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Abstract

Purpose—Network diffusion depends on both the pattern and timing of relations, but the relative 

effects of timing and structure remain unclear. Here we first show that concurrency (relations that 

overlap in time) increases epidemic potential by opening new routes in the network. Since this is 

substantively similar to adding contact paths, we next compare the effects of concurrency by 

observed levels of path redundancy (structural cohesion) to determine how the features interact.

Methods—We establish that concurrency increases exposure analytically and then use simulation 

methods to manipulate concurrency over observed networks that vary naturally on structural 

cohesion. This design allows us to compare networks across a wide range of concurrency holding 

constant features that might otherwise conflate concurrency and cohesion. We summarize the 

simulation results with general linear models.

Results—Our results indicate interdependent effects of concurrency and structural cohesion: 

although both increase epidemic potential, concurrency matters most when the graph structure is 

sparse, since the exposure created by concurrency is redundant to observed paths within 

structurally cohesive networks.

Conclusions—Concurrency works by opening new paths in temporally ordered networks. 

Because this is substantively similar to having additional observed paths, concurrency in sparse 

networks has the same effect as adding relations and will have the greatest effect on exposure 

potential in sparse networks.

Introduction

Social networks shape the extent and speed of disease diffusion, particularly for sexually 

transmitted infections like HIV (1, 2). For infection to spread there must be an unbroken 

contact chain exposing those who are uninfected to those who are infected. Since such 

networks change over time, understanding epidemic potential requires understanding the 

structural effects of relationship timing (3) particularly concurrent relations (4). Here, we 

examine how concurrency affects epidemic potential and how it is moderated by network 

connectivity.
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Concurrency refers to relationships that overlap in time and has been linked to epidemic 

potential (4, 5, for detailed reviews, see 6, 7, 8), though debate continues as to the relative 

role of concurrency vis a vis other factors (9). Given data collection complexities with 

modeling disease diffusion in real settings, much of the work on concurrency uses 

simulations and recent data-grounded simulations extend such work to explain prevalence 

disparities across populations (8, 10).

We first show how concurrency affects epidemic potential by altering the constraints 

inherent in temporally ordered networks. We then examine how this effect is moderated by 

network structure. To do so, we distinguish observed contact networks from those that can 

carry infection given timing constraints, which we call the exposure network. Since the set 

of relations that carry an infection is a stochastic subset of the exposure network, the number 

of people ultimately infected will correlate with the density of the exposure network. 

Concurrency increases the density of the exposure network by creating symmetry that would 

not exist in networks without concurrent relations. Since concurrency creates multiple 

pathways in the exposure network, we explore whether the contact network structure 

moderates the effects of concurrency. We find that concurrency has the strongest effects 

when the contact network is sparse, while returns to concurrency are lower when 

connectivity is high, mainly because the proportion of people directly exposed is much 

higher. In low-cohesion networks, concurrency is equivalent to adding new independent 

paths in the contact network.

Formalizing the Problem

Diffusion potential in a network depends on relational timing, since pathogens cannot spread 

over relations that have ended: one can only pass infection to current or future partners, not 

past partners. To formalize this fundamental constraint, it helps to consider three related 

networks:

1. The contact network: Pairs of people linked by direct contact. Contact relations are 

timed by date of first and last contact.

2. The exposure network: A subset of the relations in the contact network where 

timing makes it possible for one person to infect another.

3. The transmission network: The subset of the exposure network where infection 

passes. This is a stochastic tree layered on (2) determined by the particular source 

individuals(s) and pairwise transmission probability.

The timing of relations in the contact network determines the exposure network which in 

turn limits the number of people infected in the transmission network. Figure 1 illustrates 

how timing affects exposure on three identical contact networks.

In figure 1, the first column presents the contact network, with numbers over the relations 

indicating timing. For example, person A in panel A has a relation with person B at time 2. 

A time-ordered path is a sequence of adjacent relations where, for each pair of relations in 

the sequence, the start time S() of the first relation is less than or equal to the end time E() of 

the second: S(R1) ≤ E(R2), and the set of all time-ordered paths defines the exposure 
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network. The second column of figure 1 provides a graphical representation of the exposure 

network, representing all pairs reachable by time-ordered paths, recorded as an adjacency 

matrix in column 3. Diffusion can only occur given exposure; for example, we see that in 

panel A person B can infect person D, but because the BC relation ends before the AB 

relation starts, person D cannot infect B.

Adjacent relations are concurrent if they overlap in time, which occurs if S(R1) ≤ E(R2) and 

S(R2) ≤ E(R1). In figure 1 panels A and B, there are no concurrent relations, creating 

asymmetry in who can infect who. For example, in panel B, person B could infect person D 

but D cannot infect B, because the BC relation ended before the CD relation started. In panel 

C, the BC and CD relations are concurrent, which would allow D to infect B. In general, 

concurrency in the contact network creates symmetric exposure. The same contact structure 

with different timing can generate widely different sets of people at risk of infecting each 

other. A simple measure for the effect of timing on risk is the proportion of pairs in the 

population who could infect each other (column 3 in figure 1), which we call reachability. 

Here reachability in the concurrent case (83%, panel C) is about 1.25 times higher than that 

in the first case (66%, panel A).

These examples illustrate several ways that concurrency necessarily shapes epidemic 

potential. First, concurrent relations create symmetry in the exposure network by removing 

the protective temporal ordering created by serial monogamy. In serially monogamous 

settings, indirect exposure always flows down one path or another around a coupled pair, 

because in non-concurrent relations one relation must precede the other, and infection can 

only flow from preceding relations to later relations. Concurrency erases this constraint, 

opening exposure to a potentially much wider downstream population. Second, concurrency 

affects exposure to partners-of-partners by opening new exposure paths but does not 

necessarily affect people directly engaged in concurrent relations, since number of partners 

remains constant. This helps explain why associations between individual concurrency and 

infection risk is sometimes quite low (11). Third, as these are path-level features, there can 

be large non-linear effects: small changes in the path structure can potentially expose large 

portions of the network to new risk. As such, concurrency can increase the density of the 

exposure network even in cases where most people have non-concurrent relations. Since 

transmission is a stochastic function operating over the exposure network, any increase in 

the density of the exposure network will generate larger transmission trees,b all else 

constant.

Since concurrency shapes exposure by creating new paths for infection to flow over, we 

want to examine the interdependent effects of network structure and concurrency, asking 

whether concurrency is more or less important under different network structures. The 

contact structure most associated with multiple paths is structural cohesion (12), so our 

primary research question is how concurrency effects on epidemic potential vary by levels of 

structural cohesion.

bThis is true for a fixed dyadic transmission level. It could be countered by other moderating factors, such as a negative correlation 
between the pairwise transmission dynamics and population concurrency or higher condom use in high concurrency settings than in 
low concurrency settings, but there is little empirical reason to expect such a pattern.
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Methods

Measurement

We measure the epidemic potential of a network as the proportion of (directed) pairs 

reachable in the time-ordered exposure network, called reachability (column 3 in figure 1). 

This is the proportion of pairs that could infect each other.

We measure concurrency as the proportion of adjacent relations that overlap in time.c Since 

all of our sample networks are connected, a network with 100% concurrency would also 

exhibit 100% reachability.

Structural cohesion captures the extent to which networks are connected by multiple 

independent pathways, which would provide multiple ways for disease to flow (12). 

Connectivity varies across pairs, so we measure total graph connectivity as the average of 

the highest k-connectivity for each pair, labeled “Avg k” in figures (see appendix 1 for 

details).

We also control for a number of more common network structural features. These include 

the network density (proportion of pairs directly connected), network centralization 
(inequality in closeness centrality, normalized, to capture long-tail effects common in the 

literature on sexual disease flow), and network diameter (number of steps connecting the 

most distant pair). We also calculate an indicator variable for networks with large fully 

connected cliques (“big clique”) which affects 4 sampled networks with more than 16 

people directly connected in a single clique.

Network data

To test for interdependent effects of relational timing and network structure, we want wide 

variance in network contact structure. Since no such data exists for a wide sample of sexual 

networks, we select 4-step walks from random seeds within a large (N=68,285) 

collaboration network (13), drawing 100 network walks to create a population of networks 

to run concurrency simulations over. This procedure results in relatively small networks, 

which is important since measuring temporal reachability is computationally costly. The 

networks average 161 nodes (range 76–294); appendix 2 presents four example networks 

from this sample.

The advantage of these networks is that they have large heterogeneity in structural contact 

patterns, allowing us to examine the interplay of timing and structure in ways that are 

difficult in purely random networks. The networks have volume and degree patterns similar 

to those studied in disease transmission contexts, particularly with respect to generally low 

numbers of partners and very with large skew.d The disadvantage is that these are not sexual 

networks, so while having low volume and high centralization, they may also have features 

cWe also tested a valued version of this measure using the number of time periods adjacent edges overlap divided by the total length of 
the two relations durations. The results are substantively the same and we use the percent measure for simplicity.
dAn alternative design would be to simulate networks de novo, but algorithmically simulated networks always have more 
homogeneous topologies than that observed in real-life social networks. We have explored simple random (Erdos) graphs, as well as 
random networks generated by characteristic degree distributions; all of the results are qualitatively similar here, though the range of 
observed cohesion variability is much smaller (due to the homogeneity of the network generating functions). Since no algorithm exists 
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uncharacteristic of sexual networks. For example, some of these networks have dense 

cliques (as in the upper right of panel A, appendix 2). We also cannot independently 

manipulate structural cohesion via simulation in the same way we can timing, meaning there 

is natural correlation amongst the structural measures (but not with timing, by design), so we 

must use statistical models to identify marginal effects.

Simulation Design

Figure 2 provides a summary of our simulation design. To manipulate concurrency, we first 

assign each relation a duration from a skewed distribution, reflecting populations where 

most relations are short but a few are long lasting.e We vary the start time for each relation 

based on a random uniform distribution with known variance. When the variance is small, 

many relations overlap in time and concurrency is high. If start time variance is high, the 

likelihood of temporal overlap is small and concurrency is low. Since we randomize 

relational timing, we ensure no correlation with structure.

This procedure generates 46250 observations; table 1 provides summary statistics for the 

achieved sample.

Models

We model reachability using a maximum likelihood GLM with a logit link function since the 

dependent variable ranges from 0–1. We test for nonlinear effects in concurrency as well as 

the interaction between concurrency and cohesion.

Results

Exemplar Cases

To build intuition, figure 3 presents the simulation results applied to four exemplar networks 

(details in Appendix 2); two networks with high cohesion and two with low cohesion. The 

figure shows a wide variability in reachability by concurrency, only converging (necessarily) 

when concurrency is 100%. Reachability increases with concurrency in both the low 

cohesion and high cohesion networks, but at a much steeper slope for the low-cohesion 

networks.

Bivariate results

Figure 4 extends this scatterplot for the entire simulation experiment, with cases stratified by 

level of structural cohesion and colored by the network (colors repeated across panels).

We see a strong positive association within each scatter that becomes less steep as structural 

cohesion increases. When cohesion is low (upper-left), the returns to concurrency are strong 

and nearly linear. As cohesion increases, the overall level of reachability also increases. As a 

for directly manipulating structural cohesion independent of other generating features, a key advantage of these real network walks is 
that variability in structural cohesion across networks of similar volume provides leverage for testing the moderation effects 
statistically.
eThe duration unit is arbitrary, since exposure is a function of the ordering not the magnitude of relations, so these could be days, 
weeks or months. This would have an effect on transmission dynamics, in which case one would want to build durations based closely 
on real data. Since we are not layering a transmission model over the network such considerations are not relevant here.
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result, concurrency effects are redundant to the multiple pathways already present in 

cohesive settings and there is comparatively less room for concurrency to make a difference, 

flattening out the relation.

Model Results

Since figure 4 is a bivariate result on naturally occurring networks, it is important to test 

whether this relation holds controlling for correlated network structural features. Table 2 

provides a set of models with various specifications relating cohesion to exposure.

Model 1 is a simple baseline model with linear effects and controls for network structure 

covariates. Models 2 – 4 add an interaction term between cohesion and concurrency and a 

curved (quadratic) term to concurrency. The first four models include structural controls, the 

coefficients for which vary little across specifications suggesting only minor dependence on 

the cohesion and concurrency specifications. These structural covariates move as we would 

expect, with higher epidemic potential in dense or centralized networks and lower epidemic 

potential in networks with large diameters. Models 5 and 6 are robustness checks, removing 

the controls for network structural covariates and clique outlier status respectively. Structural 

covariates make little difference. The indicators for having large cliques have a significant 

effect on the magnitude of the coefficients, but not the overall pattern of associations.f

Since nonlinear models with curved interaction terms are difficult to interpret, figure 5 

provides the model predictions . Holding constant other features of the settings, the fitted 

model mirrors the bivariate results: the slope for concurrency is steepest in networks that are 

the least cohesive and the slope flattens in more cohesive settings. We include model 

predictions for both model 1 and model 4 (best fitting according to AIC).

Summary and Conclusions

We contribute to debates about the effects of concurrency on epidemic potential by asking 

how concurrency affects exposure – the set of temporally ordered pairs capable of infecting 

each other. We have two primary results. First, we identify a necessary graph theoretic 

relationship between concurrency and temporal reachability: concurrency creates symmetry 

in exposure, opening paths that would be unavailable in networks with the same contact 

pattern but no concurrency. Since transmission can only occur over current and future 

relations, serial monogamy creates purely asymmetric flow across pairs of relations. 

Concurrent relations change this flow pattern and open additional paths in the exposure 

network. Because transmission is a stochastic function on the exposure network, creating 

new paths in the exposure network increases epidemic potential.

Second, we use simulations to evaluate how network path structure and concurrency interact. 

Controlling for other network characteristics, we find that structural cohesion—the number 

of node-independent paths connecting pairs in the network—boosts transmission directly, 

moderating the marginal returns to concurrency. While concurrency increases exposure 

fThe main effect of having a large clique is an increase the variance of the results – because if one member of the clique is reachable 
all others will be too (because of the direct ties), this tends to create wide within-network variability.
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under all structural conditions, the effect is strongest in low cohesion networks because 

cohesive networks have more contact paths generating higher reachability in the absence of 

concurrency. This means that concurrency makes the most difference on exposure in weakly 

connected networks.

Low-cohesion networks are likely a common feature of many heterosexual networks of 

interest for disease spread. The limitation to cross-sex ties forbids closed triads in the contact 

network, which dampens structural cohesion. For instance, the “Jefferson High” adolescent 

network is characterized by spanning-tree like structures with low-cohesion (14). The 

Colorado Springs “high risk” sexual contact network (as measured) is more mixed: 67% of 

the identified population are members of the largest component (weakly connected), with 

41% of those in the largest 2-connected component (15). Since structural cohesion is bound 

by degree (number of relations for a given individual), any setting with low average degree 

is likely also low-cohesion. For example, recent work on partnering patterns in Shanghi 

suggest a very low-cohesion network (16). In these low-cohesion settings, knowing the 

extent of temporal overlap is critical for understanding exposure risk, since concurrency is 

equivalent to adding extra paths or increasing the average degree of the network.

Debates about the empirical effects of concurrency in populations suffering from HIV 

epidemics should consider the interplay between concurrency and network topology. The 

necessary relation between timing and exposure suggests that low empirical associations 

between concurrency and epidemic size must be due to other confounding features or 

incomplete data. Advancing our understanding of these epidemics requires that we start with 

the analytic features that must be true, and then assess how data and structural features might 

confound observations.

Limitation & Future Work

This paper is primarily an analytic exercise assessing how relational timing affects diffusion 

potential. The effects of concurrency on symmetry are necessary analytically, but the 

simulation results are limited by the scope of the simulation. The networks under 

consideration are small, and while small networks themselves are sometimes of interest (17), 

we are also fundamentally interested in larger networks. Since large epidemics must arise 

out of accumulations of small epidemic fronts, we think these results are telling for the case 

at hand. Moreover, we have examined networks an order of magnitude larger (1000s of 

nodes) and find similar results, though computational complexity limits us to much smaller 

sampling sizes. Still, it will be important to know how topology intersects with size to 

potentially moderate the effects of cohesion.

While our simulations run over real network structures that provide wide topological 

variability, these collaboration networks likely contain structural features that differ from the 

sexual networks of interest. Future work should move in two directions. First, it is important 

to draw on our (unfortunately limited) population of known sexual network structures to 

identify key features that characterize settings where diseases are endemic. Second, an ideal 

computational experiment would directly randomize both the timing (as we do) and the 

relevant structure of the network. Unfortunately there are no ready algorithms for 
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manipulating structural cohesion independently of other network features, which is why we 

rely on running our simulations over extant networks and summarizing marginal effects with 

statistical models. Future algorithmic work on generating networks with non-local network 

features, such as structural cohesion, is needed to make this possible.

Given the range of contact topologies that might moderate timing, future work could extend 

this project in multiple ways. The path-generating effects of concurrency lead us to focus on 

the structure of redundant contact paths, but there are likely other moderators as well, and 

we expect that such features likely account for the variability identified within concurrency 

settings. Critically, identifying how exposure and timing interact with node level features 

(such as average degree or degree skew) would ease empirical verification, since such 

features are easier to measure in the populations of interest.
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Appendix 1

Measuring Structural Cohesion

Structural cohesion captures path redundancy in a network. Formally, a k-connected 

component is defined as a maximal subset of the network where each pair is linked by at 

least k paths sharing only start and end nodes (called node independent paths, Moody & 

White 2003). Equivalently, k is the number of individuals who, if removed from the 

network, would disconnect it.
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Figure A1. Measuring Network Structural Cohesion

Since structural cohesion defines a pattern of connectivity across the entire network, with 

some pairs more strongly connected than others, we measure total graph connectivity as the 

average of the highest connectivity for each pair. Figure A1 illustrates this measure. Persons 

1 and 9 are 1-connected (removing persons 2 or 8 respectively would disconnect them from 

the rest of the network), the bulk of the network is 2-connected (persons 2 through 8), while 

2,3,4 and 5 are 3-connected. The average k-connectivity of this network is 1.75.

Appendix 2

Sociograms and summary statistics for exemplar networks in figure 4.
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Figure a2. Sociograms and summary statistics for networks in figure 3
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Figure 1. 
Illustrating the effect of timing on exposure
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Figure 2. 
Simulation Design
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Figure 3. 
Reachability by concurrency in four exemplar networks
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Figure 4. 
Reachability by Concurrency, stratified by Structural Cohesion
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Figure 5. 
Exposure Reachabilty by Concurrency
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Table 1

Descriptive Statistics

VARIABLE MEAN STD.
DEV

MIN MAX

Concurrency: Proportion of connected relations that overlap in time 0.51 0.26 0.09 1.0

Structural cohesion: pairwise average number of node-independent paths 1.20 0.16 1.03 2.05

Density: proportion of pairs connected 0.03 0.02 0.01 0.09

Diameter: minimum number of steps connecting most distant pair 6.50 1.06 4.00 8.00

Network Size: number of people in the networks 160.26 65.11 76 294

Closeness Centralization: inequality in distribution of distance 0.33 0.07 0.20 0.50

Reachability: proportion of pairs who can reach each other in time 0.66 0.25 0.11 1.00
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