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Abstract

CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target 

mutations. Existing strategies for reducing genome-wide off-targets of the broadly used 

Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven 

efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-

fidelity variant harboring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 

retains on-target activities comparable to wild-type SpCas9 with >85% of single-guide RNAs 

(sgRNAs) tested in human cells. Strikingly, with sgRNAs targeted to standard non-repetitive 

sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide 

break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast 

majority of off-targets induced by SpCas9-HF1 were not detected. With its exceptional precision, 

SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic 

applications. More broadly, our results suggest a general strategy for optimizing genome-wide 

specificities of other RNA-guided nucleases.
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CRISPR-Cas9 nucleases enable highly efficient genome editing in a wide variety of 

organisms
1–3

 but can also cause unwanted mutations at off-target sites that resemble the on-

target sequence
4–13

. These off-target effects can confound research experiments and also 

have potential implications for therapeutic uses of the technology. Various strategies have 

been described to reduce genome-wide off-target mutations of the commonly used SpCas9 

nuclease, including: truncated sgRNAs bearing shortened regions of target site 

complementarity
8, 14

, SpCas9 mutants such as the recently described D1135E variant
15

, 

paired SpCas9 nickases
16, 17

, and dimeric fusions of catalytically inactive SpCas9 

(dSpCas9) to a non-specific FokI nuclease
18–20

. However, these approaches are only 

partially effective, have as-yet unproven efficacies on a genome-wide scale, and/or possess 

the potential to create more new off-target sites. Furthermore, some require expression of 

multiple sgRNAs and/or fusion of additional functional domains to Cas9, which can reduce 

targeting range and create challenges for delivery with viral vectors that have limits on 

nucleic acid payload size. Thus, a major challenge for the field remains the development of a 

robust and easily employed strategy that eliminates off-target mutations on a genome-wide 

scale.

We initially hypothesized that off-target effects of SpCas9 might be minimized by 

decreasing non-specific interactions with its target DNA site. SpCas9-sgRNA complexes 

cleave target sites composed of an NGG PAM sequence (recognized by SpCas9)
21–24

 and an 

adjacent 20 bp protospacer sequence (which is complementary to the 5’ end of the 

sgRNA)
22, 25–27

. We previously theorized that the SpCas9-sgRNA complex might possess 

more energy than is needed for optimal recognition of its intended target DNA site, thereby 

enabling cleavage of mismatched off-target sites
14

. Structural studies have suggested that the 

SpCas9-sgRNA-target DNA complex includes several SpCas9-mediated DNA contacts, 

including direct hydrogen bonds made by four SpCas9 residues (N497, R661, Q695, Q926) 

to the phosphate backbone of the target DNA strand
28, 29

 (Fig. 1a and Extended Data Figs. 

1a and 1b). We envisioned that disruption of one or more of these contacts might alter the 

energetics of the SpCas9-sgRNA complex so that it might retain enough for robust on-target 

activity but have a diminished ability to cleave mismatched off-target sites.

Alteration of SpCas9 DNA contacts

Guided by this excess energy hypothesis, we first constructed 15 different SpCas9 variants 

bearing all possible single, double, triple and quadruple combinations of N497A, R661A, 

Q695A, and Q926A substitutions to test whether contacts made by these residues might be 

dispensable for on-target activity (Fig. 1b). For these experiments, we used a previously 

described human cell-based EGFP-disruption assay
30

. Using an EGFP-targeted sgRNA, 

which we have previously shown can efficiently induce insertion or deletion mutations 

(indels) in an EGFP reporter gene when paired with wild-type SpCas9 (ref. 4), we found 

that all 15 SpCas9 variants possessed activities comparable to that of wild-type SpCas9 (Fig. 

1b, grey bars). Thus, alanine substitution of one or all of these residues did not reduce on-

target cleavage efficiency of SpCas9 with this EGFP-targeted sgRNA.

Next, we sought to assess the relative activities of all 15 SpCas9 variants at mismatched 

target sites. To do this, we repeated the EGFP-disruption assay with derivatives of the EGFP-
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targeted sgRNA used in the previous experiment that contain pairs of substituted bases at 

positions ranging from 13 to 19 (numbering starting with 1 for the most PAM-proximal base 

and ending with 20 for the most PAM-distal base; Fig. 1b). This analysis revealed that one of 

the triply substituted variants (R661A/Q695A/Q926A) and the quadruple substitution variant 

(N497A/R661A/Q695A/Q926A) both showed minimal EGFP disruption at near-background 

levels with all four of the mismatched sgRNAs (Fig. 1b, colored bars). Based on these 

results, we chose the quadruple substitution variant (hereafter referred to as SpCas9-HF1 
for High-Fidelity variant #1) for further analysis.

SpCas9-HF1 retains high on-target activities

To determine how robustly SpCas9-HF1 functions at a larger number of on-target sites, we 

performed direct comparisons between this variant and wild-type SpCas9 using additional 

sgRNAs. In total, we tested 37 different sgRNAs: 24 targeted to EGFP and 13 targeted to 

endogenous human gene targets. For 20 of the 24 sgRNAs tested using the EGFP disruption 

assay (Extended Data Fig. 2a) and 12 of the 13 sgRNAs tested using a T7 Endonuclease I 

(T7EI) mismatch assay (Fig. 1c), we found SpCas9-HF1 exhibited on-target activities that 

were at least 70% of what was observed with wild-type SpCas9 (Fig. 1d). Indeed, SpCas9-

HF1 showed highly comparable activities (90–140%) to wild-type SpCas9 with the vast 

majority of sgRNAs (Fig. 1d). Three of the 37 sgRNAs tested showed essentially no activity 

with SpCas9-HF1 (EGFP sites 9 and 23, and RUNX1 site 2), and examination of these target 

sites did not suggest any obvious differences in the characteristics of these sequences 

compared to those for which we saw high activities (Supplementary Table 1). Overall, 

SpCas9-HF1 possesses comparable activities (greater than 70% of wild-type SpCas9 

activities) for 86% (32/37) of the sgRNAs we tested.

Genome-wide specificity of SpCas9-HF1

To test whether SpCas9-HF1 exhibits reduced off-target effects in human cells, we used the 

genome-wide unbiased identification of double-stranded breaks enabled by sequencing 

(GUIDE-seq) method
8
 to assess eight different sgRNAs targeted to sites in the endogenous 

human EMX1, FANCF, RUNX1, and ZSCAN2 genes. The sequences targeted by these 

sgRNAs have variable numbers of predicted mismatched sites in the reference human 

genome (Extended Data Table 1). Assessment of on-target double-stranded 

oligodeoxynucleotide (dsODN) tag integration (by restriction fragment length 

polymorphism (RFLP) assay) and indel formation (by T7EI assay) for the eight sgRNAs 

revealed comparable on-target activities with wild-type SpCas9 and SpCas9-HF1 (Extended 

Data Figs. 3a and 3b, respectively), demonstrating that these GUIDE-seq experiments were 

working efficiently and comparably with the two different nucleases.

These GUIDE-seq experiments showed that with wild-type SpCas9, seven of the eight 

sgRNAs induced cleavage at multiple off-target sites (ranging from 2 to 25 per sgRNA), 

whereas the eighth sgRNA (FANCF site 4) did not yield any detectable off-target sites (Figs. 

2a and 2b). The off-target sites identified harbored one to six mismatches distributed 

throughout various positions in the protospacer and/or PAM sequence (Fig. 2c; Extended 

Data Fig. 4a). However, with SpCas9-HF1, a complete absence of GUIDE-seq detectable 
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off-target events was observed for six of the seven sgRNAs that induced off-target effects 

with wild-type SpCas9 (Figs. 2a and 2b). Among these seven sgRNAs, only a single 

detectable genome-wide off-target was identified, for FANCF site 2, at a site harboring one 

mismatch within the protospacer seed sequence (Fig. 2a). As with wild-type SpCas9, the 

eighth sgRNA (FANCF site 4) did not yield any detectable off-target cleavage events when 

tested with SpCas9-HF1 (Fig. 2a). Notably, with all eight sgRNAs, SpCas9-HF1 did not 

create any new nuclease-induced off-target sites (i.e., not already observed with wild-type 

SpCas9) detectable by GUIDE-seq.

To confirm these GUIDE-seq findings, we used targeted amplicon sequencing to more 

directly measure the frequencies of indel mutations induced by wild-type SpCas9 and 

SpCas9-HF1. For these experiments, we transfected human cells only with sgRNA- and 

Cas9-encoding plasmids (i.e., without the GUIDE-seq tag). We then used next-generation 

sequencing to examine the on-target sites and 36 of the 40 off-target sites that had been 

identified for six sgRNAs with wild-type SpCas9 in our GUIDE-seq experiments (four of 

the 40 sites could not be specifically amplified from genomic DNA). These deep sequencing 

experiments showed that: (1) wild-type SpCas9 and SpCas9-HF1 induced comparable 

frequencies of indels at each of the six sgRNA on-target sites, indicating that the nucleases 

and sgRNAs were functional in all experimental replicates (Figs. 3a and 3b); (2) as 

expected, wild-type SpCas9 showed statistically significant evidence of indel mutations at 

35 of the 36 off-target sites (Fig. 3b) at frequencies that correlated well with GUIDE-seq 

read counts for these same sites (Fig. 3c); and (3) the frequencies of indels induced by 

SpCas9-HF1 at 34 of the 36 off-target sites were statistically indistinguishable from the 

background level of indels observed in samples from control transfections (Fig. 3b). For the 

two off-target sites that appeared to have statistically significant mutation frequencies with 

SpCas9-HF1 relative to the negative control, the mean frequencies of indels were 0.049% 

and 0.037%, levels at which it is difficult to determine whether these are due to 

sequencing/PCR error or are bona fide nuclease-induced indels. Based on these results, we 

conclude that SpCas9-HF1 can completely or nearly completely reduce off-target mutations 

that occur across a range of different frequencies with wild-type SpCas9 to levels generally 

undetectable by GUIDE-seq and targeted deep sequencing.

We next assessed the capability of SpCas9-HF1 to reduce genome-wide off-target effects of 

sgRNAs designed against atypical homopolymeric or repetitive sequences. Although we and 

other researchers now try to avoid on-target sites with these characteristics due to their 

relative lack of orthogonality to the genome, we wished to challenge the genome-wide 

specificity of SpCas9-HF1 with sites that have very large numbers of known off-target sites 

in human cells. Therefore, we used previously characterized sgRNAs
4, 8 that target either a 

cytosine-rich homopolymeric sequence or a sequence containing multiple TG repeats in the 

human VEGFA gene (VEGFA site 2 and VEGFA site 3, respectively) (Extended Data Table 

1). In control experiments, we again found that each of these sgRNAs induced comparable 

levels of GUIDE-seq dsODN tag incorporation (Extended Data Fig. 3c) and indel mutations 

(Extended Data Fig. 3d) with both wild-type SpCas9 and SpCas9-HF1, demonstrating that 

SpCas9-HF1 is not impaired in on-target activity with either of these sgRNAs. Importantly, 

these GUIDE-seq experiments revealed that SpCas9-HF1 was highly effective at reducing 

off-target sites of these sgRNAs, with 123/144 sites for VEGFA site 2 and 31/32 sites for 
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VEGFA site 3 not detected (Fig. 4a and Extended Data Fig. 5). Examination of wild-type 

SpCas9 off-target sites not detected with SpCas9-HF1 showed that they each possessed a 

range of total mismatches distributed at various positions within their protospacer and PAM 

sequences: 2 to 7 mismatches for the VEGFA site 2 sgRNA and 1 to 4 mismatches for the 

VEGFA site 3 sgRNA (Fig. 4b; Extended Data Fig. 4b); also, nine of these off-targets for 

VEGFA site 2 may be recognized by an alternate potential base pairing interaction with the 

sgRNA that might occur with a single bulged base
12

 at the sgRNA-DNA interface (Extended 

Data Figs. 5 and 6). Overall, the sites that were still mutated by SpCas9-HF1 possessed a 

range of 2 to 6 mismatches for the VEGFA site 2 sgRNA and 2 mismatches in the single site 

for the VEGFA site 3 sgRNA (Fig. 4b), with three of the off-target sites for the VEGFA site 

2 sgRNA having an alternative potential single bulge alignment (Extended Data Figs. 5 and 

6). Notably, no new nuclease-induced off-target sites were induced by SpCas9-HF1 with 

either of the two sgRNAs. Collectively, these results demonstrate that SpCas9-HF1 can be 

highly effective at reducing off-target effects of sgRNAs targeted to simple repeat sequences 

and can also have substantial impacts on sgRNAs targeted to homopolymeric sequences.

Refining the specificity of SpCas9-HF1

Previously described methods such as truncated sgRNAs
14

 and the SpCas9-D1135E 

variant
15

 can partially reduce SpCas9 off-target effects, and we therefore wondered whether 

these might be combined with SpCas9-HF1 to further improve its genome-wide specificity. 

Testing of SpCas9-HF1 with matched full-length and truncated sgRNAs targeted to four 

sites in the human cell-based EGFP disruption assay revealed that shortening sgRNA 

complementarity length substantially impaired on-target activities (Extended Data Fig. 7a). 

By contrast, SpCas9-HF1 with an additional D1135E substitution (a variant we call SpCas9-
HF2) retained 70% or more activity of wild-type SpCas9 with six of eight sgRNAs tested 

using our human cell-based EGFP disruption assay (Figs. 5a and Extended Data Fig. 2b). 

We also constructed SpCas9-HF3 and SpCas9-HF4 variants harboring additional L169A or 

Y450A substitutions, respectively, at positions whose side chains are believed to mediate 

non-specific hydrophobic interactions with the target DNA on its PAM proximal end
28, 31 

(Fig. 1a). The Y450 residue is notable for participating in a base stacking interaction with 

the sgRNA
31

 and undergoing a 120 degree shift upon target binding to create its 

hydrophobic interaction with the DNA
28, 32

. SpCas9-HF3 and SpCas9-HF4 retained 70% or 

more of the activities observed with wild-type SpCas9 with the same six out of eight EGFP-

targeted sgRNAs (Figs. 5a and Extended Data Fig. 2b).

We next sought to determine whether SpCas9-HF2, -HF3, or -HF4 could reduce indel 

frequencies at two off-target sites that remained susceptible to modification by SpCas9-HF1, 

one with the FANCF site 2 sgRNA and another with the VEGFA site 3 sgRNA. For the 

FANCF site 2 off-target, which bears a single mismatch in the seed sequence of the 

protospacer, we found that SpCas9-HF4 (containing the additional Y450A substitution) 

reduced indel mutation frequencies to near background level as judged by T7EI assay while 

also beneficially increasing on-target activity (Fig. 5b), resulting in the greatest increase in 

specificity among the three variants (Fig. 5c). For the VEGFA site 3 off-target site, which 

bears two protospacer mismatches (one in the seed sequence and one at the nucleotide most 

distal from the PAM sequence), SpCas9-HF2 (containing the additional D1135E 
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substitution) showed near background levels of indel formation as determined by T7E1 

assay while showing modest effects on on-target mutation efficiency (Fig. 5b), leading to the 

greatest increase in specificity for this off-target site from among the three variants tested 

(Fig. 5c).

Discussion

The SpCas9-HF1 variant characterized in this report reduces all or nearly all genome-wide 

off-target effects to undetectable levels as judged by GUIDE-seq and targeted next-

generation sequencing, with the most robust and consistent effects observed with sgRNAs 

designed against standard, non-repetitive target sequences. Our observations suggest that 

off-target mutations might be minimized by using SpCas9-HF1 to target non-repetitive 

sequences that do not have closely matched sites (e.g., bearing 1 or 2 mismatches) elsewhere 

in the genome; such sites can be easily identified using existing publicly available software 

programs
33

. An interesting question will be to determine whether SpCas9-HF1 induces off-

target mutations at frequencies below the detection limit of existing unbiased genome-wide 

methods (Supplementary Discussion). We also discuss other practical considerations for 

targeting sites of interest with SpCas9-HF1, including the use of sgRNAs with non-G or 

mismatched 5’ nucleotides (Extended Data Fig. 7b) and altering the PAM recognition 

specificity of SpCas9-HF1 (Extended Data Fig. 8), in the Supplementary Discussion.

Further biochemical experiments and structural characterization will be required to define 

the mechanism by which SpCas9-HF1 achieves its high genome-wide specificity. We do not 

believe that the four substitutions we introduced alter the stability or steady-state expression 

level of SpCas9 in human cells, because titration experiments with decreasing 

concentrations of expression plasmids suggest that wild-type SpCas9 and SpCas9-HF1 

behave comparably as their amounts are lowered (Extended Data Fig. 9). Although our 

initial rationale for making the substitutions in SpCas9-HF1 was to decrease the energetics 

of interaction between the Cas9-sgRNA and the target DNA (as has been previously 

proposed to explain the increased specificities of transcription activator-like effector 

nucleases bearing substitutions at positively charged residues
34

), recent work has provided 

greater mechanistic insights into SpCas9 recognition and cleavage. These studies suggest 

alternative and more detailed models (e.g., formation of an active cleavage complex through 

conformational changes or kinetics of off-target site recognition
35, 36

 that might be affected 

by the substitutions in our SpCas9-HF1 variant (Supplementary Discussion).

More broadly, our results validate a general strategy for the engineering of additional high-

fidelity variants of CRISPR-associated nucleases. We found that introducing substitutions at 

additional non-specific DNA contacting residues can further reduce some of the very small 

number of residual off-target sites that persist for certain sgRNAs with SpCas9-HF1. Thus, 

we envision that variants such as SpCas9-HF2, SpCas9-HF4, and others might be used in a 

customized fashion to eliminate any potential off-target sites that might be resistant to the 

specificity improvements of SpCas9-HF1. In addition, our variants might be combined with 

substitutions in residues that contact the non-target DNA strand, alterations that have been 

shown to reduce SpCas9 off-target effects while our manuscript was under review
37

. 

Overall, our results demonstrate that the approach of mutating non-specific DNA contacts is 
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highly effective at increasing SpCas9 specificity and suggest it might be extended to other 

naturally occurring and engineered Cas9 orthologues
38–42

 as well as other CRISPR-

associated nucleases
43, 44

.

METHODS

Plasmids and oligonucleotides

DNA sequences of plasmids used in this study can be found in Supplementary Information. 

sgRNAs target sites are available in Supplementary Table 1, and oligonucleotides used in 

this study can be found in Supplementary Table 2. SpCas9 expression plasmids containing 

amino acid substitutions were generated by standard PCR and molecular cloning into 

JDS246
4
. sgRNA expression plasmids were constructed by ligating oligonucleotide 

duplexes into BsmBI cut BPK1520
15

. Unless otherwise indicated, all sgRNAs were 

designed to target sites containing a 5’-guanine nucleotide.

Human cell culture and transfection

U2OS cells (a gift from Toni Cathomen, Freiburg) and U2OS.EGFP cells (containing a 

single integrated copy of an EGFP-PEST reporter gene)
30

 were cultured in Advanced 

DMEM supplemented with 10% HI FBS, 2 mM GlutaMax, and penicillin/streptomycin at 

37°C with 5% CO2. The growth media for U2OS.EGFP cells was additionally supplemented 

with 400 µg ml−1 Geneticin. All cell culture reagents were obtained from Life Technologies. 

Cell line identity was validated by STR profiling (ATCC) and deep-sequencing, and cells 

were tested bi-weekly for mycoplasma contamination. Unless otherwise noted, cells were 

co-transfected with 750 ng of Cas9 plasmid and 250 ng of sgRNA plasmid. For negative 

control experiments, Cas9 plasmids were co-transfected with a U6-null plasmid. 

Nucleofections were performed using the DN-100 program on a Lonza 4-D Nucleofector 

with the SE Cell Line Kit according to the manufacturer’s protocol (Lonza). For T7E1 

assays, GUIDE-seq experiments, and targeted deep sequencing, genomic DNA was 

extracted ~72 hours post-transfection using the Agencourt DNAdvance Genomic DNA 

Isolation Kit (Beckman Coulter Genomics).

Human cell EGFP disruption assay

EGFP disruption experiments, in which cleavage and induction of indels by non-

homologous end-joining (NHEJ)-mediated repair within a single integrated EGFP reporter 

gene leads to loss of cell fluorescence, were performed as previously described
4, 30

. Briefly, 

transfected cells were analyzed ~52 hours post-transfection for loss of EGFP expression 

using a Fortessa flow cytometer (BD Biosciences). Background EGFP loss was determined 

using negative control transfections gated at ~2.5% for all experiments (represented as a red 

dashed line in figures). P values for comparisons between SpCas9 variants were calculated 

using a one-sided t-test with equal variances and adjusted for multiple comparisons using the 

method of Benjamini and Hochberg (Supplementary Table 3).

T7E1 assays

To quantify mutagenesis frequencies at desired genomic loci, T7E1 assays were performed 

as previously described
30

. Briefly, on- or off-target sites were amplified from ~100 ng of 
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genomic DNA using Phusion Hot-Start Flex DNA Polymerase (New England Biolabs) using 

the primers listed in Supplementary Table 2. An Agencourt Ampure XP cleanup (Beckman 

Coulter Genomics) was performed prior to the denaturation and annealing of ~200 ng of the 

PCR product, followed by digestion with T7E1 (New England Biolabs). Purified digestion 

products were quantified using a QIAxcel capillary electrophoresis instrument (Qiagen) to 

approximate the mutagenesis frequencies induced by Cas9-sgRNA complexes. P values for 

comparisons between SpCas9 variants were calculated using a one-sided t-test with equal 

variances and adjusted for multiple comparisons using the method of Benjamini and 

Hochberg (Supplementary Table 3).

GUIDE-seq

GUIDE-seq relies on the integration of a short dsODN tag into DNA breaks to enable 

amplification and sequencing of adjacent genomic sequence, with the number of tag 

integrations at any given site providing a quantitative measure of cleavage efficiency
8
. 

GUIDE-seq experiments were performed and analyzed essentially as previously described
8
. 

Briefly, U2OS cells were transfected with 750 ng of Cas9 and 250 ng sgRNA plasmids as 

described above, along with 100 pmol of a GUIDE-seq end-protected dsODN that contains 

an NdeI restriction site
8
. Restriction fragment length polymorphism (RFLP) assays were 

used to estimate GUIDE-seq tag integration frequencies at the intended on-target sites as 

previously described
15

, using the primers listed in Supplementary Table 2. The overall on-

target mutagenesis frequencies of GUIDE-seq tag-treated samples was determined by T7E1 

assay as described above. Tag-specific amplification and library preparation
8
 were 

performed prior to high-throughput sequencing on an Illumina MiSeq instrument. GUIDE-

seq data was analyzed as previously described
8
 using open-source GUIDE-seq analysis 

software (http://www.jounglab.org/guideseq) and the summarized results can be found in 

Supplementary Table 4. Genomic sites were excluded from analysis on the basis of overlap 

with background genomic breakpoint regions detected in any of four oligo-only control 

samples, overlap with previously identified Cas9-sgRNA independent breakpoints in human 

U2OS cells
8
, or as neighboring genomic window consolidation artifacts likely due to 

extensive end-resection around breakpoints (Supplementary Table 4). Potential RNA- or 

DNA-bulge sites
12

 (Extended Data Fig. 6) were identified by sequence alignment with 

Geneious version 8.1.6 (http://www.geneious.com)
45

. Sequencing data was corrected for 

U2OS cell-type specific SNPs with the site encoding the smallest edit distance to the 

intended sgRNA site used as the most likely off-target (Supplementary Table 4). Differences 

in number of GUIDE-seq identified off-target sites between this work and previous 

studies
8, 15

 are likely due to different experimental conditions (e.g., different promoters, 

quantity of plasmids used for transfection) and/or to sampling effects at the limit of detection 

of these particular experiments (Supplementary Table 4), and most likely not due to depth of 

sequencing which was similar between experiments.

Positional profiles generated from GUIDE-seq data (Extended Data Fig. 4) were made by 

weighting each nucleotide at each on/off-target site by the number of GUIDE-seq read 

counts. Sites containing gapped alignments relative to the human genome were not 

considered. Positional profiles for potential genomic off-target sites were restricted to 

sequences containing five or fewer mutations relative to the on-target site and to sequences 
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containing NGG PAMs. Heat maps were generated with R 3.2.2 and the image function, 

with colors determined using the function colorRampPalette(c("white","blue"))(2500).

Targeted deep-sequencing

Off-target sites identified by GUIDE-seq were amplified using Phusion High-Fidelity DNA 

polymerase (New England Biolabs) using the primers listed in Supplementary Table 2 for 

the genomic amplicons listed in Supplementary Table 5. PCR products were generated for 

each on- and off-target site from ~100 ng of genomic DNA extracted from U2OS cells. 

Products were generated from triplicate transfections for each of three experimental 

conditions: 1) control (wild-type SpCas9 + pSL695, a control sgRNA expression plasmid 

that does not encode a functional sgRNA), 2) wild-type SpCas9 + sgRNA, and 3) SpCas9-

HF1 + sgRNA. PCR products were purified with Ampure XP magnetic beads (Agencourt), 

normalized in concentration, and pooled into nine samples (individual triplicate experiments 

for each of the three conditions listed above). Illumina Tru-seq compatible deep-sequencing 

libraries were prepared using ~500ng of each pooled sample using a ‘with-bead’ HTP 

library preparation kit (KAPA BioSystems), and sequenced via 150-bp paired-end 

sequencing on an Illumina MiSeq instrument. High-throughput sequencing data was 

analyzed essentially as previously described
18

. Breifly, paired reads were mapped to the 

human genome (reference sequence GRChr37) using the bwa mem algorithm with default 

parameters. High-quality reads (average quality score ≥ 30) were analyzed for the presence 

of two or more bp indels that overlapped to the on- or off-target sites (Supplementary Table 

5). One bp indel mutations were only included if they occurred directly adjacent to the 

predicted cleavage site. P-values for comparisons between control, wild-type SpCas9 + 

sgRNA, and SpCas9-HF1 + sgRNA (Supplementary Table 5) were obtained on pooled 

triplicate data using a one-sided Fisher exact test in the R 3.2.2 software package. P-values 

for each set of comparisons were adjusted for multiple comparisons using the method of 

Benjamini and Hochberg (function p.adjust(method = “BH”) in R).

Code Availability

Scripts for GUIDE-seq analysis (v0.9) can be found at http://jounglab.org/guideseq. The 

scripts used for indel calling on deep sequencing data and GUIDE-seq profiles are available 

upon request.
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Extended Data

Extended Data Figure 1. SpCas9 interaction with the sgRNA and target DNA
a, Schematic illustrating the SpCas9:sgRNA complex, with base pairing between the sgRNA 

and target DNA. b, Structural representation of the SpCas9:sgRNA complex bound to the 

target DNA, from PDB: 4UN3 (ref. 29). The four residues that form hydrogen bond contacts 

to the target-strand DNA backbone are highlighted in blue; the HNH domain is hidden for 

visualization purposes.
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Extended Data Figure 2. On-target activities of high-fidelity SpCas9 variants
a and b, EGFP disruption activities of wild-type SpCas9 and SpCas9-HF1 (panel a) and 

SpCas9-HF1-derivative variants (panel b) in human cells. SpCas9-HF1 contains N497A, 

R661A, Q695, and Q926A substitutions; HF2 = HF1 + D1135E; HF3 = HF1 + L169A; HF4 

= HF1 + Y450A. Error bars represent s.e.m. for n = 3; mean level of background EGFP loss 

represented by the red dashed line.

Extended Data Figure 3. On-target activity comparisons of wild-type and SpCas9-HF1 with 
various sgRNAs used for GUIDE-seq experiments
a and c, Mean GUIDE-seq tag integration at the intended on-target site for GUIDE-seq 

experiments shown in Figs. 2a and Extended Data Fig. 5 (panels a and c, respectively), 

quantified by restriction fragment length polymorphism assay. Error bars represent s.e.m. for 

n = 3. b and d, Mean percent modification at the intended on-target site for GUIDE-seq 
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experiments shown in Figs. 2a and Extended Data Fig. 5 (panels b and d, respectively), 

detected by T7E1 assay. Error bars represent s.e.m. for n = 3.

Extended Data Figure 4. Positional summary of off-target sites identified by GUIDE-seq
Heat maps derived from GUIDE-seq data with sgRNAs targeting a, non-repetitive, or b, 
repetitive or homopolymeric sites in the genome are shown. Base frequencies in the set of all 

potential genomic off-target sites (weighted equally) with NGG PAMs and five or fewer 

mutations for each sgRNA are shown on the left. Summaries of off-target sites identified by 

GUIDE-seq for wild-type SpCas9 and SpCas9-HF1 (both weighted by read count) are 
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shown on the right. Yellow box outlines denote on-target bases at each position. Positions 

(20-1) are shown below the heat maps, with 1 being the most PAM-proximal position. Note 

the presence of mismatches that would be expected to create potential wobble interactions 

(G→A or T→C) at certain positions among the off-target sites induced by wild-type SpCas9 

and that SpCas9-HF1 appears to improve off-target sites without any obvious positional bias.

Extended Data Figure 5. Genome-wide cleavage specificity of wild-type SpCas9 and SpCas9-HF1 
with sgRNAs targeted to non-standard, repetitive sites
a, GUIDE-seq profiles of wild-type SpCas9 and SpCas9-HF1 using two sgRNAs known to 

cleave large numbers of off-target sites
4, 8. GUIDE-seq read counts represent a measure of 

cleavage efficiency at a given site; mismatched positions within the spacer or PAM are 
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highlighted in color; red circles indicate sites likely to have the indicated bulge
12

 at the 

sgRNA-DNA interface; blue circles indicate sites that may have an alternative gapped 

alignment relative to the one shown (see Extended Data Fig. 6). Off-target sites marked with 

red circles are not included in the counts of Fig. 4b; sites marked with blue circles are 

counted with the number of mismatches in the non-gapped alignment for Fig. 4b.

Extended Data Figure 6. Potential alternate alignments for VEGFA site 2 off-target sites
Ten VEGFA site 2 off-target sites identified by GUIDE-seq (left) that may potentially be 

recognized as off-target sites with single nucleotide gaps
12

 (right), aligned using Geneious
45 

version 8.1.6 (http://www.geneious.com).
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Extended Data Figure 7. Activities of wild-type SpCas9 and SpCas9-HF1 with truncated and 5’ 
mismatched sgRNAs

14

a, EGFP disruption activities of wild-type SpCas9 and SpCas9-HF1 using full-length or 

truncated sgRNAs. b, EGFP disruption activities of wild-type SpCas9 and SpCas9-HF1 

using sgRNAs that encode a matched 5’ non-G nucleotide or an intentionally mismatched 5’ 

G nucleotide. For both panels, error bars represent s.e.m. for n = 3, and the mean level of 

background EGFP loss observed in control experiments is represented by the red dashed 

line.

Extended Data Figure 8. Altering the PAM recognition specificity of SpCas9-HF1
a, Comparison of the mean percent modification of on-target endogenous human sites by the 

SpCas9-VQR variant (ref. 15) and an improved SpCas9-VRQR variant using 8 sgRNAs, 

quantified by T7E1 assay. Both variants are engineered to recognize an NGAN PAM. Error 

bars represent s.e.m. for n = 3. b, On-target EGFP disruption activities of SpCas9-VQR and 

SpCas9-VRQR compared to their -HF1 counterparts using eight sgRNAs. Error bars 

represent s.e.m. for n = 3; mean level of background EGFP loss in negative controls 

represented by the red dashed line. c, Comparison of the mean on-target percent 

modification by SpCas9-VQR and SpCas9-VRQR compared to their -HF1 variants at eight 
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endogenous human gene sites, quantified by T7E1 assay. Error bars represent s.e.m. for n = 

3; ND, not detectable. d, Summary of the fold-change in on-target activity when using 

SpCas9-VQR or SpCas9-VRQR compared to their corresponding -HF1 variants (from 

panels b and c). The median and interquartile range are shown; the interval showing greater 

than 70% of wild-type activity is highlighted in green.

Extended Data Figure 9. Titrations of wild-type SpCas9 and SpCas9-HF1 expression plasmid 
amounts
Human cell EGFP disruption activities from transfections with varying amounts of wild-type 

and SpCas9-HF1 expression plasmids. For all transfections, the amount of sgRNA-

containing plasmid was fixed at 250 ng. Two sgRNAs targeting different sites were used; 

Error bars represent s.e.m. for n = 3; mean level of background EGFP loss in negative 

controls is represented by the red dashed line.

Extended Data Table 1

Summary of potential mismatched sites in the reference human genome for the ten sgRNAs 

examined by GUIDE-seq

mismatches to on-target site*

site spacer with PAM 1 2 3 4 5 6 total

EMX1-1 GAGTCCGAGCAGAAGAAGAAGGG 0 1 18 273 2318 15831 18441

EMX1-2 GTCACCTCCAATGACTAGGGTGG 0 0 3 68 780 6102 6953

FANCF-1 GGAATCCCTTCTGCAGCACCTGG 0 1 18 288 1475 9611 11393

FANCF-2 GCTGCAGAAGGGATTCCATGAGG 1 1 29 235 2000 13047 15313

FANCF-3 GGCGGCTGCACAACCAGTGGAGG 0 0 11 79 874 6651 7615
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mismatches to on-target site*

site spacer with PAM 1 2 3 4 5 6 total

FANCF-4 GCTCCAGAGCCGTGCGAATGGGG 0 0 6 59 639 5078 5782

RUNX1-1 GCATTTTCAGGAGGAAGCGATGG 0 2 6 189 1644 11546 13387

ZSCAN2 GTGCGGCAAGAGCTTCAGCCGGG 0 3 12 127 1146 10687 11975

VEGFA-2 GACCCCCTCCACCCCGCCTCCGG 0 2 35 456 3905 17576 21974

VEGFA-3 GGTGAGTGAGTGTGTGCGTGTGG 1 17 383 6089 13536 35901 55927

*
determined using Cas-OFFinder (http://www.rgenome.net/cas-offinder/)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

B.P.K. is supported by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship. 
V.P. was supported by the Massachusetts General Hospital (MGH) Department of Pathology. S.Q.T. is supported by 
an MGH Tosteson and Fund for Medical Discovery Fellowship. J.K.J. is supported by a US National Institutes of 
Health (NIH) Director’s Pioneer Award, NIH R01 GM107427, NIH R01 GM088040, and the Jim and Ann Orr 
MGH Research Scholar Award.

References

1. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome 
engineering. Cell. 2014; 157:1262–1278. [PubMed: 24906146] 

2. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat 
Biotechnol. 2014; 32:347–355. [PubMed: 24584096] 

3. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-
Cas9. Science. 2014; 346:1258096. [PubMed: 25430774] 

4. Fu Y, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human 
cells. Nat Biotechnol. 2013; 31:822–826. [PubMed: 23792628] 

5. Hsu PD, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013; 
31:827–832. [PubMed: 23873081] 

6. Pattanayak V, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed 
Cas9 nuclease specificity. Nat Biotechnol. 2013; 31:839–843. [PubMed: 23934178] 

7. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 
genes have substantial off-target activity. Nucleic Acids Res. 2013; 41:9584–9592. [PubMed: 
23939622] 

8. Tsai SQ, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas 
nucleases. Nat Biotechnol. 2015; 33:187–197. [PubMed: 25513782] 

9. Frock RL, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered 
nucleases. Nat Biotechnol. 2015; 33:179–186. [PubMed: 25503383] 

10. Wang X, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using 
integrase-defective lentiviral vectors. Nat Biotechnol. 2015; 33:175–178. [PubMed: 25599175] 

11. Kim D, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human 
cells. Nat Methods. 2015; 12:237–243. 231 p following 243. [PubMed: 25664545] 

12. Lin Y, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between 
target DNA and guide RNA sequences. Nucleic Acids Res. 2014; 42:7473–7485. [PubMed: 
24838573] 

Kleinstiver et al. Page 17

Nature. Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rgenome.net/cas-offinder/


13. Cho SW, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases 
and nickases. Genome Res. 2014; 24:132–141. [PubMed: 24253446] 

14. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity 
using truncated guide RNAs. Nat Biotechnol. 2014; 32:279–284. [PubMed: 24463574] 

15. Kleinstiver BP, et al. Engineered CRISPR-Cas9 nucleases with altered specificities. Nature. 2015; 
523:481–485. [PubMed: 26098369] 

16. Mali P, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for 
cooperative genome engineering. Nat Biotechnol. 2013; 31:833–838. [PubMed: 23907171] 

17. Ran FA, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing 
specificity. Cell. 2013; 154:1380–1389. [PubMed: 23992846] 

18. Tsai SQ, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. 
Nat Biotechnol. 2014; 32:569–576. [PubMed: 24770325] 

19. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease 
improves the specificity of genome modification. Nat Biotechnol. 2014; 32:577–582. [PubMed: 
24770324] 

20. Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. Dimeric CRISPR RNA-Guided FokI-
dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing. Hum Gene 
Ther. 2015; 26:425–431. [PubMed: 26068112] 

21. Deltcheva E, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase 
III. Nature. 2011; 471:602–607. [PubMed: 21455174] 

22. Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial 
immunity. Science. 2012; 337:816–821. [PubMed: 22745249] 

23. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes 
using CRISPR-Cas systems. Nat Biotechnol. 2013; 31:233–239. [PubMed: 23360965] 

24. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR 
RNA-guided endonuclease Cas9. Nature. 2014; 507:62–67. [PubMed: 24476820] 

25. Jinek M, et al. RNA-programmed genome editing in human cells. Elife. 2013; 2:e00471. [PubMed: 
23386978] 

26. Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 2013; 339:823–826. 
[PubMed: 23287722] 

27. Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339:819–
823. [PubMed: 23287718] 

28. Nishimasu H, et al. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell. 
2014

29. Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA 
recognition by the Cas9 endonuclease. Nature. 2014; 513:569–573. [PubMed: 25079318] 

30. Reyon D, et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 
2012; 30:460–465. [PubMed: 22484455] 

31. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. STRUCTURAL BIOLOGY. A Cas9-guide RNA 
complex preorganized for target DNA recognition. Science. 2015; 348:1477–1481. [PubMed: 
26113724] 

32. Jinek M, et al. Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational 
Activation. Science. 2014

33. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-
target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014; 30:1473–1475. [PubMed: 
24463181] 

34. Guilinger JP, et al. Broad specificity profiling of TALENs results in engineered nucleases with 
improved DNA-cleavage specificity. Nat Methods. 2014; 11:429–435. [PubMed: 24531420] 

35. Sternberg SH, LaFrance B, Kaplan M, Doudna JA. Conformational control of DNA target cleavage 
by CRISPR-Cas9. Nature. 2015; 527:110–113. [PubMed: 26524520] 

36. Knight SC, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015; 
350:823–826. [PubMed: 26564855] 

Kleinstiver et al. Page 18

Nature. Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Slaymaker IM, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 
2015

38. Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015; 520:186–
191. [PubMed: 25830891] 

39. Esvelt KM, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat 
Methods. 2013; 10:1116–1121. [PubMed: 24076762] 

40. Hou Z, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from 
Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013

41. Fonfara I, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 
among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014; 42:2577–2590. 
[PubMed: 24270795] 

42. Kleinstiver BP, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by 
modifying PAM recognition. Nat Biotechnol. 2015

43. Zetsche B, et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. 
Cell. 2015; 163:759–771. [PubMed: 26422227] 

44. Shmakov S, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas 
Systems. Molecular Cell. 60:385–397. [PubMed: 26593719] 

45. Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the 
organization and analysis of sequence data. Bioinformatics. 2012; 28:1647–1649. [PubMed: 
22543367] 

Kleinstiver et al. Page 19

Nature. Author manuscript; available in PMC 2016 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Identification and characterization of SpCas9 variants bearing substitutions in residues 
that form non-specific DNA contacts
a, Schematic depicting wild-type SpCas9 interactions with the target DNA:sgRNA duplex, 

based on PDB 4OO8 and 4UN3 (adapted from refs. 28 and 29, respectively). b, 

Characterization of SpCas9 variants that contain alanine substitutions in positions that form 

hydrogen bonds with the DNA backbone. Wild-type SpCas9 and variants were assessed 

using the human cell EGFP disruption assay when programmed with a perfectly matched 

sgRNA or partially mismatched sgRNAs. Error bars represent s.e.m. for n = 3; mean level of 

background EGFP loss represented by red dashed line. c, On-target activities of wild-type 

SpCas9 and SpCas9-HF1 across 13 endogenous sites measured by T7E1 assay. Error bars 

represent s.e.m. for n = 3. d, Ratio of on-target activity of SpCas9-HF1 to wild-type SpCas9. 

The median and interquartile range are shown; the interval with >70% of wild-type activity 

is highlighted in green.
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Figure 2. Genome-wide specificities of wild-type SpCas9 and SpCas9-HF1 with sgRNAs targeted 
to standard, non-repetitive sites
a, Off-target cleavage sites of wild-type SpCas9 and SpCas9-HF1 with eight sgRNAs 

targeted to endogenous human genes, as determined by GUIDE-seq. Read counts represent a 

measure of cleavage frequency at a given site; mismatched positions within the spacer or 

PAM are highlighted in color. b, Summary of the total number of genome-wide off-target 

sites identified by GUIDE-seq for wild-type SpCas9 and SpCas9-HF1 with the sgRNAs 

used in panel a. c, Off-target sites identified for wild-type SpCas9 and SpCas9-HF1 for the 

eight sgRNAs, binned according to the total number of mismatches (in the protospacer and 

PAM) relative to the on-target site.
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Figure 3. Validation of SpCas9-HF1 specificity improvements by deep sequencing of off-target 
sites identified by GUIDE-seq
a, Mean on-target percent modification for wild-type SpCas9 and SpCas9-HF1 with six 

sgRNAs from Fig. 2. Error bars represent s.e.m. for n = 3. b, Percent modification of on-

target and GUIDE-seq detected off-target sites with indel mutations. Triplicate experiments 

are plotted for wild-type SpCas9, SpCas9-HF1, and a negative control; off-target sites are 

numbered as indicated in Fig. 2a. Filled circles below the x-axis represent replicates for 

which no insertion or deletion mutations were observed (Supplementary Table 4). 

Hypothesis testing using a one-sided Fisher exact test with pooled read counts found 

significant differences (p < 0.05 after adjusting for multiple comparisons using the 

Benjamini-Hochberg method) for comparisons between SpCas9-HF1 and the control 

condition only at EMX1-1 off-target 1 and FANCF-3 off-target 1. Significant differences 

were also found between wild-type SpCas9 and SpCas9-HF1 at all off-target sites, and 

between wild-type SpCas9 and the control condition at all off-target sites except RUNX1-1 

off-target 2. c, Scatter plot of the correlation between GUIDE-seq read counts (from Fig. 2a) 

and mean percent modification determined by deep sequencing at on- and off-target 

cleavage sites with wild-type SpCas9.
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Figure 4. Genome-wide specificities of wild-type SpCas9 and SpCas9-HF1 with sgRNAs targeted 
to non-standard, repetitive sites
a, Summary of the total number of genome-wide off-target cleavage sites identified by 

GUIDE-seq for wild-type SpCas9 and SpCas9-HF1 with sgRNAs targeted to VEGFA sites 2 

and 3. b, Off-target sites identified for wild-type SpCas9 or SpCas9-HF1 with sgRNAs 

targeted VEGFA sites 2 and 3 binned according to the total number of mismatches (within 

the protospacer and PAM) relative to the on-target site.
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Figure 5. Activities of high-fidelity derivatives of SpCas9-HF1 bearing additional substitutions
a, Summary of the on-target EGFP disruption activities of various SpCas9-HF variants 

compared to wild-type SpCas9 (from the data in Extended Data Fig. 2b). SpCas9-HF1 

contains N497A, R661A, Q695, and Q926A substitutions; HF2 = HF1 + D1135E; HF3 = 

HF1 + L169A; HF4 = HF1 + Y450A. The median and interquartile range are shown; the 

interval showing >70% of wild-type activity is highlighted in green. b, Mean percent 

modification by SpCas9 and HF variants at the FANCF site 2 and VEGFA site 3 on-target 

sites, as well as off-target sites from Figs. 2a and Extended Data Fig. 5 resistant to the 

effects of SpCas9-HF1. Percent modification determined by T7E1 assay; background indel 

percentages were subtracted for all experiments; error bars represent s.e.m. for n = 3. c, 

Specificity ratios of wild-type SpCas9 and HF variants with the FANCF site 2 or VEGFA 

site 3 sgRNAs, plotted as the ratio of on-target to off-target activity (from panel b).
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