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Molecular and genomic analysis of microscopic quantities of tumor from formalin-fixed, paraffin-embedded
biopsy specimens has many unique challenges. Herein, we evaluated the feasibility of obtaining
transcriptome-wide RNA expression to measure prognostic classifiers in diagnostic prostate needle core
biopsy specimens. One-hundred fifty-eight samples from diagnostic needle core biopsy specimens (BX) and
radical prostatectomies (RPs) were collected from 33 patients at three hospitals; each patient provided up
to six tumor and benign samples. Genome-wide transcriptomic profiles were generated using Affymetrix
Human Exon arrays for comparison of gene expression alterations and prognostic signatures between the
BX and RP samples. A sufficient amount of RNA (>100 ng) was obtained from all RP specimens (n Z 77)
and from 72 of 81 of BX specimens. Of transcriptomic features detected in RP, 95% were detectable in BX
tissues and demonstrated a high correlation (r Z 0.96). Likewise, an expression signature pattern vali-
dated on RPs (Decipher prognostic test) showed correlation between BX and RP (rZ 0.70). Of matched BX
and RP pairs, 25% showed discordant molecular subtypes. Genome-wide exon arrays yielded data of
comparable quality from biopsy and RP tissues. The high concordance of tumor-associated gene expression
changes between BX and RP samples provides evidence for the adequate performance of the assay platform
with samples from prostate needle biopsy specimens with limited tumor volume. (J Mol Diagn 2016, 18:
395e406; http://dx.doi.org/10.1016/j.jmoldx.2015.12.006)
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Prostate cancer is the second leading cause of cancer-related
mortality in USmen.1 The American Cancer Society estimates
that>220,000 new cases of prostate cancer will be recorded in
2015, accounting for >25% of all cancers in men.2 Prostatic
needle core biopsy is currently the most reliable standard for
diagnosis of prostate cancer, and it is estimated that>800,000
patients undergo prostate biopsy annually in the United
States.3 However, in addition to the recognized concerns about
tumor heterogeneity and sampling errors associated with bi-
opsy, the pathological findings and tumor grade do not always
accurately predict tumor behavior and patient outcome. In
addition, tumor grading has poor interobserver reproducibility
stigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc.
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in some cases, which can lead to uncertainty in grade assign-
ment and subsequent misclassification of disease severity.4

Therefore, developing more sensitive and accurate bio-
markers and prognostic tools is of critical clinical need to better
risk-stratify patients when cancer is first diagnosed at biopsy,
and will allow patients to make the most informed treatment
management decisions possible.

Before molecular tests can be accepted into standard
clinical practice, there is a need to demonstrate their analyt-
ical feasibility and clinical utility. When using formalin-fixed,
paraffin-embedded (FFPE) tissue specimens as starting ma-
terial, the FFPE processing causes degradation of RNA that
generates challenges in using expression patterns as a clinical
biomarker; the oxygen and hydroxyl radicals in formalin
crosslink RNA, and the high temperatures of the wax
involved in embedding the sample cause irreversible damage
to RNA, with fragmentation into 150 to 200 bases long oli-
gonucleotides.5 Run-to-run variations in processing parame-
ters, as well as processing and storage variations from one
institution to the next, can also affect RNA levels and
degradation rates in FFPE tissue specimens. Tumor hetero-
geneity and the limited amount of tumor in biopsy material
further affect expression analyses, introducing multiple,
sometimes discordant, expression signatures. In addition, the
multifocal and heterogeneous nature of prostate cancers poses
even more challenges.6e8 More studies that use biopsy tumor
samples and address the opportunities for biomarker and
molecular signature evaluation studies are needed to improve
patient management from the time of diagnosis.

Herein, we demonstrate the feasibility of using
transcriptome-wide oligonucleotide microarray technology
[Human Exon 1.0 ST GeneChips (Affymetrix Inc., Santa
Clara, CA) with 1.4 million probe selection regions (PSRs)]
optimized for use with RNA extracted from FFPE tissue
specimens, and this protocol is performed in a Clinical Labo-
ratories Improvement Amendmentecertified reference labora-
tory, allowing it to be used to generate tumor expression data for
clinical use in prognostic assays.9 For example, the Decipher
test scoredperformed on prostate tumor tissuedis designed
to predict metastatic prostate cancer risk after radical
prostatectomy (RP), and is based on the expression of 22
markers from the 1.4 million PSRs on the chip. These
markers relate to cell proliferation, differentiation,
androgen signaling, motility, and immune modulation10,11

and have been validated to predict metastatic progression
after RP in several independent cohorts from multiple
institutions.12e14 This genomic assay is currently covered by
Medicare for helping to guide postoperative therapy decision
making in patients with adverse pathological features.15 Use of
this expression array protocol also allows for evaluation of
various combinations of PSRs, and thus permits one to simul-
taneously assess other expression marker panels and data
sets,10,16,17 as well as evaluate new ones.

To explore the transcriptomic differences between prostate
biopsy and matched RP samples, and evaluate the effects of
heterogeneity, we compared transcriptomic data generated
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using Human Exon arrays obtained from 158 different prostate
tissue samples from 33 patients seen at three different
institutions. This cohort provides, for the first time, an
opportunity to compare the whole transcriptome array-based
expression profiles obtained from matched biopsy and RP
specimens frommultiple institutional sources. It is particularly
important as different procurement, processing, and sampling
conditions are represented in this cohort for a more thorough
evaluation of expression-based genomic classifiers such as
Decipher test.18e20 Finally, we use the data to explore tumor
heterogeneity and the assignments of recently described mo-
lecular subtypes of prostate cancers by comparing and con-
trasting expression patterns in this specimen cohort.20,21

Materials and Methods

Patients and Samples

A total of 158 FFPE samples from 33 patients with
matching biopsy and RP were collected from three
institutions: University of California San Francisco (UCSF;
n Z 13), Cedars Sinai Medical Center (CSMC; Los
Angeles, CA; n Z 11), and the University Health Network
(Toronto, ON, Canada; n Z 9) (Supplemental Figure S1).
Each institution’s institutional review board committees
gave approval of this study. These 158 samples comprised
64 tumor samples (33 from biopsy and 31 from RP), 47
benign adjacent to tumor tissue samples (24 from biopsy
and 23 from RP), and 47 benign contralateral tissue samples
(24 from biopsy and 23 from RP) (Table 1). For 23 patients
from UCSF and CSMC, six prostate tissue samples were
obtained from each patient: tumor biopsy, tumor RP, benign
adjacent biopsy, benign adjacent RP, benign contralateral
biopsy, and benign contralateral RP (Table 1). Tumor grade,
tumor content, and stromal content were assigned by expert
uropathologists (J.P.S., B.S.K., T.v.d.K.) on hematoxylin
and eosin review for each biopsy core and RP tumor section
used, with the area to be sampled for RNA extraction
marked on each slide (Table 1). Except for cases analyzed
before 2006 (two cases), all were categorized as robotic
prostatectomies, which have similar warm and cold ischemia
times. These cases were all fixed within 1 hour of resection
by formalin injection technique. Biopsy specimens are all
fixed immediately on removal of the specimen.

Tissue Selection and Sampling

At CSMC and UCSF, tumor tissues were sampled from
FFPE biopsy cores by dissecting a portion of the tumor
tissue directly from the blocks in the areas corresponding to
marked areas on each hematoxylin and eosinestained slide
using either a 1-mm sterile biopsy punch tool (UCSF) or
0.6-mm cylindrical full-thickness cores using the Tissue
microarrayer (Pathology Devices, Westminster, MD). Next,
RNA was extracted as described below. Either one to
two 0.6-mm punches from the center of the tumor (CSMC)
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 1 Clinicopathologic Variables and QC Characteristics of Samples and Tissue Types

Variables/characteristics

Biopsy Radical prostatectomy

TotalContralateral Adjacent Tumor Contralateral Adjacent Tumor

Sample storage age, mean (SD), years 3.29 (2.69) 3.06 (2.69)
Available tissue 24 24 33 23 23 31 158
Clinicopathological
Tumor content, %
Median 0 0 70 0 0 80
Range 0e0 0e0 10e90 0e0 0e0 50e90

Stromal content, %
Median 60 60 25 60 60 20
Range 40e80 40e80 10e80 10e80 40e80 5e50
Gleason score
6 0 0 13 0 0 10 23
7 0 0 14 0 0 16 30
8 0 0 4 0 0 4 8
9 0 0 2 0 0 2 4

Quality control
Successful RNA extraction 23 22 27 23 23 31 149
Failed RNA extraction 1 2 6 0 0 0
Median RNA yield, ng 463.28 283.74 278.25 2814.3 2319.04 2846.7
Successful cDNA amplification 23 22 27 22 23 31 148
Failed cDNA extraction 0 0 0 1 0 0
Median cDNA yield, ng 7474.68 6984.275 7066.44 6704.88 7011.2 6461.91
Array good QC 23 22 26 22 23 31 147
Median % present 54.34 51.16 48.65 46.91 51.03 49.44

The array quality is equivalent across tissue types and samples.
QC, quality control.

Biopsy Expression Profiling
or one to five superficial punches sampling half of the tumor
in a single core (UCSF) were obtained. The histologically
benign peripheral zone glandular tissue was sampled in an
analogous manner. Benign tissues were defined as adjacent
to tumor (benign adjacent) when they were within 1 to 5
mm of the tumor. Benign contralateral tissues were obtained
from the side of the prostate opposite to the tumor, and as
far away from any other tumor or high-grade prostatic
intraepithelial neoplasia areas as possible. To minimize any
effects because of tumor heterogeneity, the area matching
the biopsy specimen was identified in the RP specimen and
punched. Tissues were punched in the same manner at
locations matching those where the biopsy punches were
taken for each tissue type (tumor, benign adjacent to tumor,
and benign contralateral to tumor). In the RP specimens,
only a single punch was obtained for each tissue type. For
example, if the biopsy specimen used for RNA extraction
reportedly was from the right apex, then the tumor in that
portion of the RP also was sampled for extraction. This
matching was performed for all tissue types (tumor, benign
adjacent, and benign contralateral). At University Health
Network, both biopsy and RP specimens were divided into
sections (4 mm thick) to generate unstained sections, and the
areas of interest were macrodissected (scraped) from the
slides for RNA extraction. Six unstained sections were used
to isolate RNA from biopsy tissue, and four to isolate RNA
from RP tissue. RP tissue was sampled in locations
matching the location of tumor in the biopsy cores.
The Journal of Molecular Diagnostics - jmd.amjpathol.org
RNA Extraction, Quantification, and Quality Control

Total RNA was extracted and purified using the RNeasy
FFPE kit (Qiagen, Valencia, CA). RNA was amplified
and labeled using the Ovation WTA FFPE system
(NuGen, San Carlos, CA) and hybridized to Human Exon
1.0 ST GeneChips (Affymetrix Inc.), according to the
manufacturer’s recommendations. Using this approach,
the expression of >1.4 million PSRs was quantified.
Quality and quantity of RNA extracted and cDNA
amplified were measured with a NanoDrop 1000 (Thermo
Scientific Inc., Wilmington, DE). RNA (50 to 100 ng)
was required for cDNA amplification. The ratio of
absorbance (260/280 nm) used to assess the purity of
RNA and ratio values between 1.7 and 2.2 were consid-
ered of acceptable purity. Quality control for microarray
data was performed with the Affymetrix Power Tools packages
and with internally developed metrics, including percentage
presentdthe percentage of probes detected above the back-
ground defined the detection level of background probes with
similar GC content. The positive versus negative area under the
curve (AUC) was used as an additional metric to assess
microarray quality by measuring the signal between positive
control probes, which measure the expression of housekeeping
genes, and negative control probes, whichmeasure antigenomic
sequences and hence should exhibit background intensity
levels.10 This metric can represent the quality of the RNA
sample, with an AUC of 1 reflecting perfect separation that
397
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indicates no false positives are detected, whereas all true posi-
tives are measured.

Expression Data Processing Analysis

The expression of approximately 1.4 million PSRs was
normalized and summarized using SCAN22 to the Affy-
metrix core transcript cluster level (approximately 22,000
genes). Expression data were uploaded to Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo, accession
number GSE72220). To reduce measurement error because
of laboratory variability, matching biopsy and RP samples
were processed in the same batch, and batch correction
was performed using ComBat (http://www.bu.edu/jlab/wp-
assets/ComBat/Abstract.html, last accessed January 7,
2015)23 on the expression data before analysis. Differential
expression analysis using paired median fold difference
(MFD). (MFD, x� x0) was used to identify discriminative
features between tumor and benign tissues. Dimensionality
reduction was performed using principal component analysis
(PCA), and significant sources of experimental and biological
signal associated with the genomic variance captured by each
principal component were assessed using the Mann-Whitney
U test. The Fisher’s exact test was used to assess the signifi-
cance of concordance between Decipher measured from bi-
opsy and Decipher measured from RP samples.

Field Effect Assessment

Matching tumor, benign adjacent to tumor, and benign
contralateral samples for each patient were used to assess a
potential genomic prostate cancer field effect. The expres-
sion profiles for features on the array were evaluated
between the tumor and the two benign samples using
Pearson’s correlation. One-tailed P values were computed
and adjusted using the false discovery rate method. Features
correlated between tumor and benign with a P < 0.05 were
considered candidate field effect features. This assessment
was performed on the RP and biopsy samples separately to
minimize confounding.

Prostate Cancer Molecular Subtyping

Patients in this study were classified into four previously
published molecular subtypes that are mutually exclusive of
each other: ERGþ, ETSþ, SPINK1þ, and triple negative.21

Outlier expression analysis of ERG, ETS (ETV1, ETV4,
ETV5, and FLI1), and SPINK1 was used to assign each
tumor sample to one of the subtypes. Patients exhibiting
an outlier profile in either of genes were annotated with þ,
and � otherwise. Patients with high ERG expression profile
(ERGþ) and not exhibiting outlier profiles for the other
genes were classified as ERGþ subtype, patients who were
ETV1þ, ETV4þ, ETV5þ, or FLI1þ and ERG� and SPINK1�

were classified as ETSþ subtype, patients who were
SPINK1þ, ERG�, and ETS� were classified as SPINK1þ,
398
patients not exhibiting outlier profiles of any of these six
genes were classified as the triple-negative subtype.

Results

Clinical and Pathological Characteristics of Patient
Samples

Matched biopsy and RP specimens from three institutions
using several sampling techniques were used to investigate
the feasibility of obtaining high-quality and comprehensive
whole transcriptome profiling data from FFPE tissue samples
using Human Exon arrays. Patients had a median time be-
tween RP and biopsy of 86 days. The tumors in the samples
covered a wide spectrum of Gleason scores (GSs) (Table 1)
and in the RPs included GSZ 3þ 3 (13 cases), GSZ 3þ 4
(six cases), GS Z 4 þ 3 (eight cases), GS Z 4 þ 4 (four
cases), and GS Z 4 þ 5 (two cases). The individual GSs in
the biopsy specimens that were sampled matched those in the
corresponding RP specimen, with the exception of two cases
with GS 3 þ 3 in the biopsy that were upgraded in the RP
specimen. None of the cases were downgraded at RP.

Tissue Characteristics of Biopsy versus RP Samples

Samples were stored for an average of 3.1 years (s Z 2.6
years) before processing (Supplemental Table S1). The
percentage of tumor involvement in the biopsy cores ranged
from 5% to 70%, and the percentage tumor in the cylindrical
punches of these cores ranged from 10% to 90%. The per-
centage tumor involvement of punches from RP specimens
was higher and ranged from 50% to 90%. The stromal content
in the punches of the biopsy cores ranged from 10% to 80%,
whereas the percentage of benign epithelial content was <5%
(Table 1). The amount of tissue that was provided for RNA
extraction also varied between the three sites because of dif-
ferences in the diameter of the punches (ie, 0.6 versus 1.0 mm)
and sampling method (ie, a single cylindrical core using a
biopsy punch versus multiple cores versus scraping from un-
stained sections). When the tumor occupied only 5% (0.5 mm)
of the length of the biopsy specimen, the sample did not yield
enough RNA (nZ 2, 100%). However, at 1-mm tumor length
and at least 35% tumor content in the punch area, the amount
of RNA was sufficient to pass the quality threshold and
generated high-quality data from the assay.

Transcriptome Data Quality from Biopsy versus RP
Samples

RNA was extracted from 0.6-mm (CSMC) and 1-mm (USCF)
cylindrical punches and from macrodissected tumor from un-
stained sections (4 mm thick; University Health Network) from
FFPE blocks. For each patient, the same procedure was used at
each site for collecting samples from both biopsy and RP
specimens. All 77 RP samples, but only 72 (89%) of 81 bi-
opsy samples yielded sufficient RNA for cDNA amplification
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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(Table 1). The lower yield of RNA from biopsy punches is
explained by the smaller depth of tissue in biopsy specimens
(at most, 1-mm core diameters) compared with RP (at least 2-
mm thick tissue slice). In addition, RNA yield from unstained
sections was, in general, lower than from punches (data not
shown). Although the RNA yield from RP samples was
approximately 10-fold greater than the RNA yield from biopsy
samples (Figure 1A), when using 100 ng of RNA as a starting
material, comparable amounts of cDNA were amplified from
both sample sources (Figure 1B). All samples passed cDNA
amplification, except one biopsy sample. A positive correla-
tion was observed between RNA yield from punches of the
biopsy cores and amount of tumor tissue in the punches.
Overall cDNA yield remained relatively consistent between
sample sources (Figure 1C).

Quality assessment of expression data generated from the
assay was performed by assessing the sensitivity and speci-
ficity of the microarray. Sensitivity is assessed using the per-
centage of probe sets that provide a signal higher than the level
of detection (LOD), whereas specificity is measured by the
discrimination of positive and negative control probes, as
calculated by the AUC. Biopsy and RP samples had similar
medians of probe sets higher than the LOD, 51.3% for biopsy
and 48.6% for RP samples; however, biopsy samples
possessed greater AUCs than RP samples, with median AUCs
of 0.76 versus 0.70 (P< 0.01), respectively. This suggests that
the RNA quality of biopsy samples is higher than that of RP
samples. Significantly, the percentage of probes higher than
the LOD did not correlate with the tumor content present in the
biopsy cores or punches evaluated (Figure 1C).

Transcriptome-Wide Expression Analysis in FFPE
Tissues Obtained Through Biopsy

Having demonstrated that RNA extracted from needle core
biopsy FFPE tissue samples was sufficient to generate
Figure 1 Quality control (QC) characteristics of biopsy and radical prostatecto
samples. B: An equal amount of extracted RNA was converted to cDNA, yielding
parameters (RNA yield, cDNA yield, and microarray probe signal intensity) are not
(A, RP samples); n Z 81 (A, biopsy samples).

The Journal of Molecular Diagnostics - jmd.amjpathol.org
transcriptome data using the assay and of comparable
quality to that obtained from RP-derived samples, we next
investigated the correlations of expression between biopsy
specimens and RPs. Approximately 50% of the 1.4 million
probe sets on the array provided signal intensities higher
than the LOD (Table 1). Of these probe sets, 70% (490K
probe sets) were detected in all RP samples, and of those,
95% were also detected in all of the biopsy samples, sup-
porting the analytical feasibility of applying genome-wide
exon arrays to prostate biopsy specimens.

To examine if tumor-associated signals could be detected in
the biopsy and RP samples, we first performed an unsuper-
vised hierarchical clustering and PCA on the microarray
expression data. The hierarchical clustering analysis revealed
that biopsy and RP samples formed two large clusters
(Figure 2A) and that the origin of the sample (ie, biopsy versus
RP) was the main responsible determinant. Within each
cluster, moderate sub-clustering of tumor and benign samples
was also observed. The PCA confirmed the clustering results,
demonstrating that the sample origin (biopsy versus RP) was
the biggest source of variation at the global level. This was
observed mainly in principle component 1 (PC1). Further-
more, with the exception of PC2, the first six PCs all associ-
ated with sample origin (biopsy versus RP) and tissue type
(benign versus cancer). In addition to the origin of the sample,
it became evident from the PCA that the tissue type (ie, tumor
versus benign) was another main source of variance in the data
set. As seen most clearly in PC6, samples from benign tissue
in both biopsy and RP clustered together (Figure 2, B and C).
Despite the limiting amount of tissue and sources of technical
variability (eg, differences in time to fixation between biopsy
and RP), tumor-associated signals were clearly identified in
biopsy tissues using unsupervised and unbiased transcriptome-
wide data analysis methods.

A comparison of overall gene expression levels between
biopsy and RP samples demonstrated a highly positive
my (RP) samples. A: Total RNA yield in RP samples is greater than in biopsy
similar amounts of cDNA in biopsy specimens and RPs. C: The three QC

affected by tumor content in the punch of the biopsy core samples. n Z 77

399
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Figure 2 Sources of variance in radical prostatectomies (RPs) and biopsy (BX) samples. A: Hierarchical clustering of samples from tumor and benign tissues
from BX and RP origins. The two main clusters are generated on the basis of the origin (BX versus RP), containing both benign and tumor samples. Additional
clusters are obtained on the basis of the tissue type (tumor versus benign). B and C: Principal component analysis (PCA) shows that sample origin (BX versus
RP) contributes the biggest variation and that tissue type (tumor versus benign) contributes less to the total variation.

Knudsen et al
correlation between expression values (r Z 0.96)
(Figure 3A and Supplemental Table S2). This suggested
that, by comparison to expression levels generated from RP
tissues, the assay could reliably quantify RNA expression
levels in biopsy samples and, furthermore, that the expres-
sion profiles in biopsy and RP samples were highly analo-
gous. A reduction in dynamic range in the biopsy samples
was observed, but the effect was small. To further illustrate
the within-patient RP-biopsy variability, correlation plots
400
were generated for four randomly selected patients, which
showed that there is strong consistency between RP and
biopsy sample expression, even for individual patients
(Supplemental Figure S2).
To compare changes in gene expression levels that are

specific to cancer, we determined the differential expression
for each gene between cancer and contralateral benign tissue
for both the biopsy and RP specimens separately. Benign
adjacent samples were removed because of possible tumor
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 3 Expression analysis between radical prostatectomies (RPs) and biopsy (BX). A: High concordance of gene expression levels between BX and RP
(r Z 0.96). B: Differential expression analysis using median fold difference (MFD) shows that the MFD between RP tumor and RP benign contralateral, and BX
tumor and BX benign contralateral, is consistent in terms of directionality. C: The genes differentially expressed between tumor and benign contralateral in BX
and RP are overlapping with genes differentially expressed between tumor and benign contralateral in external public data sets. Statistical significance was
assessed via bootstrapping (P < 0.05).

Biopsy Expression Profiling
contamination and field effect, which may confound the
analysis, and to allow for a pairwise analysis. Differential
expression analysis using paired MFD demonstrated the
same directionality of expression changes in biopsy and RP
and, in addition, similar magnitudes of expression changes
in both biopsy and RP samples (Figure 3B). Although the
magnitude of the MFD is affected by the difference in tumor
content and efficiency of RNA extraction between biopsy
and RP, the results nevertheless demonstrate that the assay
faithfully captured the biological signal in both specimen
types. An assessment of individual patients revealed similar
trends, where benign-tumor gene expression differences in
the biopsy and RP samples had significant, positive corre-
lations (Supplemental Figure S3). In addition, prostate
cancererelated genes that were found to be differentially
expressed in analysis of two public data sets (Taylor et al24

and Brase et al25) were confirmed in our samples, inde-
pendent of their origin from biopsy or RP (Figure 3C).
Bootstrapping analysis revealed the observed overlap be-
tween these sets to be statistically significant (P < 0.05).
Together, these data demonstrate that relevant and consis-
tent biological prostate cancerespecific signals exist in data
generated from both biopsy and RP specimen types.
Prostate Cancer Prognostic Signatures (Cuzick, Klein,
Penney, and Decipher) in Prostate Needle Core Biopsy
Specimens

Having demonstrated the feasibility of using the assay for
evaluation of FFPE needle core biopsy specimens, we next
assessed the robustness of four prostate cancer prognostic
signatures. In addition to Decipher scores, we evaluated the
expression levels of genes used in other published molecular
signatures used for prostate cancer risk stratification,
including expression signatures from Cuzick et al,19 Klein
et al,18 and Penney et al,20 as previously described.5 For
comparison, the RNA expression of the individual genes
The Journal of Molecular Diagnostics - jmd.amjpathol.org
comprising these signatures was evaluated in both biopsy
and RP samples. More than 94% of the features were higher
than the LOD in all biopsy and RP samples, providing ev-
idence of the ability of the assay to capture the biological
signal of multiple prognostic signatures.

The Decipher scores showed a positive correlation
(r Z 0.70, P < 0.001) between biopsy and tumor RP
samples (Figure 4A). Similarly, the Penney et al20 signature
also showed a positive correlation (r Z 0.65, P < 0.001)
(Figure 4B). To show that this result is robust, we pro-
gressively removed one and then two points driving the
correlation from the analysis and reevaluated the model’s
correlations (Supplemental Figure S4). We did not observe
major changes in the correlations, except for Penney et al,20

which was found to have a borderline significant correlation
after removing two of the driving points. Technical vari-
ables, such as percentage of tumor in punch, RNA yield,
cDNA yield, and percentage of probes higher than the LOD,
did not affect the Decipher scores in matched pairs of RP
and biopsy tissues. Using validated cut points, Decipher
patient risk categories between biopsy and RP were
concordant in 75% of cases (Figure 4C). Most of the
discordant cases were at the border between categories of
low and intermediate risk of metastatic development. Using
Fisher’s exact test, the concordance in Decipher BX and RP
scores trends toward significance (PZ 0.08). This failure to
reach significance is most likely because of the small sample
size and the few patients classified as high risk. It is
important to note that Decipher scores were independent of
tumor content, demonstrating that the Decipher test is
robust, despite limitations posed by formalin fixation and
small amounts of cancer tissue in biopsy specimens.

Transcriptome Expression Assessment with Respect to
Field Effect

The 22 Decipher features were measured across the three
tissue sources in the study: tumor, benign adjacent to tumor,
401
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Figure 4 Robustness of the Decipher assay
between biopsy (BX) and radical prostatectomies
(RPs). A: Correlation of Decipher scores from BX
and RP samples (r Z 0.7). B: Correlation of scores
for the Penney et al20 signature from BX and RP
samples (r Z 0.65). The blue dashed line repre-
sents the line of best fit, whereas the dotted blue
lines represent the 95% CI. C: Concordance of
Decipher category between cancers in RP and BX
(Fisher’s exact test P Z 0.08). Int., intermediate.

Knudsen et al
and benign contralateral to tumor (Figure 5A). We observed
15 (68%) of the 22 markers displaying the same pattern of
gene expression in both biopsy and RP across the three
tissue types. Overall, the 22 features showed highly
concordant expression patterns between matched tumor
samples from biopsy and RP, with generally higher
expression of these genes in tumor compared with matched
benign samples.

Next, we explored molecular heterogeneity by comparing
expression of prostate cancer lineage and subtype markers
(ERG, ETV1, ETV4, ETV5, and SPINK1) for each
RPebiopsy pair for tumor and benign samples. Samples
were grouped into four mutually exclusive molecular sub-
types, ERGþ, ETSþ, SPINK1þ, and triple negative, as
described in Materials and Methods.26 As expected, these
prostate cancer subtype markers were found mostly in tumor
tissues; however, a few benign samples had outlier
expression of these genes, suggesting contamination of
some tumor cells in the histologically benign tissue
(Supplemental Figure S5). In biopsy samples, 12, 3, 5, and 6
of 26 were assigned to ERGþ, ETSþ, SPINK1þ, and triple
negative, respectively. In RP samples, 7, 4, 5, and 15 of 31
were assigned to ERGþ, ETSþ, SPINK1þ, and triple
negative, respectively. In matched biopsy and RP sample
402
pairs, overall 18 (75%) of 24 had concordant subtypes
(Figure 5B). In RP samples, four cases of the 23 adjacent
benign sample demonstrated outlier expression of ERG,
ETV5, and SPINK1 genes. Six of 24 matched biopsy and RP
sample pairs showed different molecular subtypes: two were
SPINK1þ in biopsy and triple negative in RP, two were
ERGþ in biopsy and triple negative in RP, one was ERGþ in
biopsy and SPINK1þ in RP, and, finally, one was ERGþ in
biopsy and ETSþ in RP. The data herein indicate, for the first
time, implementing molecular subtypes in prognostic assays to
improve the currently available prognostic test for evaluation
in prostate needle biopsy specimens and shed light on the, yet
unmet, clinical need for integrating molecular subtypes and
prognostic assays.
Finally, we assessed the extent of the prostate cancer field

effect by examining the transcriptome-wide correlation be-
tween the tumor and matching benign samples within RP.
We identified the genomic features on the microarray with
significantly correlated expression (P < 0.05, after false
discovery rate P value adjustment) between the tumor and
the two types of benign samples. As expected, there were
7168 correlated features between RP tumor and benign
adjacent samples compared with only 291 correlated fea-
tures between RP tumor and benign contralateral samples
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 5 A: The expression of Decipher fea-
tures is consistent across tissue types between
radical prostatectomies (RPs) and biopsy (BX).
Most features are overexpressed in tumor
compared with benign in RP and BX. A group of
features (LASP1, CAMK2N1, and NFIB) expressed at
levels similar to the tumor specimens in benign
adjacent to tumor (benign close to tumor) but not
in benign contralateral to tumor (benign away
from tumor). B: The concordance of prostate
cancer molecular subtypes between BX and RP
cancer samples.

Biopsy Expression Profiling
(Supplemental Figure S6). Of 7168 features, 225 were
identified in all three samples. As expected, the results show
an overall higher correlation between tumor and benign
adjacent samples compared with tumor and benign contra-
lateral samples (Supplemental Figures S6 and S7 and
Supplemental Tables S3 and S4). To shed further biological
insights into the field effect genes, we used a subset (n Z
2031) of the most correlated genes between paired tumor
and adjacent benign samples (Pearson correlation >0.6 and
P < 0.001) and compared it with a list of prostate cancer
genes (n Z 1114) that are differentially expressed between
tumor and benign tissues in Memorial Sloan Kettering
Cancer Center24 and German Cancer Research Center25

public data sets. Comparative analysis showed that field
effect genes are distinct from prostate cancer genes, with
only 95 genes overlapping (Figure 6A). Field effect genes
are highly enriched with RNA splicing, chromosome orga-
nization, and intracellular transport biological processes
(Figure 6B), and possess binding sites of key prostate cancer
The Journal of Molecular Diagnostics - jmd.amjpathol.org
transcription factors, including AR, TP53, ETS1, JUN,
CREB1, and FOXO1, on the basis of enrichment analysis of
chromatin immunoprecipitation data sets using the ChEA
tool27 (Figure 6C). To assess if field effect genes are
correlated with ERG and ETV1 genomic rearrangements, a
Pearson correlation coefficient between field effect genes
and ERG and ETV1 expression was determined and revealed
only a poor correlation (Figure 6D).
Discussion

Accurate pretreatment risk assessment using prostatic needle
biopsy specimens, although challenging, is essential to
proper prostate cancer patient management. When prostate
cancer is first diagnosed, it is necessary to determine the best
individualized treatment plan for each patient. Accurate
prognostication at the time of diagnosis is challenging
because of several reasons. First, the standard 12 core
403
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Figure 6 Functional analysis of the field effect
signature. A: The field effect signature is distinct
from prostate cancer genes differentially expressed
between tumor and benign tissues (Memorial Sloan
Kettering Cancer Center and German Cancer Research
Center).24,25 B: Functional enrichment analysis re-
veals that the field effect signature is highly
enriched with gene categories of RNA splicing,
ubiquitin-dependent catabolism, epigenetics, and
cellular transport. C: Functional interaction networks
generated by STRING of 75 transcription factors
whose targets are enriched in the field effect
signature on the basis of a chromatin immunopre-
cipitation enrichment analysis tool.27 D: Density
plots of Pearson’s correlation between field effect
signature and ERG and ETV1 genes, suggesting that
field effect is independent of ERG and ETS.
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prostate needle biopsy only samples a small fraction of the
prostate and, therefore, may not be a representative sam-
pling of the most significant tumor, and may not provide
sufficient material for deep expression profiling. Second, the
accuracy of Gleason grading can be compromised by the
sampling error of the biopsy process; the GS is increased at
RP in approximately 20% to 50% of cases.28 Thus, the
severity of the cancer is often underestimated at biopsy. In
addition, the subjective nature of tumor grading and
assigning GSs complicates prognostication. The unpredict-
ability of disease progression is further affected by the
genetic heterogeneity and multiclonality of tumors that can
appear histologically identical or, surprisingly, even lower
grade.6,7 All of these challenges highlight the need for more
sensitive and robust genomic-based risk stratification
methods that are applicable to prostate biopsy specimens so
that men can more confidently choose a proper cancer
management strategy. The small amount of tumor usually
present in FFPE tissue specimens poses a barrier that is
particularly difficult to overcome in the analysis of tissue
biomarkers.

Characterizing the RNA expression of the tumor in biopsy
tissues may provide informative clinical insights into the true
aggressiveness of the tumor. Herein, we took advantage of
Human Exon 1.0 ST arrays, a high-density oligonucleotide
microarray that measures 1.4 million transcriptome-wide
PSRs representing all known genes and many noncoding
RNAs. Because of well-characterized assay characteristics
and excellent performance in RP FFPE tissues, we decided to
test the workflow with its quality control standards in biopsy
specimens using the matched RP specimens as a reference.

Several studies have been performed demonstrating the
generation of high-quality gene expression data from FFPE
specimens. Bibikova et al29 and Frank et al30 assessed the
404
reproducibility of FFPE samples profiled with oligonucle-
otide arrays and found high concordance between replicate
samples. Likewise, high correlations (r � 0.83) were
observed between array data from FFPE and snap-frozen
tissues.30 Pillai et al31 profiled 462 FFPE metastatic tumor
biopsy specimens with Pathchip arrays for a tumor of origin
test and found high-quality data in 80% of cases. Our study
builds on this foundation by focusing on the comparison
between FFPE biopsy specimens and FFPE surgical sam-
ples from prostate cancer patients. Prostate biopsy speci-
mens present a unique challenge because of issues of
heterogeneity and significant stromal contamination. Like-
wise and unlike previously cited studies,29e31 which were
all preformed in research laboratories, all samples in this
study were assayed in a Clinical Laboratories Improvement
Amendmentecertified laboratory. Finally, unlike the cited
feasibility studies with FFPE tissues, which used gene
expression arrays, this study uses a transcriptome-wide,
high-density, exon array to profile samples.
To assess the technical feasibility of running transcriptome-

wide arrays on biopsy samples, we took advantage of a multi-
institutional cohort representing various tissue sampling
methods. The way the samples were obtained (direct biopsy of
the FFPE block versus scraped area of unstained sections) and
the variability in institution processing did not hinder the
ability to generate genome-wide transcriptome data. The
generated data demonstrate that a sufficient amount of RNA of
suitable quality for molecular genomic analysis can be
consistently and successfully derived from the limited tumor
tissue in biopsy cores, even with minuscule tumor content
(1 mm length of tumor in a biopsy core with at least 40%
concentration of tumor cells). Optimally, we found the direct
biopsy method of the block using a punch tool to give the
highest yields, and with a single 1-mm diameter punch, almost
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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all biopsy specimens could be investigated without depleting
the block from cancer, as is often the case when biopsy
specimens are divided into sections serially for hematoxylin
and eosin diagnosis, immunohistochemistry, and genomic
assays. This is important for many pathology laboratories,
which do not want to deplete FFPE blocks of tumor cells for
medicolegal reasons or want to preserve tumor for future
clinical uses. Furthermore, not only have we demonstrated that
biopsy-derived RNA is equivalent to that of RNA obtained
from surgical specimens, it can be considered in some regards
to be superior. This observation might not be surprising given
that biopsy cores are typically fixed in formalin immediately
after they are obtained from the patient, whereas surgical
specimens experience a prolonged hypoxic period before they
are immersed in the formalin fixative, and it takes more time
for the fixative to penetrate and diffuse into the larger tissue
volume if rapid fixation techniques, such as fixative injection,
are not used. The delay could potentially lead to RNA
degradation and perturb RNA expression profiles. However,
we observed a high correlation overall between gene expres-
sion data generated from biopsy and RP samples (r Z 0.96),
suggesting thatmost genes do not change in abundance despite
ischemic and/or slower fixation conditions.

We further examined the expression of prostate cancer
genes from other prostate cancer prognostic tests (ie, Cuzick
et al,19 Klein et al,18 and Penney et al20), which can be
measured using Human Exon arrays. More than 94% of the
genes from Cuzick et al,19 Klein et al,18 and Penney et al20

had signal higher than the LOD. The expression of the 22
features in the Decipher test and the Decipher scores were in
general concordant between RP and biopsy. A patient-
per-patient pairwise agreement between biopsy and RP
samples using the Decipher risk category between biopsy and
RP tumor samples showed good overall concordance (75%).
This result provides preliminary evidence that the Decipher
score may be predictive of disease progression in diagnostic
prostate needle biopsy specimens and warrants a larger,
adequately powered study to validate this observation.

To provide additional molecular insights, we examined
whether matched tissues harbor similar molecular subtypes
of prostate cancer. Overall, there is strong agreement in
molecular subtypes between cancers in RP and biopsy
specimens. In addition, the molecular analysis revealed the
coexistence of several clones within the region of cancer
that was analyzed. These results demonstrate that, in addi-
tion to the Decipher score, the molecular subtypes in the
biopsy are representative of the cancer in the RP. Taken
together, these observations provide additional evidence as
to the potential clinical utility of high-resolution expression
arrays in the biopsy setting for use in molecular classifica-
tion, risk stratification, and prognosis.

Further characterization of the transcriptome data from
tissues adjacent or contralateral to the tumor revealed that
there is higher concordance in gene expression profiles be-
tween tumors and adjacent benign compared with contra-
lateral benign samples, and that the expression of many
The Journal of Molecular Diagnostics - jmd.amjpathol.org
Decipher features is higher in the tumor compared with the
benign tissues. Although, in the RP specimens, we could
clearly detect a field effect, with a higher proportion of
correlated expressed genes between tumor and adjacent
compared with contralateral histologically nonneoplastic
tissue, this was not detected in the biopsy specimens.
Functional characterization of the field effect genes revealed
that they are related to key biological processes involved in
tumor progression and key prostate cancer transcription
factors, including AR, JUN, HIFA1, and TP53. On the other
hand, they are not correlated with genomic rearrangements,
suggesting that adjacent benign tissues harbor a distinct
biology. Furthermore, the detection of tumor-specific sub-
type markers, such as ERGþ, ETSþ, and SPINK1þ, in the
benign specimens suggests the presence of tumor cells in
histologically nonneoplastic tissue may be a confounder for
the measurement of a field effect. Overall, the molecular
subtyping results show that for 25% of patients analyzed,
tumor heterogeneity could be detected between the biopsy
and RP specimens.

Previous reports of investigating multifocality in prostate
RP specimens have shown between 41% and 67% discor-
dance rates between ERG status within the same patient.26

Other studies have evaluated single prostates and detected
numerous tumors with different clonal type and origin.6 To
our knowledge, no previous study has reported the rate of
subtype discordance between matched biopsy-RP speci-
mens using six molecular markers (ERG, ETV1, ETV4,
ETV5, FLI1, and SPINK1).

Although the conclusions drawn from this study might be
limited by the small sample size, the data provide, for the
first time, evidence of concordance of a genomic classifier
across matched tumor samples from biopsy and RP in a
multi-institutional cohort. Altogether, the data demonstrate
the feasibility of measuring RNA expression in FFPE
prostate needle biopsy specimens with small amounts of
tumor using high-density expression arrays. These data
suggest that a high-density array run on prostate biopsy
specimens also provides potentially useful information on
tumor heterogeneity, which can be combined with currently
validated RNA expressionebased tests to improve predic-
tion of cancer progression.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.jmoldx.2015.12.006.
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