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Abstract

As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a 
rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: 
Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in 
the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although 
the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways 
are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine 
mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing 
risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in 
neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain 
aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the 
pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular 
mechanisms of cognitive impairment, and Alzheimer’s disease.
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The aging of human populations is a critical challenge to health care 
systems and age-related changes in cognitive ability are of particular 
importance. For aging subjects who experience cognitive impair-
ment, the reduction in function can be disabling and affects social 
interactions, independence, and health span. Currently, a large per-
centage of the otherwise healthy population older than 60 years is 
affected by learning and memory impairments. Importantly, many 
age-related conditions including obesity, hypertension, and diabetes 
interact with age to exacerbate impairments in learning and memory. 
The number of individuals affected by cognitive decline is expected 
to rise considerably as the aging population increases imparting a 

significant socioeconomic impact to the country. Although studies 
suggest that age-related cognitive decline may be reversible, the eti-
ology remains unknown, preventing the development of effective 
therapeutic interventions.

The general consensus in the field is that brain aging and the 
resulting cognitive impairments are not the result of changes in a 
single factor but rather are the consequence of multiple interacting 
cellular and molecular events. The cellular changes that occur within 
neurons and glia have been widely studied but these cells also require 
an intact cerebrovasculature as well as factors within the circula-
tion including key nutrients, trophic factors, and substrates that are 
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necessary for normal function. Here we present an update on recent 
key studies into the mechanisms of brain aging with an emphasis on 
several articles published in Journals of Gerontology that are part of 
the exciting developments in the field.

Cognitive Decline and Neurodegeneration 
in Aging

Age-related cognitive decline has multiple underlying causes but 
most of the current efforts are focused on advancing diagnosis, pro-
gression, and therapy for Alzheimer’s disease (AD) that is the pri-
mary cause for dementia in the elderly adults. Highlights from this 
field noted below illustrate the current trends.

Alzheimer’s Disease: Variable Results From Clinical 
Trials and the Shift in Focus to Prevention and Early 
Diagnosis
The failure of clinical trials based on gamma secretase inhibitors 
(1), antibodies to amyloid (2), and other drugs targeted toward 
amyloid precursor protein processing (eg, R-flurbiprofen (3)) 
represented an important finding in the field and focused atten-
tion on early intervention. Two recent trials of solanezumab, a 
humanized monoclonal antibody that binds to the soluble form 
of beta amyloid (Aβ), failed to show significant improvement in 
primary outcome measures in mild-to-moderate Alzheimer dis-
ease (2). Importantly, when results from the pooled mild AD pop-
ulation were combined, there was a 34% reduction in the rate 
of decline in the Alzheimer’s Disease Assessment Scale (ADAS-
Cog14) and Mini-Mental State Examination (MMSE) scores in 
the solanezumab treatment group versus placebo (4). Although 
plasma levels of both Aβ1–40 and Aβ1–42 rose many hundred-
folds in the treated group compared with the placebo group, no 
statistically significant improvement was seen in the pooled mod-
erate AD cases with solanezumab treatment. Other monoclonal 
anti-Abeta antibodies undergoing clinical testing had also been 
evaluated for safety. For instance, anti-Aβ mAb GSK933776 
administered intravenously at doses of 1–6 mg increased total 
amyloid and Abeta42 levels in plasma and cerebrospinal fluid 
(CSF) (5). GSK933776 exhibited a favorable safety profile in the 
Phase I trial with no brain edema or hemorrhage in the 18 patients 
tested. Also, bapineuzumab, a humanized monoclonal antibody 
directed against amyloid β was associated with enhanced amy-
loid-related magnetic resonance imaging abnormalities due to 
hemosiderin deposition (ARIA-H) that appears to be related to 
impaired vascular integrity (6). In their study Arrighi et  al. (6) 
concluded that presence of the apolipoprotein (APOE) ε4 allele 
or preexisting hemosiderin deposition, as well as treatment with 
bapineuzumab and use of antithrombotic agents increased risk 
for ARIA-H, probably resulting from loss of integrity of cerebral 
vessels due to amyloid burden. In addition, a Phase II trial of a 
promising inhibitor of the beta-site amyloid precursor protein-
cleaving enzyme (BACE1, LY2886721) was suspended due to 
liver toxicity. It was suggested that the liver toxicity was not 
simply an off-target effect of the drug but rather a specific effect 
of BACE inhibition at sites other than the brain (7). An impor-
tant conclusion that has emerged from all these studies is that 
better clinical trial designs are urgently needed to measure pro-
tection from cognitive decline and that intervention early during 
the disease process is necessary because most trials focus on very 

advanced (late) stage AD patients creating a “treatment versus 
prevention dilemma” (8).

Early diagnosis of AD in the general population requires that 
assays be developed using reliable biomarkers in plasma. A recent 
study independently confirmed that a decrease in circulating Aβ42/
Aβ40 occurs in patients with AD and is inversely correlated with 
neocortical amyloid burden. Although inflammatory and renal 
function covariates undoubtedly influenced plasma Aβ levels during 
the 18 months of this study, the overall conclusion was that plasma 
Aβ42 decreased in subjects with established mild cognitive impair-
ment (MCI) and in those transitioning to MCI (9). In another study, 
three (3) candidate CSF biomarkers that reflect AD pathology were 
assessed: amyloid-beta, total tau protein (t-tau), and tau protein 
phosphorylated at AD-specific epitopes (p-tau) (10). These mark-
ers were useful in supporting the AD diagnosis and have predictive 
value for AD when patients experience MCI. In addition, De Leon 
et al. (11) conclude that the combined use of conventional imaging 
(magnetic resonance imaging or fluorodeoxyglucose-positron emis-
sion tomography) with selected CSF biomarkers can incrementally 
contribute to an early and specific diagnosis of AD. 231P-tau offers 
diagnostic specificity for AD and the levels of 231P-tau, but not 
t-tau, are consistently elevated in AD when compared to controls or 
those with fronto-temporal dementia, Lewy body dementia, or vas-
cular dementia patients (12). Although the usefulness of circulating 
biomarkers in the diagnosis of memory impairment and dementia 
is still debated, the Food and Drug Administration indicated that 
further research would be required before the effect of an interven-
tion on a single biomarker alone could be considered an adequate 
surrogate measure for AD or used to approve a candidate drug for 
early AD (13).

The suspected gender differences in dementia risk and AD 
prognosis acquired more validation. Results from the Framingham 
study indicated that women have twice the remaining lifetime risk 
of AD and dementia than men at the age of 65 years (14). New 
reports from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) conclude that annual cortical atrophy rates were faster 
in women than in men (15) and correlated with amyloid-beta and 
tau changes in CSF and with ApoE4 allele status. In another study 
cognitive abilities of women with MCI declined twice as fast as 
men’s (16) with contribution of female gender being equal to the 
effect of ApoE4. In another study, Banks et al. (17) investigated the 
importance of adiposity as a contributing factor in AD and con-
cluded that brain levels of amyloid precursor protein were more 
closely related to body weight and serum levels of gastrointestinal 
hormones than to brain weight, chronological age, or cytokine 
levels. This research complements previous findings indicating 
that increased levels of C-reactive protein and interleukin-6 (both 
associated with body fat) contribute to increased risk of all-cause 
dementia (18). For more results from the ADNI study we refer 
to the recently published excellent review (19) summarizing key 
findings in the field.

Novel pathways have been recently associated with risk of 
cognitive impairment and AD. The process of endocytosis was 
implicated in amyloidogenesis and AD risk using multiple genetic 
and functional studies (20–26). Repressor element 1-silencing tran-
scription factor (REST; also known as neuron-restrictive silencer 
factor, NRSF) was originally described as a master negative regula-
tor of neurogenesis that represses neuronal gene transcription in 
non-neuronal cells (27). In an elegant article Lu et  al. (28) pro-
vided evidence for increased expression of REST in the aging brain 
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and data showing that Wnt/beta-catenin signaling may contribute 
to the induction of REST in the ageing brain. REST effectively 
repressed amyloidogenesis and cell death-associated genes and thus 
its normal function might be neuroprotective. Indeed, REST levels 
in specific hippocampal and other neuron populations in human 
brain correlated with memory and longevity. In accordance with 
this view cultured neurons lacking REST expression were more 
vulnerable than control neurons to oxidative stress induced cell 
death and degeneration induced by incubation with toxic amyloid 
oligomers (28). Importantly, they described an almost total absence 
of REST in the nuclei of neurons from AD patients. Interestingly, 
low-density lipoprotein receptor-related protein 6 (lrp6) was deter-
mined to be an essential co-receptor for Wnt signaling and genetic 
variants in this gene were also associated with AD risk (29,30). 
Using a novel lrp6 knockout mouse, lrp6 deletion resulted in a 
marked increase in amyloid production and memory impairments 
with age (31). Based on these studies, age-related changes in the 
Wnt-lrp6-REST pathway appear to be a promising area for further 
investigation.

Important findings also have been reported related to mito-
chondrial dysfunction and the regulation of NAD levels (32). 
Mitochondrial impairments have been implicated in AD since it was 
reported that Aβ oligomers interfere with the physiological function 
of the mitochondrial protein, drp1 (also known as dynamin1-like, 
DNM1L). Importantly, drp1 mediates mitochondrial and peroxiso-
mal division (33,34). In the presence of Aβ oligomers, drp1 is acti-
vated leading to aberrant mitochondrial fission (35,36), which can 
be prevented by GSK3beta inhibition (37). These studies suggest 
that Aβ oligomers, in addition to their other known actions (38), 
may regulate mitochondrial dysfunction and thus impair neuronal 
metabolism.

Alternative Approaches to Prevent and Treat 
Cognitive Impairment, Intranasal Insulin, and 
Cognitive Function
AD and aging are associated with insulin resistance in the brain 
(39). Recently clinical trials have been conducted demonstrating 
that intranasal insulin may improve both memory performance and 
metabolic integrity of the brain in patients suffering from AD or 
MCI (40–42). These articles discuss the results of intranasal insu-
lin studies and suggest possible molecular pathways through which 
insulin is able to improve memory and learning processes in both 
cognitively healthy and impaired humans. Importantly, insulin sign-
aling pathways were shown to prevent Aβ oligomer toxicity (43). It 
is noteworthy that intranasal insulin treatment may act to modulate 
neuronal calcium dependent after-hyperpolarization as reported by 
Maimaiti et al. (44). Their results suggest that the after-hyperpolari-
zation may be a novel cellular target of insulin in the brain that could 
have a role in improved cognitive performance following intranasal 
insulin therapy.

Combined approaches to prevent and treat cognitive impairment 
in the elderly adults are illustrated by the findings of Garcia-Mesa 
et al. (45). These investigators report a substantial protective effect 
of physical exercise in the 3xTg mouse model of AD. Voluntary 
wheel running from 12 to 15 months of age lowered elevated reac-
tive oxygen species and it was suggested that oxidative stress was a 
central event in the disease process, which correlated with AD-like 
pathology and anxiety, apathy, and cognitive loss that occurs with 
progression of the disease. Although the study corroborates the 
importance of redox mechanisms in the neuroprotective effect of 

physical exercise, additional studies need to be undertaken to exam-
ine the specific functional improvements that occur in response to 
exercise.

Cognitive Training
Computer-based memory and attention training methods have been 
reported to improve episodic memory in patients with MCI, but the 
long-term effect has not been well studied. In a review of the neural 
networks rehabilitated by current cognitive training methods and 
those affected in AD, researchers suggest that a consistent training-
related increase in brain activity occurs in the medial temporal, pre-
frontal, and posterior default mode networks, as well as an increase 
in gray matter structure in the fronto-parietal and entorhinal regions 
(46,47). The type of activation pattern described above was inde-
pendent of that observed in healthy older adults (46), suggesting that 
cognitive training in persons at risk of developing AD could improve 
compensatory mechanisms and partially restore function. Evidently, 
changes in neuronal networks may be result of functional changes of 
individual neurons induced by aging or neurodegeneration but more 
studies are required to close the knowledge gap between human 
magnetic resonance imaging and PET trials and in vitro cellular 
experiments.

Epilepsy and Dementia—Deep Brain Stimulation as 
a Possible Therapeutic Approach
Interesting insight about the role of human cortical networks in 
learning and memory were reported from seven subjects undergo-
ing epilepsy surgery with implantation of intracranial electrodes (48) 
followed by a spatial learning task. Entorhinal stimulation applied 
while the subjects were learning specific landmarks enhanced their 
memory of these locations. Direct hippocampal stimulation was 
not effective. In a Phase I trial, deep brain stimulation of the fornix/
hypothalamic area in six patients for 6–12 months reversed impair-
ments in glucose metabolism and slowed cognitive decline (49,50). 
Based on these results, further investigation of deep brain stimula-
tion to treat memory deficits is warranted.

Neuroepigenetics
A new avenue for understanding the regulation of brain aging, 
neuroepigenetics, has continued to develop as a field (51). 
Neuroepigenetics includes studies of regulation of gene expression 
at the genomic level without changes in DNA sequence, namely 
histone and DNA modifications, that are key regulators of genomic 
structure and gene expression (52). Recent studies suggest that 
DNA methylation at specific sites in the genome may be a quan-
titative biological-marker of aging (53–55). These recent reports 
received considerable attention in the research community and 
DNA methylation may be a quantifiable endpoint for studies of 
anti-aging therapies. More broadly, age-related changes in DNA 
methylation may contribute to susceptibility/risk for a wide range 
of age-related diseases (56,57).

Recent studies of note include the finding that centenarians 
may have a slower rate of neuroepigenetic aging (58). Additionally, 
in a detailed study, one of the first examples of regulation of age-
related neuroinflammation by DNA methylation levels points to 
the wide range of studies to be performed to understand the poten-
tially central role of the neuroepigenome in aging (59). With the 
relative youth of this field a great deal of phenomenological work 
remains to be performed to understand the effects of aging on spe-
cific cell types in the central nervous system (60,61) and the field 
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will be driven by rapid advances in technology designed to analyze 
the epigenome (62,63).

Cerebrovascular Aging

The brain vasculature has consistently been an under-investigated 
area of brain aging. Although the brain comprises only about 2% 
of body mass, it receives close to 20% of total cardiac output. The 
high metabolic needs of the brain, which relies heavily on oxida-
tive metabolism, require an immense network of microvessels with 
a total length of approximately 600 km. The cerebral microcircula-
tion is not only responsible for delivering oxygen and nutrients used 
for metabolism in the brain, but also for the wash-out of toxic by-
products, providing an appropriate ionic milieu for neuronal func-
tion and water and solute transport from the blood into the brain 
parenchyma. Due to the key role of the cerebral microcirculation in 
preservation of brain health, there is increasing research into the role 
of age-related structural and functional alterations in the cerebral 
microcirculation in brain aging (26,64–76).

Previous studies demonstrate that aging impairs endothelial angi-
ogenic capacity (77–81) and promotes structural alterations in the 
cerebral microcirculation, which include cerebromicrovascular rar-
efaction (67,82,83). Microvascular rarefaction in the hippocampus 
has been causally linked to decreased performance in hippocampally 
dependent behavioral tests (84). Importantly, microvascular endothe-
lial cells represent the largest endocrine organ in the body, secreting 
a wide range of growth factors and cytokines, which regulate the 
function of perivascular cells. A prominent example is the recently 
discovered role of microvascular endothelial cells in maintenance of 
neurogenic niches (85). Aging is known to alter the secretory pheno-
type of endothelial cells (77,80), and promote pro-inflammmatory 
phenotypic changes in the microvascular endothelium, which likely 
contribute to age-related neuroinflammation (86).

Endothelial cells also produce highly diffusible gaseotransmit-
ters, including nitric oxide, which regulate a number of cellular 
functions, including mitochondrial biogenesis, in neighboring cells 
(87). Microvascular endothelial dysfunction and impaired bio-
availability of nitric oxide have been well documented in the aged 
cerebro-microcirulation (86,88), offering important new direc-
tions for future studies exploring age-related changes in brain 
metabolism. Furthermore, the cerebromicrovascular endothelial 
cells are a key component of the blood brain barrier, and recent 
studies provide evidence that disruption of the blood brain barrier 
occurs both in humans (71) and experimental animals (76,83). 
Blood brain barrier disruption has been proposed to have a patho-
physiological role in neurodegeneration (73,89,90). Therefore, 
additional studies are warranted to elucidate the molecular mech-
anisms responsible for the age-related breakdown of blood brain 
barrier integrity, its functional consequences and develop thera-
peutic approaches targeting the blood brain barrier for the preser-
vation of brain health.

Blood flow through the microcirculation is tightly regulated by 
complex, interacting mechanisms. The key regulatory paradigms 
include: (i) cerebral pressure autoregulation, which maintains a con-
stant flow in the presence of changing cerebral perfusion pressure, 
and (2) neuro-vascular/glio-vascular coupling, which adjusts local 
blood flow to changes in neuronal activity in a moment-to-moment 
manner. There is increasing evidence that adaptation of cerebral 
autoregulation to high pressure is compromised in aging (65,83), 
which likely has an important role in exacerbating the deleterious 
pathophysiological effects of hypertension in aging (64,83,91) and 

the development of microvascular injury, including cerebral micro-
hemorrhages (65). Recent studies also demonstrate that aging leads 
to profound neurovascular dysregulation (88,92,93), characterized 
by impaired cerebral blood flow responses induced by synaptic activ-
ity. Age-related impairment of neurovascular coupling mechanisms 
is also manifest in elderly patients (94–96) and has been causally 
linked to the decline in higher cortical functions including cogni-
tion (97,98). Also, there is increasing evidence linking neurovascular 
uncoupling to cognitive impairment (99). Recent evidence suggests 
that the aging-induced decrease in neurovascular coupling can be 
restored by pharmacological interventions (88), offering a potential 
target for pharmacological interventions to promote brain health in 
the elderly patients. Restoration of a key homeostatic mechanism 
matching energy supply with the needs of active neuronal tissue is 
expected to have beneficial effects on multiple aspects of brain func-
tion (17,100–114) in aging.

The glymphatic system, formed by astroglial cells, is a recently 
(re)-discovered paravascular waste clearance system in the brain 
that facilitates convective exchange of water and soluble contents 
(including macromolecules) between CSF and the interstitial fluid 
compartment (115–117). There is growing evidence that the glym-
phatic system significantly contributes to neurotoxic protein waste 
removal, including clearance of β-amyloid, from the brain (116). In 
addition to β-amyloid clearance, the glymphatic system also facili-
tates transport of nutrients, lipids, hormones, growth factors, and 
neuromodulators in the brain parenchyma (118). Recent studies 
demonstrate that advancing age in laboratory rodents is associated 
with a dramatic decline in clearance of intraparenchymally injected 
β-amyloid from the brain (119), raising the possibility that impaired 
glymphatic clearance contributes to the pathogenesis of AD.

Age-related alterations of the cerebral circulation, ranging from 
subclinical microvascular alterations and impaired glymphatic clear-
ance to full-blown dementia, will eventually affect every individual. 
Yet, studies investigating cerebromicrovascular aging are chronically 
underfunded. One can only hope that with recent evidence emerging 
that sporadic AD is primarily a vascular rather than a neurodegen-
erative disorder (73), research into age-related cerebromicrovascular 
pathophysiological alterations will receive more attention. Indeed, 
epidemiological studies demonstrate that practically all risk factors 
for AD have a vascular component that reduces cerebral perfusion, 
that hypertension exacerbates development of AD both in animal 
models and humans (68) and that AD patients exhibit cerebral 
microvascular pathologies before cognitive and neurodegenerative 
alterations.

Endocrine Circulating Factors

There is a long history of research demonstrating that alterations in 
circulating factors can influence cognitive function. Increased levels of 
glucocorticoids have been shown to impair learning and memory and 
are the mediator for the effects of increased stress on cognitive impair-
ment (120). In addition, there are substantial data that circulating 
insulin-like growth factor-1 (IGF-1) regulates learning and memory 
and that the loss of IGF-1 with age contributes to cognitive decline 
(121). Many of the actions of IGF-1 are compounded by alterations of 
paracrine or local IGF-1 secretion and in some cases loss of circulating 
IGF-1 results in an increase in paracrine IGF-1 levels that compen-
sate for the changes in circulating hormone levels. This is best seen in 
models of growth hormone deficiency induced in utero and has led 
to confusion related to the “beneficial” effects of IGF-1 deficiency in 
specific models that were indeed not deficient in IGF-1 (121). IGF-1 
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appears to have a wide range of actions on the brain. Direct effects of 
IGF-1 on neurons, astrocytes, and endothelial cells have been reported 
and the most recent data suggest that IGF-1 effects cerebrovascular 
autoregulation and neurovascular coupling that are critical for the 
regulation of cognitive function (66,122,123). Although the role of 
circulating endocrine factors in the maintenance of learning and mem-
ory processes have been recognized for several decades, only recently 
have the molecular mechanisms been studied. Investigations into the 
actions of IGF-1 already have provided an improved understanding of 
brain aging and the pathways that are capable of improving function. 
Additional studies are likely to improve our understanding of brain 
aging and result in the genesis of novel interventions.

In addition to modulating glucocorticoids and IGF-1 levels, recent 
data indicate that heterochronic parabiosis, or the joining of a blood 
supply between young an old animals, is capable of reversing several 
age-related functional impairments. This procedure includes the res-
cue of muscle function after damage (124) as well as neurogenesis in 
the aged brain (125–128). Although there is controversy related to the 
specific circulating factors that are altered in the parabiots, a recent 
study indicates that beta-2 microglobulin increases with age and that 
parabiosis lowers levels of this factor in the older animals, resulting 
in a “rejuvenated” phenotype. These are important findings and the 
investigators support their conclusions by showing increases in beta-2 
microglobulin in the human population and improved cognitive func-
tion of aged animals with a beta-2 microglobulin genetic knockout. 
These results provide important insight into the interactions between 
immune and cognitive function. Nevertheless, the heterochronic para-
biosis model is highly complex and issues related to nonspecific stress 
and the exchange of other endocrine factors that naturally occur in 
the model have not been resolved. Importantly, the levels of thyroid 
hormones, IGF-1, and glucocorticoids in these models have not been 
reported and it is likely that multiple mechanisms contribute to restora-
tion of function.

Conclusions

Based on the current studies, it is clear that our understanding of 
brain aging in general and neurological diseases associated with 
age are progressing at a rapid pace. Nevertheless, many challenges 
remain. For clinical studies, early detection and diagnosis of neuro-
logical disease are paramount for the assessment of interventions that 
can delay or perhaps even prevent AD. This will require the continued 
development of biomarkers that predict disease onset and progres-
sion. Studies of the basic mechanisms of brain aging have provided 
new insights into the critical inter-relationship between neurons, glia, 
and the cerebrovasculature as well as the role of circulating factors 
that regulate brain function. In addition, the evolving field of neu-
roepigenetics is likely to provide key information that addresses the 
basic mechanisms of aging. As noted in the beginning of this over-
view, there is not a single cause of brain aging. Nevertheless, research 
over the next several years are likely to provide further insights into 
the multiple mechanisms of brain aging and generate novel interven-
tions that improve the health of the aging population.
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