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Abstract

Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite 

significant advances in recent years in basic research and clinical development, therapies that 

specifically target metastatic breast cancer remain inadequate, and represents the single greatest 

obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic 

analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a 

number of promising candidates for targeted treatment of metastatic breast cancer. Rational 

combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental 

components provide a promising strategy to develop precision treatments with higher specificity 

and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer 

metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, 

including the immune system.
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1. Introduction

The overall 5-year survival rate for breast cancer currently stands at 90% — a dramatic 

improvement over the 63% survival rate in the early 1960s. When stratified by stage, the 5-

year survival rates have increased to 99% for localized disease and 85% for regional 

advanced disease, a trend that can be attributed to early diagnoses and better treatment 

regimens. However, for patients with advanced or metastasized breast cancer at the time of 

diagnosis (abbreviated as mBC in this review), the 5-year survival rate remains at only 26% 

(American Cancer Society, 2013), reflecting a need for both new therapies and insights into 

the metastatic process. This disparity in survival between early and late stage breast cancer 

represents the principle obstacle in breast cancer management.
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To date, the FDA has approved over 25 oncology drugs to treat breast cancer (Table 1). 

These drugs fall into three major categories: 1) Cytotoxic chemotherapies, including mitotic 

inhibitors, antimetabolites, and various DNA-damaging reagents; 2) Endocrine therapies, 

including selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), and 

estrogen receptor downregulators (ERDs); and 3) Targeted therapies, which target certain 

dysregulated pathways in mBC or tumor microenvironment. The majority of these drugs 

belong to cytotoxic chemotherapies (44%), followed by endocrine therapies (24%) and 

HER2-targeting therapies (16%). Only 4 drugs (16%) target tumor- and microenvironment-

specific molecules beyond the EGFR family, namely mTOR, CDK4/6, RANKL, and 

bisphosphonates.

The paucity of targeted therapies is further compounded by several critical issues in the 

management of mBC. The most crucial of these is the disparity in response rates to systemic 

chemotherapy, as only 50% of metastatic cancers respond in contrast to 90% of primary 

tumors (Gonzalez-Angulo et al., 2007). Lower response rate in mBC is also accompanied by 

a stronger likelihood of acquired therapeutic resistance during the course of treatment 

(Coley, 2008; Gonzalez-Angulo et al., 2007). Finally, the development of targeted agents for 

the highly metastatic triple-negative (TNBC) subtype has been largely hindered by a relative 

lack of understanding into its heterogeneous molecular nature (Cleator et al., 2007; 

Criscitiello et al., 2012). While targeting tumor-intrinsic factors remains the traditional 

approach to therapeutic intervention (i.e. targeting aberrant driver events in breast cancer 

cells), developing research on the tumor microenvironment suggests that a new paradigm of 

stroma-targeting may yield many novel opportunities. In particular, the use of 

immunotherapies to target mBC is a potentially promising field (Korkaya et al., 2011; Mao 

et al., 2013; Place et al., 2011).

Here we review the current status of pharmacological management and focus on the 

landscape of emerging therapeutics for mBC. These include tumor-intrinsic targets such as 

the PI3K/ATK/mTOR pathway, PARP enzymes, activated growth factor receptors (e.g. 

EGFRs and FGFRs), cancer stem cell network (e.g. the Notch and Wnt pathways), androgen 

receptor, as well as therapies targeting communications between the tumor and host (e.g. 

immunotherapies). We discuss the mechanisms of action and biological implications of these 

targets with analysis of data from mechanistic and clinical studies. Finally, we address the 

need for the development of combinatorial therapies, in the context of targeting both the 

drivers of metastasis as well as the associated stromal components.

2. Status quo in the management of mBC

Clinical management of breast cancer has greatly improved in recent decades through the 

diagnostic classification of breast cancer into different subtypes, mainly on the basis of the 

hormone receptors (ER/PR) and the epidermal growth factor receptor HER2. Accordingly, 

breast cancer treatment is divided into three main classes: 1) hormone receptor-positive (ER

+ and/or PR+), 2) ErbB2/HER2/neu-overexpressing (i.e. HER2+), and 3) the remaining 

TNBC marked by the absence of ER/PR and HER2, which are poorly characterized and the 

most difficult to manage.
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Hormone receptor-positive (HR+) BC patients are primarily treated with endocrine therapy 

(e.g. letrozole or tamoxifen), either alone or in combination with a cytotoxic chemotherapy 

drug. These patients generally have a favorable prognosis and are associated with better 

overall survival compared to the other subtypes. However, HR+ patients also exhibit a higher 

risk of late recurrence following 5 years of adjuvant endocrine therapy, likely due to the low 

proliferation of HR+ tumor cells (Bosco et al., 2009; Voduc et al., 2010). Extended adjuvant 

endocrine therapy beyond 5 years has been shown to significantly reduce risk of recurrence 

and mortality in HR+ patients, and has been applied in clinical practice (Davies et al., 2013; 

Jin et al., 2012). The recent identification of activating mutations in the estrogen receptor 

(ESR1) demonstrates a central role of acquired endocrine resistance in HR+ mBC, 

suggesting that second-line ER antagonists may be of substantial therapeutic benefit 

(Robinson et al., 2013; Toy et al., 2013).

The more aggressive HER2+ BC is characterized by high expression of HER2/neu. These 

patients are primarily treated with trastuzumab (Herceptin), a landmark success in BC-

targeted therapy. However, not all HER2+ tumors respond to anti–HER2 therapy. Although 

tumors resolve in many patients, others show no response or become resistant (Lee-Hoeflich 

et al., 2008; Nahta et al., 2006). Therefore, a multitude of HER2-targeting drugs exploiting 

different targeting mechanisms have been developed, such as lapatinib (HER2 and EGFR 

dual tyrosine kinase inhibitor) and pertuzumab (HER2 dimerization inhibitor) (see Table 1). 

Many other HER2-targeting strategies have been proposed and are currently under active 

investigations (Murphy and Morris, 2012; Nielsen et al., 2009).

TNBC represents 15–20% of newly diagnosed breast cancer cases. These patients have a 

high risk of recurrence, especially in the brain and viscera. This high propensity to 

metastasize contributes to the worst rates of overall and disease free survival for TNBC 

patients compared to other subtypes (Onitilo et al., 2009). There are currently no targeted 

therapies available for these patients, leaving cytotoxic chemotherapies as the only standard 

of care. Treatment of TNBC remains one of the most pressing challenges in today’s clinical 

practice. Addressing this need, gene expression profiling of over 3000 TNBCs has revealed a 

deeper stratification of six different TNBC subtype (Lehmann et al., 2011). Both this and 

other genomics-based studies continue to shed light on the molecular understanding of 

TNBC heterogeneity and may provide critical insights in developing TNBC-targeted 

therapies (Huebschman et al., 2015; Kreike et al., 2007; Lehmann et al., 2011; Turner et al., 

2010).

For breast cancer patients, metastasis to the bone is a common site of recurrence (Coleman, 

2006). This type of metastasis is characterized by a viscous cycle of bone resorption and 

accelerated tumor growth (Ren et al., 2015). Osteoclast inhibitors such as the 

bisphosphonates (e.g. pamidronate, zoledronic acid) and the RANKL-targeting denosumab 

have been repurposed for breast cancer patients with bone metastases, representing the only 

organ-tropic anti-metastatic treatment strategy currently available (Esposito and Kang, 

2014). Bisphosphonates are analogs of pyrophosphate that bind to the bone matrix and are 

internalized by osteoclast inhibitors. Once inside the cell, they inhibit osteoclast activity 

through a variety of means, such as acting as farnesyl-transferase inhibitors (Drake et al., 

2008; Fleisch, 1998). Denosumab is a mAb that binds and inhibits receptor activator of 
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nuclear factor kappa-B ligand (RANKL), the principle ligand responsible for the maturation 

of bone-resorbing osteoclasts (Baron et al., 2011). Both classes of drug effectively reduce 

the risk of skeletal-related events (SREs) in breast cancer patients with bone metastases, 

while denosumab has been shown superior to bisphosphonates in terms of both efficacy and 

tolerability (Lipton et al., 2012; Martin et al., 2012; Stopeck et al., 2010).

Targeted drug delivery to cancer cells, exemplified by the antibody drug conjugate (ADC), 

has recently emerged as a novel and promising strategy in treating mBC. ADCs link potent 

chemotherapy drugs with monoclonal antibodies (mAbs) targeting cancer-specific antigens 

(Sassoon and Blanc, 2013; Sievers and Senter, 2013). Administration of ADCs leads to high 

intratumoral drug concentrations, while non-target tissues are largely spared from 

chemotherapeutic exposure (Alley et al., 2010). Ado-trastuzumab emtansine (Kadcyla, 

TDM-1), a HER2-targeting mAb trastuzumab conjugated with the microtubule-inhibitory 

agent DM1, was approved in 2013 for treating HER2+ mBC. Since, multiple ADCs have 

been developed to target various subtypes of breast cancer and are currently being tested in 

clinical trials (Table 2).

3. Tumor-intrinsic targeting

Genomics studies have identified numerous genetic and pathway alterations in breast cancer 

cells, however, only a few have been validated as viable targets in clinical studies. Therapies 

against ER and HER2 highlight the landmark successes in targeted breast cancer treatment, 

suggesting that a tumor-intrinsic targeting approach is of significant value. In this section, 

we discuss several promising therapeutic candidates supported by strong clinical evidence 

(Figure 1).

3.1. Inhibition of PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR pathway mediates multiple cellular processes such as proliferation, 

migration, invasion, survival, metabolism, and angiogenesis (Fresno Vara et al., 2004; 

Fruman and Rommel, 2014; Martini et al., 2014). PIK3CA is one of the most frequently 

mutated genes in all subtypes of breast cancer (The Cancer Genome Atlas Network, 2012). 

Its most prevalent activating mutation PIK3CAH1047R has recently been shown to play key 

effects in tumor initiation and cell fate determination in the pre-neoplastic mammary gland 

(Van Keymeulen et al., 2015; Koren et al., 2015). In addition, loss of PTEN and INPP4B are 

also frequently observed in breast cancer malignancies (Fedele et al., 2010; Gewinner et al., 

2009; Liu et al., 2009; López-Knowles et al., 2010). Moreover, breast cancers that have 

constantly active Akt signaling will rely on Akt for survival and are associated with 

therapeutic resistance (Bose et al., 2006; Kim et al., 2005; Tokunaga et al., 2006). Finally, 

crosstalk between the PI3K/AKT/mTOR and the Ras-MAPK pathways have been reported, 

creating a more complex network of signaling (Aksamitiene et al., 2012; Carracedo and 

Pandolfi, 2008; Mendoza et al., 2011).

Disabling the PI3K/AKT/mTOR pathway provides a compelling and rational approach to 

improve the antitumor effects of existing chemotherapies. Activation of the PI3K/AKT/

mTOR pathway is frequently implicated in resistance to endocrine (Cavazzoni et al., 2012; 

Creighton et al., 2010; Miller et al., 2009), HER2-targeted (Berns et al., 2007; Nagata et al., 
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2004; Yakes et al., 2002) and cytotoxic (Kolasa et al., 2009) chemotherapies. Everolimus, a 

rapamycin analog that inhibits mTOR kinase activity, is the first and so far the only FDA-

approved compound targeting this pathway. Small molecules designed to specifically target 

different components in the PI3K/AKT/mTOR pathway have been developed and are under 

active investigations in clinical trials (Table 3).

Alpelisib (also known as BYL719, PI3Kα inhibitor), buparlisib (also known as BKM120, 

pan-PI3K inhibitor), taselisib (also known as GDC-0032, selective inhibitor of Class I PI3K 

α,β,γ isoforms), ipatasertib (also known as GDC-0068, ATP-competitive small molecule 

inhibitor of all three isoforms of Akt) have emerged as promising drug candidates. Alpelisib, 

buparlisib and taselisib demonstrate significant antitumor effects when combined with 

endocrine therapy (Mayer et al., 2014; Saura et al., 2015; Shah et al., 2014). Combination of 

trastuzumab, LJM716 (HER3 mAb) and alpelisib has antitumor activity in pre-treated 

HER2+, PIK3CA-mutated mBC (Shah et al., 2015). The LOTUS (NCT02162719) trial is an 

ongoing phase II clinical trial to evaluate the efficacy of ipatasertib combined with paclitaxel 

in treatment of metastatic TNBC.

3.2. Inhibition of PARP

PARP inhibitors represent another emerging class of targeted therapeutics for mBC. PARP1, 

the first described enzyme of the PARP family, plays a key role in the repair of DNA single-

strand breaks via base excision repair (BER); it has also been implicated in other pathways 

resolving or generating single-strand breaks, such as the nucleotide excision repair (NER) 

and mismatch repair (MMR) mechanisms (Feng et al., 2015). PARP1 inhibitors function by 

inhibiting the covalent attachment of ADP-ribose to PARP1 substrates, such that DNA repair 

enzymes cannot be recruited to the site of DNA damage (Kummar et al., 2012; Rouleau et 

al., 2010). Studies indicate that PARP1 inhibitors have the most potent antitumor effects in 

cancers with BRCA-mutations, as double strand break repair via homologous recombination 

(HR) is not available in BRCA-defective cells (Drost and Jonkers, 2014; Weil and Chen, 

2011). This creates a situation of synthetic lethality in which only the BRCA-mutated tumor 

cells are affected (Ashworth, 2008).

Olaparib is the only PARP inhibitor approved by the FDA, as a single-agent treatment for 

advanced ovarian cancer driven by defective BRCA genes. Olaparib has been tested in breast 

cancer as either a single agent or in combination with other cytotoxic drugs. The current 

clinical trials involving Olaparib primarily enrolled patients with BRCA-mutated mBC 

(Gelmon et al., 2011; Kaufman et al., 2014; Tutt et al., 2010). Second-generation PARP 

inhibitors have also been developed and are being evaluated in multiple clinical trials (Table 

4). Among the agents, veliparib (ABT888) and talazoparib (BMN 673) are the two most 

promising candidates that have entered phase III clinical trials.

Veliparib is a PARP inhibitor targeting both PARP1 and PARP2. Potential synergistic 

interactions between veliparib and cisplatin or the EGFR inhibitor lapatinib were reported to 

suppress TNBC cell lines (Chuang et al., 2012; Nowsheen et al., 2012). A phase III trial 

(NCT02163694) has been initiated in 2014 to assess efficacy and toxicity of veliparib in 

BRCA-associated mBC (Puhalla et al., 2015). Talazoparib is a dual-mechanism PARP 

inhibitor that potently inhibits the PARP enzyme and effectively traps PARP on DNA. It 
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selectively targets tumor cells with BRCA1, BRCA2, or PTEN gene defects with a high 

potency in cell lines and xenograft models (Andrei et al., 2015; Hopkins et al., 2015; Murai 

et al., 2012; Shen et al., 2013). EMBRACA (NCT01945775) is an ongoing phase III trial 

evaluating the safety and efficacy of Talazoparib in mBC patients with BRCA mutations.

The use of synthetic lethality has been mostly studied in the context of BRCA1/2-deficient 

breast and ovarian cancers (Sonnenblick et al., 2014). Nevertheless, studies suggest that 

PARP1 inhibitors may also have positive effects in patients that are non-BRCA mutation 

carriers (Gelmon et al., 2011; Pothuri, 2013), possibly due to the less-defined roles of PARP 

in double strand-break repair, transcriptional regulation, and hormone-dependent cancers 

(Feng et al., 2015).

3.3. Inhibition of activated growth factor receptors

Increased expression of growth factor receptors and activation of their tyrosine kinase 

activities are frequently observed in breast cancers (Gschwind et al., 2004; Hynes, 2000; 

Templeton et al., 2014). Besides HER2, other members of the EGFR family (e.g. EGFR/

HER1/ErbB1, HER3/ErbB3) (Lee-Hoeflich et al., 2008; Masuda et al., 2012), vascular 

endothelial growth factor (VEGF) and its receptors (VEGFRs) (Goel and Mercurio, 2013; 

Guo et al., 2010), fibroblast growth factor (FGF) and it receptors (FGFRs) (Penault-Llorca et 

al., 1995; Tenhagen et al., 2012), platelet-derived growth factor (PDGF) and its receptors 

(PDGFRs) (Carvalho et al., 2005; Coltrera et al., 1995), insulin-like growth factor-1 (IGF-1) 

and its receptor (IGF-1R) (Pollak, 2008; Yang and Yee, 2012), mast/stem cell growth factor 

receptor (SCFR, also known as c-Kit) (Kashiwagi et al., 2013; Regan et al., 2012), and MET 

and hepatocyte growth factor receptor (HGFR, also known as c-MET) (Ho-Yen et al., 2015; 

Raghav et al., 2012; Sierra and Tsao, 2011) have been found dysregulated (by amplification, 

translocations, or mutations) in breast tumors and are associated with poor patient outcomes.

Therapeutic agents targeting these growth factor-responsive tumors include blockade of 

individual receptors with mAbs and inhibition of tyrosine kinase activities with small 

molecule inhibitors. The clinical testing of the long-heralded VEGFR inhibitors failed in 

Phase II and III clinical trials (see section 4.1.2). Of the myriad growth factors, FGFR is an 

emerging target of promise. The FGF-FGFR signaling axis plays essential functions in 

regulating cell proliferation, survival, migration and differentiation in both normal and 

cancer development (Turner and Grose, 2010; Wesche et al., 2011). Activation of FGFR 

signaling may lead to increased tumor angiogenesis and play a role in tumor resistance to 

antiangiogenic agents and other chemotherapies (Kono et al., 2009; Lieu et al., 2011). In 

breast cancer, upregulation of the FGFR pathway activity could occur through multiple 

mechanisms. Amplification of FGFR1 (10% of all BC), FGFR2 (4% of TNBC) and FGFR4 

genes (10% of all BC), and germline single nucleotide polymorphisms (SNPs) of FGFR2 

and FGFR4 have been reported and are associated with poor prognosis (Jaakkola et al., 

1993; Penault-Llorca et al., 1995; The Cancer Genome Atlas Network, 2012; Turner et al., 

2010). Therapeutic agents targeting aberrant FGFR activation are now being evaluated in 

multiple phase II/III clinical trials (Table 5).
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3.4. Targeting cancer stem cell signaling

TNBC represents a highly diverse group of cancers (Lehmann et al., 2011; Metzger-Filho et 

al., 2012; Montagna et al., 2013), and certain subtypes within this classification show a 

strong enrichment of cancer stem cell–like features (Lehmann et al., 2011). The cancer stem 

cell theory hypothesizes that a small fraction of the cells in a tumor have characteristics of 

somatic stem cells with highly tumorigenic and chemo-resistant potential, and could be 

responsible for the majority of metastatic relapse (Balic et al., 2006; Velasco-Velázquez et 

al., 2012). As such, the treatment of specific stem cell features may offer a curative approach 

to cancer therapy. The Notch and Wnt pathways are the two most extensively studied 

pathways that have been implicated in both normal and cancer stem cells of the mammary 

gland, and may be potential targets in TNBC (Farnie and Clarke, 2007; Howe and Brown, 

2004; Stylianou et al., 2006).

3.4.1. Targeting the Notch pathway—Upregulated Notch signaling has been reported 

in TNBC, and is usually associated with the down-regulation of Numb (Pece et al., 2004) or 

activating fusion mutations found in NOTCH1 or NOTCH2 (5–10% of TNBC cases) 

(Robinson et al., 2011; Stoeck et al., 2014). Early attempts to target the Notch pathway 

focused on gamma secretase inhibitors (GSIs) (Table 6). Gamma secretase is a multi-protein 

integral membrane complex that catalyzes the proteolytic processing of Notch receptors and 

liberates the Notch intracellular domain (NCID); NCID subsequently translocates to the 

nucleus and regulates transcription of Notch downstream target genes (Shih and Wang, 

2007). Clinical trials involving GSIs demonstrate the feasibility of targeting aberrant Notch 

signaling in treating mBC (Table 6). However, a low specificity for tumor cells induced high 

toxicity in GSI-treated patients (Imbimbo, 2008; Olsauskas-Kuprys et al., 2013).

Other Notch-targeting strategies to interfere with Notch signaling show promise in 

improving therapeutic specificity (Table 6). Antibodies against specific Notch ligands or 

receptors have been heavily studied in many cancer systems, and will provide an attractive 

alternative in treating mBC (Andersson and Lendahl, 2014). For example, tumor-derived 

Jagged1, one of the five Notch ligands, has been shown to promote osteolytic bone 

metastasis in breast cancer by engaging Notch signaling in the bone cells (Sethi et al., 2011). 

It is anticipated that more specific Notch-targeting approaches will rapidly expand as we 

gain increasing understanding of the Notch signaling network in breast cancer.

3.4.2. Targeting the Wnt pathway—Similar to Notch pathway, activated Wnt signaling 

has also been implicated in breast cancer tumorigenesis and recurrence (Ahmad, 2013; 

Anastas and Moon, 2013). Canonical β catenin-mediated WNT signaling supports self-

renewal of both normal and malignant mammary stem cells (Anastas and Moon, 2013). 

Activated canonical Wnt signaling has been observed in both the primary tumor and lung 

metastasis of TNBC/basal-like subtype, and is associated with poor clinical outcomes 

(DiMeo et al., 2009; Geyer et al., 2011; Lin et al., 2000).

Somatic mutations in the Wnt pathway are uncommon in breast cancer; however, 

dysregulation of proteins in the signaling cascade have been reported. In breast cancer 

patients, WNT1 protein expression was increased in the tumor tissue compared with non-
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cancerous adjacent tissue (Wong et al., 2002). In this study, Wnt-1 was shown to be 

markedly elevated in low-grade tumors, but expression levels were reduced as the tumors 

progressed, suggesting a functional role of Wnt1 at early stages of tumorigenesis. Inhibition 

of Wnt1 expression reduces the enrichment of cancer stem cells in a mouse model of breast 

cancer (Choi et al., 2012). Receptor-tyrosine-kinase-like orphan receptor 1 (ROR1), a 

receptor in the non-canonical Wnt pathway, is found to be highly expressed in primary 

tumors of TNBC patients (Zhang et al., 2012). ROR1 expression increases in TNBC samples 

relative to their corresponding normal controls, and correlates with decreased patient 

survival (Borcherding et al., 2014a). ROR1-positive TNBC has been associated with EMT 

and stem cell-like phenotypes, suggesting that ROR1 might be a potential target for TNBC 

therapy (Borcherding et al., 2014a, 2014b). Together these studies suggest a potential for 

Wnt-targeted treatment in breast cancers, but the design of clinical trials should be carefully 

considered for specific subtypes and/or tumor grades.

3.5. Androgen receptor (AR)

The androgen receptor (AR) is a nuclear receptor activated by the binding of androgenic 

hormones in the cytoplasm and then translocating into the nucleus (Gelmann, 2002). 

Activated AR regulates gene transcription by binding to specific promoter sequences of 

target genes (Roy et al., 1998). Androgen contributes to the growth of certain types of 

cancers, most notably prostate cancer (Garay and Park, 2012). Enzalutamide, an androgen 

receptor antagonist and potent inhibitor of AR signaling, has been approved for the 

treatment of metastatic castration-resistant prostate cancer. Although androgens are often 

considered to be male sex hormones, they also play important physiologic roles in females 

(Burger, 2002).

The prognostic power and clinical relevance of AR expression in breast cancer remains a 

topic of investigation, and is likely to be subtype-dependent. Some breast cancers express 

AR, and higher expression is more commonly seen in women with ER+ (67–95%) breast 

cancer than in women with the HER2+ (63%) or TNBC (10–43%) subtypes (Agoff et al., 

2003; Farmer et al., 2005; Gilmore et al., 2015; Gucalp et al., 2013; Hu et al., 2011; Loibl et 

al., 2011; Luo et al., 2010; Niemeier et al., 2010; Park et al., 2011). A systematic review and 

meta-analysis of AR expression and outcomes in early breast cancer concluded that the 

expression of AR in women with breast cancer is associated with better overall survival (OS) 

and disease-free survival (DFS) irrespective of ER status (Vera-Badillo et al., 2014). Other 

studies indicated that AR expression is most significantly associated with a favorable 

prognosis in ER+ BC patients (Hu et al., 2011; Park et al., 2011). While many retrospective 

histology-based analysis suggest that the presence of AR in breast cancer correlates with 

better survival outcome (Agoff et al., 2003; Gonzalez et al., 2008; Hu et al., 2011; McGhan 

et al., 2014; Rakha et al., 2007; Sutton et al., 2012), other preclinical and clinical studies 

implicate that AR antagonists may improve the survival of AR+ TNBC patients (Barton et 

al., 2014, 2015; Gucalp et al., 2013; Lehmann et al., 2011). A subclass of TNBC was 

identified as the luminal androgen receptor (LAR) subtype, as characterized by expression 

of AR and AR gene targets; LAR cell lines were shown to be uniquely sensitive to AR 

antagonist bicalutamide (Lehmann et al., 2011).
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Investigational trials using AR antagonists, either as monotherapy or combined with other 

drugs, in patients with AR+ breast cancer are currently ongoing (Table 7). Most of these 

clinical trials focus on AR+ metastatic TNBC, and a few others target AR+/HR-/HER2+ or 

AR+/HR+/HER2- mBC subtypes. The discrepancy between the prognostic value of AR and 

the anti-AR treatment efficacy in clinical trials requires further translational investigations. 

Such studies will enable a better understanding of the biological functions of androgen and 

AR, and the mechanisms of action of anti-AR treatment in breast cancer patients.

4. Stroma-centric targeting

Our knowledge of the stroma’s contribution to cancer has rapidly grown in the past decade. 

Stromal cells in the tumor microenvironment (TME) play pivotal roles in facilitating 

multiple steps during cancer progression and metastasis (Whiteside, 2008). Therapeutics 

targeting tumor-stromal interactions and enhancing host immune response represents an 

attractive alternative to treat human breast cancer (Place et al., 2011) (Figure 2).

4.1. Contributions of stromal cells in creating a favorable tumor microenvironment

Myriad evidence has highlighted the importance of the crosstalk between tumor cells and 

their surrounding microenvironment (Langley and Fidler, 2011; Pietras and Ostman, 2010). 

Cancer progression and metastasis are enabled, sustained, and co-evolved through 

interactions with the stromal cells. While these stromal cells are far from being fully 

characterized, they include infiltrating immune cells, endothelial cells, cancer-associated 

fibroblasts (CAFs), and mesenchymal stem/stromal cells (MSCs). (Hanahan and Coussens, 

2012). Cytokines and extracellular matrix (ECM) proteins provided by both the stromal and 

tumor cells facilitate breast cancer progression through a complex network of tumor-stromal 

communication (Landskron et al., 2014; Lu et al., 2012). Heterogeneous cell types within 

the TME can also actively influence therapeutic responses and shape resistance (Junttila and 

de Sauvage, 2013).

4.1.1. Infiltrating immune cells—Myeloid lineage-derived macrophages can be 

recruited and educated by tumor cells and the TME to become tumor-associated 

macrophages (TAMs) or metastasis-associated macrophages (MAMs) (Kitamura et al., 

2015; Qian and Pollard, 2010). These TAMs and MAMs are immunosuppressive and 

contribute to tumor progression via numerous macrophage-derived signaling factors, such as 

cytokines, growth factors, matrix metalloproteinases (MMPs), and hypoxia response 

proteins (Baay et al., 2011; Hao et al., 2012; Luo et al., 2006; Noy and Pollard, 2014). The 

tumor microenvironment of metastasis (TMEM), characterized by direct interaction between 

perivascular TAMs, endothelial cells and tumor cells, has been found in human breast cancer 

specimens (Robinson et al., 2009). A high TMEM score is associated with increased risk of 

distant metastasis (Robinson et al., 2009; Rohan et al., 2014). Expression of Mena (INV), an 

invasive isoform of Mena, correlates with a high TMEM score and enhances transendothelial 

migration of breast cancer cells (Roussos et al., 2011). This process has been shown to be 

mediated through paracrine and autocrine activation of colony-stimulating factor-1 receptor 

(CSF-1R) (Pignatelli et al., 2014; Roussos et al., 2011).
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Preclinical and clinical observations suggest that macrophage-targeting therapies could be a 

feasible approach to treat breast cancer metastasis. CSF-1/CSF-1R is one of the most 

important signaling axes during the differentiation of myeloid progenitors to monocytes, 

macrophages, dendritic cells and bone-resorbing osteoclasts (Stanley and Chitu, 2014). 

Blocking macrophage recruitment using CSF-1R inhibitors, in combination with 

chemotherapy, decreases breast cancer progression and metastasis, and improves survival 

through CD8+ T-cell-dependent mechanisms in tumor-bearing mice (DeNardo et al., 2011). 

TH2/M2-type macrophage-derived IL-10 was shown to mediate this CD8+ T-cell-dependent 

responses (Ruffell et al., 2014). Antibodies against CSF-1R reduced TAM numbers and 

translated into clinical responses in patients with diffuse-type giant cell tumor (Dt-GCT), a 

type of cancer that overexpresses CSF-1 (Cassier et al., 2015; Ries et al., 2014). Small 

molecule inhibitors and mAbs against CSF-1R are currently evaluated in patients with 

advanced solid tumors (Table 8).

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immune cells 

from the myeloid lineage. MDSCs possess strong immunosuppressive activities, primarily 

through suppressing CD8+ T-cell cytotoxicity (Gabrilovich and Nagaraj, 2009; Talmadge 

and Gabrilovich, 2013). MDSCs contribute to the establishment of an immunosuppressive 

pre-metastatic niche via tumor-derived factors such as GM-CSF, IL-6 and lysyl oxidase 

(LOX) (Erler et al., 2006, 2009; Morales et al., 2010; Oh et al., 2013). Inhibition of LOX 

activity in tumor cells block myeloid cell recruitment to pre-metastatic niche and reduce 

breast cancer lung and bone metastasis (Cox et al., 2015; Erler et al., 2009), suggesting a 

possible strategy for therapeutic intervention.

Regulatory T (T-reg) cell is another class of immunosuppressive cell that primarily functions 

to inhibit induction and proliferation of effector T cells. A significant increase of T-reg cells 

was observed in the peripheral blood and TME of invasive breast and pancreas cancer 

patient (Liyanage et al., 2002). Tumor-infiltrating T-reg cells, recruited by tumor-derived 

CCL5, could stimulate mammary cancer metastasis through RANKL–RANK signaling (Tan 

et al., 2011). In a breast cancer xenograft model, attenuation of a glycan-binding protein 

galectin-1 (Gal1) reduced the frequency of T-reg cells within the tumor and reduced lymph 

node, spleen, and lung metastases, suggesting the possibility of targeting Gal1 in breast 

cancer metastasis (Dalotto-Moreno et al., 2013). Understanding the specific roles of T-reg 

cells in cancer is the key for development of therapeutics against this class of immune cells 

(Mougiakakos et al., 2010)

4.1.2. Angiogenic vasculature—Vascular endothelial cells and their supporting 

pericytes together form the angiogenic vasculature (Armulik et al., 2005). The induction of 

angiogenesis (also known as angiogenic switch) promotes cancer cell proliferation (Hanahan 

and Coussens, 2012). The angiogenic vasculature promotes tumor progression not only by 

supplying nutrients and oxygen, but also through an “angiocrine” mechanism by producing 

stem and progenitor cell-active factors, ECM components etc. to generate a tumor-favorable 

microenvironment (Butler et al., 2010).

VEGF is one of the most well-known angiogenic factors and has an established role in 

breast cancer (Goel and Mercurio, 2013). VEGFRs are tyrosine kinase receptors primarily 
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expressed on endothelial cells, and are responsible for binding with VEGF to initiate signal 

cascades that stimulate angiogenesis (Carmeliet, 2005) and lymphangiogenesis (Karnezis et 

al., 2012; Skobe et al., 2001). VEGFRs are up-regulated in multiple cancer types which have 

a high need for nutrients and oxygen, including breast cancer (Guo et al., 2010; Srabovic et 

al., 2013). Since early in this century, clinical trials involving mAbs or small molecule 

inhibitors that interrupt VEGF-VEGFR signaling have been conducted extensively in 

various cancer types. Despite the promising results from other cancer types (e.g. lung cancer, 

colorectal cancer, renal cell carcinoma (RCC), glioblastoma), most trials have failed to 

demonstrate a statistically significant survival advantage in mBC patients (Meadows and 

Hurwitz, 2012). This could be explained by several reasons, for example: drug resistance 

through activation of alternative angiogenic pathways, and lack of biomarkers to stratify 

patients that could benefit most from anti-VEGF therapy (Sledge, 2015). Nevertheless, 

several recent studies shed light on potentially new directions for anti-VEGF therapies. For 

example, it was demonstrated that blocking lipid synthesis could overcome tumor regrowth 

and metastasis after antiangiogenic therapy withdrawal (Sounni et al., 2014). Moreover, PD-

L1 was shown to crosstalk with VEGFR2 during angiogenesis, and a combination of anti-

VEGF and immunotherapeutic strategies may improve treatment efficacy in mBC (Jin et al., 

2011; Voron et al., 2014).

In addition to the VEGF-VEGFR axis, PDGF-PDGFR signaling has also been implicated in 

breast cancer tumor-stromal interaction. PDGFRs are expressed on breast cancer stromal 

cells and tumor-derived PDGFs stimulate the stromal cells to further promote tumorigenesis 

(Heldin, 2013; Paulsson et al., 2009). PDGFRs are also expressed in invasive breast 

carcinomas, which correlate with tumor aggressiveness, higher chance of metastasis and 

shortened survival (Carvalho et al., 2005; Jechlinger et al., 2006). Inhibition of PDGFR 

signaling has proven effective in patients with certain rare tumors (Malhotra and Schuetze, 

2012; Stacchiotti et al., 2012), yet it remains to be examined whether this treatment will be 

beneficial for mBC patients.

4.1.3. Cancer-associated fibroblasts (CAFs)—CAFs are a heterogeneous population 

of fibroblasts residing within the TME and can facilitate malignant transformation and 

growth of cancer cells (Madar et al., 2013). CAFs secrete pro-proliferation signals (e.g. 

TGF-α), pro-angiogenic signals (e.g. VEGF, FGF and PDGF) and pro-EMT signals (e.g. 

TGF-β) to facilitate tumor growth, angiogenesis and metastasis (Gao et al., 2013; Yu et al., 

2014). CAFs can also modulate immune polarization in the TME and inhibit the anti-tumor 

activities of cytotoxic T cells and natural killer (NK) cells (Baginska et al., 2013; Balsamo et 

al., 2009; Ohshio et al., 2015). CAFs in the primary breast TME were shown to select for 

bone specific metastatic traits in tumor cells via CAF-secreted CXCL12 and IGF1 (Zhang et 

al., 2013). A small population of breast cancer stem cells induces periostin (POSTN) 

expression in resident fibroblasts at the secondary target organ in order to initiate metastasis 

colonization (Malanchi et al., 2012). Although CAFs are primarily studied as pro-

tumorigenic stromal cells, recent studies suggested that tumor-resident fibroblasts could also 

have tumor-inhibitory effects, suggesting a degree of plasticity in this stromal cell type 

(Augsten, 2014).
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4.1.4. Mesenchymal stem/stromal cells (MSCs)—MSCs are multipotent stromal cells 

that can differentiate into a variety of cell types such as osteoblasts, chondrocytes, 

adipocytes, myocytes, and cardiomyocytes (Nombela-Arrieta et al., 2011). They are 

traditionally found in the bone marrow, but can also be isolated from cord and peripheral 

blood (Malgieri et al., 2010). Bone-marrow-derived MSCs have been shown to enhance 

breast cancer cell motility, invasion and metastasis, dependent on CCL5-CCR5 signaling 

between cancer cells and MSCs (Karnoub et al., 2007). Other studies also confirm that 

MSCs are able to supply contextual signals (e.g. CCL5, IL6, CXCL7, CXCL10, TGFβ1) to 

the tumor-associated stroma, creating an immunosuppressive microenvironment and 

promoting metastatic progression (Chaturvedi et al., 2013; Liu et al., 2011; Mi et al., 2011; 

Patel et al., 2010). These signaling events have been observed between MSCs and breast 

cancer cells as well as between MSCs and other stromal cell types. Recent studies also 

highlighted the roles of MSC-associated microRNAs in regulating breast cancer progression 

(Cuiffo et al., 2014; Ono et al., 2014). The therapeutic potential of targeting MSCs in mBC 

warrants further investigations as MSCs could be either tumor-promoting or tumor-

suppressing depending on different environmental inflammatory conditions (Kim and Cho, 

2013).

4.2. Immunotherapies

Historically, breast cancer has been considered poorly immunogenic, thus less responsive to 

immunotherapies. A few mechanisms may contribute to this. First, the percentages of both 

type1 (IL-2, IFNγ or TNFα) and type 2 (IL-4) cytokines produced by T lymphocytes were 

found significantly lower in the peripheral blood of patients with breast cancer compared to 

healthy controls, suggesting a general immune dysfunction in these patients (Campbell et al., 

2005). Second, myeloid suppressor cells, Th2 CD4+T cells and T-reg cells function together 

to create an immune-suppressive TME and suppress CD8+ cytotoxicity via cytokine 

signaling (e.g. IL-4, IL-13, IL-10, IL-6 and TGFβ) (DeNardo and Coussens, 2007). Third, 

many cancer cells, including breast cancer, downregulate MHC molecules and/or co-

stimulatory molecules and upregulate immunosuppressive factors such as PD-L1, resulting 

in immune escape (Dushyanthen et al., 2015; Pardoll, 2012).

Despite the less immunogenic nature, a small population of breast cancer do induce stronger 

cytotoxic T- and NK-cell responses, and tend to have a more favorable prognosis with a 

better response to chemotherapy (Denkert et al., 2010; Finak et al., 2008; Mahmoud et al., 

2011). Recent studies suggest that significant immune cell infiltration via tumor-infiltrating 

lymphocytes (TIL) in early breast cancer predicts higher responses to chemotherapy, 

reduced risk of distant metastasis, and better overall survival, particularly in the TN and 

HER2+ subtypes (Dieci et al., 2015; Salgado et al., 2015). These observations suggest that 

immunotherapies could have potential to elicit strong immune response in at least a subset of 

mBC.

4.2.1. Therapeutic vaccine—Therapeutic vaccines are designed to elicit an immune 

response against tumor-associated antigens (TAAs) and enhance the host immune system to 

attack TTA-bearing cancer cells. Vaccination usually takes a relatively a long time (i.e. 

weeks to months) to produce enough antigen-specific cytotoxic T cell for an effective 
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immune response (David et al., 2009; Gonzalez et al., 2003; Melero et al., 2014), thus may 

not be the most appropriate treatment for patients in an advanced-disease setting. Most 

breast cancer vaccine clinical trials are studied in an adjuvant setting in early stage patients 

with minimal residual tumor cells. Vaccination in combination with other targeted therapies 

or immunotherapies in patients with high risk of recurrence provide an opportunity to boost 

and maintain the host immune response in order to eradicate the fewer number of isolated 

tumor cells before they have a chance to establish larger metastases (Cimino-Mathews et al., 

2015; Page et al., 2014) (Table 8).

4.2.2. Immune checkpoint blockade—After decades of incremental progresses, 

researchers have started to appreciate the therapeutic power of modulating activities of 

immune checkpoints, such as cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) and 

programmed cell death protein 1 (PD-1) (Pardoll, 2012; Sharma and Allison, 2015). Both 

CTLA-4 and PD1 belong to the CD28 family receptors and they transmit inhibitory signals 

to prevent T-cell activation (Parry et al., 2005). Blocking the functions of these checkpoint 

proteins liberates tumor-specific T cells to exert their effector function against tumor cells 

and subsequently induces a strong immune response (Pardoll, 2012). Immune checkpoint 

blockade have demonstrated promising activities in a variety of malignancies, including 

melanoma, RCC, head and neck, lung, bladder and prostate cancers (Pardoll, 2012; Postow 

et al., 2015; Topalian et al., 2015). To date, the FDA has approved three such drugs for the 

treatment of metastatic melanoma and squamous non-small cell lung cancer: ipilimumab 

(Yervoy), pembrolizumab (Keytruda), and nivolumab (Opdivo). The first targets the CTLA-4 

pathway and the latter two target PD-1.

PD-1 ligand (PD-L1) expression was observed in 30% of breast cancer patients, and 

positively associated with HR-negative and triple-negative (TN) status and high levels of 

TILs (Wimberly et al., 2015). Clinical studies indicate that immune checkpoint blockade, in 

combination with cytotoxic drugs, have the potential to improve clinical outcomes for 

patients with mBC, especially metastatic TN and HER2+ breast cancer with lymphocytic 

tumor infiltrates at diagnosis (Singh et al., 2014; Stagg and Allard, 2013). mAb targeting 

PD-1 (Pembrolizumab/MK-3475) or PD-L1 (MPDL3280A) demonstrated promising 

therapeutic activities in heavily pretreated metastatic TNBC (Emens et al., 2015; Nanda et 

al., 2015). Multiple clinical trials, including a phase III trial of MPDL3280A, have been 

recently initiated in patients with mBC (Table 8).

Several other immunomodulatory agents which have the potential to enhance anti-tumor 

immune response were also reported. For example, indoleamine-pyrrole 2, 3-dioxygenase 

(IDO) is an immune checkpoint molecule expressed on various stromal cells such as 

macrophages (Prendergast et al., 2014). IDO is also expressed by a number of tumor types 

that possess an immune-escape strategy, and is correlated with poor prognosis (Iversen et al., 

2015; Katz et al., 2008; Prendergast, 2008). Another example is OX40, a potent TNF 

receptor family co-stimulatory receptor that can potentiate T cell receptor signaling. Ligation 

of OX40 with an agonistic anti-OX40 mAb has been shown to enhance anti-tumor immunity 

(Chen et al., 2014; Curti et al., 2013; Redmond et al., 2014). Phase II trials of IDO inhibitor 

and anti-OX40 mAb are currently being tested in mBC patients (Table 8). Additional 

therapeutic targets involved in anti-cancer immune response include T-cell immunoglobulin 
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and mucin domain-containing protein 3 (TIM-3) (Ngiow et al., 2011; Sakuishi et al., 2010), 

lymphocyte-activation gene 3 (LAG-3) (Nguyen and Ohashi, 2014; Woo et al., 2012), and 

the costimulatory receptor of the TNF receptor family CD137 (Kohrt et al., 2012; Narazaki 

et al., 2010; Palazón et al., 2011).

A small subset of HER2+ and TNBC patients that have relatively high levels of TILs might 

benefit most from current immune checkpoint inhibitors. Those patients that have no or 

relatively low TILs would require additional strategies to increase TILs prior to immune 

checkpoint blockade (Bellone and Calcinotto, 2013). Cancer vaccine can activate and 

expand tumor-specific CD8+ T cells but itself usually yields limited success in controlling 

cancer progression (McGray et al., 2014). Vaccine priming before or concurrent with one or 

several immune checkpoint blockade may potentiate the effector T-cell functions and finally 

translate into long-term disease control of mBC.

5. Conclusions and future directions

Advances in cancer genomics have identified a large number of potential therapeutic targets, 

many of which have been studied extensively in preclinical and clinical models. Better 

classification of breast cancer subtypes and in depth characterization of druggable signaling 

pathways using new biotechnologies like next-generation sequencing (NGS) will enable 

selection of the most appropriate drugs to target specific genomic alterations. Mutations of 

BRCA, PIK3CA, AKT1, etc., as well as deregulated signaling such as the FGF and AR 

pathways, provide promising targets to individualize therapy in metastatic breast cancer. 

Tumor-intrinsic targeted therapies are likely to yield higher specificity and less toxicity, but 

may develop drug resistance as the treatment continues. This could be due to secondary 

mutations that abrogate contact points for drug binding, and/or activation of alternative 

compensatory signaling mechanisms (Garraway and Jänne, 2012; Holohan et al., 2013). On 

the other hand, the stroma-centric targeting approach could elicit a broader impact against 

cancerous cells. This strategy has been proved successful in other tumor types such as 

melanoma, and has also demonstrated promising preliminary results in a subset of mBC 

patients. Targeting the tumor-promoting elements of the TME and harnessing host immune 

mechanisms to eradicate cancer cells represent an emerging treatment paradigm. However, 

while the signaling molecules between the tumor and immune-suppressive stromal cells are 

potential drug targets, the similarities between tumor-associated stroma and normal stromal 

cells may potentially cause severe adverse effects (Postow et al., 2015).

Our knowledge of breast cancer metastasis has advanced significantly in recent years, with 

particular emphasis on an integrated understanding of the tumor and its associated 

microenvironment. Most of current clinical studies are still at early stages of evaluating 

single or double agent toxicity and efficacy. As a step forward, it is important to start 

combining drugs using biologically informed translational studies to guide trial design and 

improve patient outcomes. Although most current approaches of precision medicine aim at 

targeting driver events, additional applications such as identification of DNA repair 

deficiencies and mechanisms of immune suppression could be developed in the future. The 

ultimate goal is to attack the tumor cells as well as the TME, and at the same time preserve 

the normal function of organs not involved. Rational combinations of surgery/radiotherapy/

Li and Kang Page 14

Pharmacol Ther. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytotoxic chemotherapy, with tumor-intrinsic and/or stroma-centric targeted therapies, are 

likely to improve the treatment efficacy without causing severe toxic effects.
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Figure 1. Therapeutic candidates targeting tumor-intrinsic pathways of mBC
This schematic diagram highlights several tumor-intrinsic pathways and the therapeutic 

agents currently available or being developed to target them.
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Figure 2. Therapeutic candidates targeting tumor-stromal interactions and enhancing host 
immune response of mBC
This schematic diagram illustrates severeal key stromal cell populations important for 

regulating the growth of mBC, as well as therapeutic agents available or being developed to 

target the molecular pathways that mediate tumor-stromal interactions.
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