In infarcted myocardium, necrotic cardiomyocytes release dan-
ger signals, activating an intense inflammatory response, by
which complex cellular processes associated with injury, repair,
and remodeling of the infarcted regions are activated [141]. In
the MI period of animal models and human patients, the plasma
level of brain-derived neurotrophic factor (BDNF) was found
elevated along with tropomyosin-related kinase B (TrkB) and
its downstream effector TRPC3 and TRPC6 channels. After
BDNF treatment, the infarct size was markedly reduced and
cardiac contractility was significantly restored, which seemed
to be associated with decreased apoptotic response of
cardiomyocytes. Since these beneficial effects of BDNF were
reversed by pharmacological or functional inhibition of
TRPC3/TRPC6 channels, these channels likely play a protec-
tive role against detrimental cardiac remodeling after MI [132,
174]. In a puzzling contrast, however, adenovirus-mediated
overexpression of TRPC3/TRPC4/TRPC6 was reported to in-
duce a hypertrophic response via the NFAT-mediated signaling
in adult feline cardiomyocytes and accompany reduction of the
contractility and catecholamine response due to increased spon-
taneous Ca*" leak from the SR. In the same study, mice treated
with MI procedures showed similarly enhanced TRPCl,
TRPC3, TRPC4, and TRPC6 expression and Ca*" channel
activity along with induction of hypertrophic genes. These
two lines of evidence have been interpreted to indicate the
benefits of blocking the TRPC channels that improve post-MI
structural remodeling and dysfunction. It is a matter of further
investigation of what differences in experimental settings
would make such disparate consequences of TRPC channel
activation in the post-MI recovery.

In sharp contrast with a protective role of TRPM4 against
dilated cardiomyopathy (see above), the deletion of the trpm4
gene in mice rather improved survival and (3-adrenergic car-
diac reserve after experimentally induced ischemic heart fail-
ure [175, 185]. In addition, several lines of evidence support
the ameliorative role of TRPV1 in myocardial infarction as
found in atherosclerosis [176, 177, 179-182].

Ischemia/reperfusion injury

Reperfusion of the ischemic myocardium is essential for res-
cuing it from the death. However, reperfusion itself causes
additional myocardial injury termed “ischemia/reperfusion
(I/R) injury” [190]. I/R injury in the heart occurs through
innate immune responses involving TLR (TLR2, TLR4) and
the Myd88- and Trif-dependent NF-kB-interferon-3 pathway,
activation of which induces the release of proinflammatory
and immunomodulatory cytokines [142]. Moreover, oxidative

stress-induced acute inflammatory response is implicated in
the development of I/R injury [191].

There are two conflicting reports linking TRPM2 channel
to I/R injury. One study suggested that activation of neutrophil
TRPM2 channel by ROS exacerbated myocardial /R injury
by upregulating the expression of endothelial adhesion mole-
cules MAC-1 and LFA-1. This then resulted in a stronger
adhesion of neutrophils on the coronary EC surface.
Neutrophil accumulation in the myocardium is a key process
that induces myocardial injury [191]. Thus, specific inhibition
of neutrophil TRPM2 activity may serve as an effective means
to mitigate the exacerbation of myocardial infarction.
However, in a striking contrast to this view, an independent
study proposed an opposing and more complex hypothesis.
According to the findings of this study, genetic deletion of
TRPM2 exacerbated the extent of myocardial dysfunction af-
ter I/R injury via increased generation (upregulation of
NADPH oxidase) and decreased scavenging capacity (down-
regulation of superoxide anion disulmutases) of ROS. As
pointed out by the authors themselves, the discrepancies be-
tween the above two studies may reflect small but essential
differences in experimental designs, as well as the use of glob-
al knockout mice with different exon-targeting invalidation
strategies [122]. In any case, it is almost undoubted that
TRPM2 channel is among central players in immunoinflam-
matory reactions in the cardiovascular disease and thus a
promising therapeutic target.

Concluding remarks and perspectives

In this review, we summarized the current knowledge linking
inflammation and TRP channels and attempted to provide
new insights into the pathogenesis of various inflammatory
CV diseases (refer to Table 1). In addition, we described the
evidence that dysregulation or altered expression of TRP
channels are in close association with inflammasome activa-
tion and the pathogenesis of CV diseases. Our major but ten-
tative conclusions drawn from this review writing are as fol-
lows: TRPC1, TRPC3, TRPC6, and TRPM7 may be the most
promising therapeutic targets in the subacute or chronic stages
of some CV diseases (i.e., remodeling, proliferation), presum-
ably via inhibition of persistent inflammasome activation as
well as aberrant regulation of cytokine production and tran-
scription factor activity. In case of ischemia/reperfusion, the
molecules’ sensing/transducing oxidative stress appears con-
tributory to the initiation of inflammation, wherein TRPM2
channel is the most plausible candidate (although roles of
other oxidative stress-sensitive channels TRPV1, TRPM7,
TRPA1, TRPC1, TRPC3, and TRPC6 should not be
underestimated). Finally, dietary capsaicin, which appears to
act as both sensory nerve (e.g., CLP sepsis model) and VSMC
(e.g., atherosclerosis), TRPV1 activators, may have broad
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relevance to improving CV disorders through its anti-
inflammatory actions.

The current research on the immunopathophysiology of
TRP channels is still in its infant stage. It is thus strongly
anticipated that further extensive investigations will greatly
improve our yet premature understanding about it, which will
pave a way to developing new effective therapies for inflam-
matory CV diseases.
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