
Incremental Knowledge Base Construction Using DeepDive

Jaeho Shin†, Sen Wu†, Feiran Wang†, Christopher De Sa†, Ce Zhang†,‡, and Christopher
Ré†

Jaeho Shin: jaeho@cs.stanford.edu; Sen Wu: senwu@cs.stanford.edu; Feiran Wang: feiran@cs.stanford.edu; Christopher
De Sa: cdesa@cs.stanford.edu; Ce Zhang: czhang@cs.stanford.edu; Christopher Ré: chrismre@cs.stanford.edu
†Stanford University

‡University of Wisconsin-Madison

Abstract

Populating a database with unstructured information is a long-standing problem in industry and

research that encompasses problems of extraction, cleaning, and integration. Recent names used

for this problem include dealing with dark data and knowledge base construction (KBC). In this

work, we describe DeepDive, a system that combines database and machine learning ideas to help

develop KBC systems, and we present techniques to make the KBC process more efficient. We

observe that the KBC process is iterative, and we develop techniques to incrementally produce

inference results for KBC systems. We propose two methods for incremental inference, based

respectively on sampling and variational techniques. We also study the tradeoff space of these

methods and develop a simple rule-based optimizer. DeepDive includes all of these contributions,

and we evaluate Deep-Dive on five KBC systems, showing that it can speed up KBC inference

tasks by up to two orders of magnitude with negligible impact on quality.

1. INTRODUCTION

The process of populating a structured relational database from unstructured sources has

received renewed interest in the database community through high-profile start-up

companies (e.g., Tamr and Trifacta), established companies like IBM’s Watson [7, 16], and a

variety of research efforts [11, 25, 28, 36, 40]. At the same time, communities such as

natural language processing and machine learning are attacking similar problems under the

name knowledge base construction (KBC) [5, 14, 23]. While different communities place

differing emphasis on the extraction, cleaning, and integration phases, all communities seem

to be converging toward a common set of techniques that include a mix of data processing,

machine learning, and engineers-in-the-loop.

The ultimate goal of KBC is to obtain high-quality structured data from unstructured

information. These databases are richly structured with tens of different entity types in

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.Obtain permission prior to any use beyond those covered by the
license.

Contact copyright holder by emailing info@vldb.org.

Articles from this volume were invited to present their results at the 41st International Conference on Very Large Data Bases, August
31st - September 4th 2015, Kohala Coast, Hawaii.

HHS Public Access
Author manuscript
Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

Published in final edited form as:
Proceedings VLDB Endowment. 2015 July ; 8(11): 1310–1321. doi:10.14778/2809974.2809991.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/3.0/

complex relationships. Typically, quality is assessed using two complementary measures:

precision (how often a claimed tuple is correct) and recall (of the possible tuples to extract,

how many are actually extracted). These systems can ingest massive numbers of documents–

far outstripping the document counts of even well-funded human curation efforts.

Industrially, KBC systems are constructed by skilled engineers in a months-long (or longer)

process–not a one-shot algorithmic task. Arguably, the most important question in such

systems is how to best use skilled engineers’ time to rapidly improve data quality. In its full

generality, this question spans a number of areas in computer science, including

programming languages, systems, and HCI. We focus on a narrower question, with the

axiom that the more rapid the programmer moves through the KBC construction loop, the
more quickly she obtains high-quality data.

This paper presents DeepDive, our open-source engine for knowledge base construction.1

DeepDive’s language and execution model are similar to other KBC systems: DeepDive

uses a high-level declarative language [11, 28, 30]. From a database perspective, DeepDive’s

language is based on SQL. From a machine learning perspective, DeepDive’s language is

based on Markov Logic [13, 30]: DeepDive’s language inherits Markov Logic Networks’

(MLN’s) formal semantics.2 Moreover, it uses a standard execution model for such systems

[11, 28, 30] in which programs go through two main phases: grounding, in which one

evaluates a sequence of SQL queries to produce a data structure called a factor graph that

describes a set of random variables and how they are correlated. Essentially, every tuple in

the database or result of a query is a random variable (node) in this factor graph. The

inference phase takes the factor graph from grounding and performs statistical inference

using standard techniques, e.g., Gibbs sampling [42, 44]. The output of inference is the

marginal probability of every tuple in the database. As with Google’s Knowledge Vault [14]

and others [31], DeepDive also produces marginal probabilities that are calibrated: if one

examined all facts with probability 0.9, we would expect that approximately 90% of these

facts would be correct. To calibrate these probabilities, DeepDive estimates (i.e., learns)

parameters of the statistical model from data. Inference is a subroutine of the learning

procedure and is the critical loop. Inference and learning are computationally intense (hours

on 1TB RAM/48-core machines).

In our experience with DeepDive, we found that KBC is an iterative process. In the past few

years, DeepDive has been used to build dozens of high-quality KBC systems by a handful of

technology companies, a number law enforcement agencies via DARPA’s MEMEX, and

scientists in fields such as paleobiology, drug repurposing, and genomics. Recently, we

compared a DeepDive system’s extractions to the quality of extractions provided by human

volunteers over the last ten years for a paleobiology database, and we found that the

DeepDive system had higher quality (both precision and recall) on many entities and

relationships. Moreover, on all of the extracted entities and relationships, DeepDive had no

worse quality [32]. Additionally, the winning entry of the 2014 TAC-KBC competition was

built on DeepDive [3]. In all cases, we have seen the process of developing KBC systems is

1http://deepdive.stanford.edu
2DeepDive has some technical differences from Markov Logic that we have found useful in building applications. We discuss these
differences in Section 2.3.

Shin et al. Page 2

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://deepdive.stanford.edu

iterative: quality requirements change, new data sources arrive, and new concepts are needed

in the application. This led us to develop techniques to make the entire pipeline incremental

in the face of changes both to the data and to the DeepDive program. Our primary technical

contributions are to make the grounding and inference phases more incremental.3

Incremental Grounding

Grounding and feature extraction are performed by a series of SQL queries. To make this

phase incremental, we adapt the algorithm of Gupta, Mumick, and Subrahmanian [18]. In

particular, DeepDive allows one to specify “delta rules” that describe how the output will

change as a result of changes to the input. Although straightforward, this optimization has

not been applied systematically in such systems and can yield up to 360× speedup in KBC

systems.

Incremental Inference

Due to our choice of incremental grounding, the input to DeepDive’s inference phase is a

factor graph along with a set of changed data and rules. The goal is to compute the output

probabilities computed by the system. Our approach is to frame the incremental maintenance

problem as one of approximate inference. Previous work in the database community has

looked at how machine learning data products change in response to both to new labels [24]

and to new data [9,10]. In KBC, both the program and data change on each iteration. Our

proposed approach can cope with both types of change simultaneously.

The technical question is which approximate inference algorithms to use in KBC

applications. We choose to study two popular classes of approximate inference techniques:

sampling-based materialization (inspired by sampling-based probabilistic databases such as

MCDB [21]) and variational-based materialization (inspired by techniques for

approximating graphical models [38]). Applying these techniques to incremental

maintenance for KBC is novel, and it is not theoretically clear how the techniques compare.

Thus, we conducted an experimental evaluation of these two approaches on a diverse set of

DeepDive programs.

We found these two approaches are sensitive to changes along three largely orthogonal axes:

the size of the factor graph, the sparsity of correlations, and the anticipated number of future

changes. The performance varies by up to two orders of magnitude in different points of the

space. Our study of the tradeoff space highlights that neither materialization strategy

dominates the other. To automatically choose the materialization strategy, we develop a

simple rule-based optimizer.

Experimental Evaluation Highlights

We used DeepDive programs developed by our group and DeepDive users to understand

whether the improvements we describe can speed up the iterative development process of

DeepDive programs. To understand the extent to which DeepDive’s techniques improve

development time, we took a sequence of six snapshots of a KBC system and ran them with

3As incremental learning uses standard techniques, we cover it only in the full version of this paper.

Shin et al. Page 3

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

our incremental techniques and completely from scratch. In these snapshots, our incremental

techniques are 22× faster. The results for each snapshot differ at most by 1% for high-quality

facts (90%+ accuracy); fewer than 4% of facts differ by more than 0.05 in probability

between approaches. Thus, essentially the same facts were given to the developer throughout

execution using the two techniques, but the incremental techniques delivered them more

quickly.

Outline

The rest of the paper is organized as follows. Section 2 contains an in-depth analysis of the

KBC development process, and the presentation of our language for modeling KBC systems.

We discuss the different techniques for incremental maintenance in Section 3. We also

present the results of the exploration of the tradeoff space and the description of our

optimizer. Our experimental evaluation is presented in Section 4.

Related Work

Knowledge Base Construction (KBC): KBC has been an area of intense study over the last

decade, moving from pattern matching [19] and rule-based systems [25] to systems that use

machine learning for KBC [5, 8, 14, 15, 28]. Many groups have studied how to improve the

quality of specific components of KBC systems [27, 43]. We build on this line of work. We

formalized the development process and built DeepDive to ease and accelerate the KBC

process, which we hope is of interest to many of these systems as well. Deep-Dive has many

common features to Chen and Wang [11], Google’s Knowledge Vault [14], and a forerunner

of Deep-Dive, Tuffy [30]. We focus on the incremental evaluation from feature extraction to

inference.

Declarative Information Extraction: The database community has proposed declarative

languages for information extraction, a task with similar goals to knowledge base

construction, by extending relational operations [17, 25, 36], or rule-based approaches [28].

These approaches can take advantage of classic view maintenance techniques to make the

execution incremental, but they do not study how to incrementally maintain the result of

statistical inference and learning, which is the focus of our work.

Incremental Maintenance of Statistical Inference and Learning: Related work has

focused on incremental inference for specific classes of graphs (tree-structured [12] or low-

degree [1] graphical models). We deal instead with the class of factor graphs that arise from

the KBC process, which is much more general than the ones examined in previous

approaches. Nath and Domingos [29] studied how to extend belief propagation on factor

graphs with new evidence, but without any modification to the structure of the graph. Wick

and McCallum [41] proposed a “query-aware MCMC” method. They designed a proposal

scheme so that query variables tend to be sampled more frequently than other variables. We

frame our problem as approximate inference, which allows us to handle changes to the

program and the data in a single approach.

Shin et al. Page 4

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. KBC USING DEEPDIVE

We describe DeepDive, an end-to-end framework for building KBC systems with a

declarative language. We first recall standard definitions, and then introduce the essentials of

the framework by example, compare our framework with Markov Logic, and describe

DeepDive’s formal semantics.

2.1 Definitions for KBC Systems

The input to a KBC system is a heterogeneous collection of unstructured, semi-structured,

and structured data, ranging from text documents to existing but incomplete KBs. The output
of the system is a relational database containing facts extracted from the input and put into

the appropriate schema. Creating the knowledge base may involve extraction, cleaning, and

integration.

Example 2.1: Figure 1 illustrates our running example: a knowledge base with pairs of

individuals that are married to each other. The input to the system is a collection of news

articles and an incomplete set of married persons; the output is a KB containing pairs of

person that are married. A KBC system extracts linguistic patterns, e.g., “… and his wife

…” between a pair of mentions of individuals (e.g., “Barack Obama” and “M. Obama”).

Roughly, these patterns are then used as features in a classifier deciding whether this pair of

mentions indicates that they are married (in the HasSpouse) relation.

We adopt standard terminology from KBC, e.g., ACE.4 There are four types of objects that a

KBC system seeks to extract from input documents, namely entities, relations, mentions,

and relation mentions. An entity is a real-world person, place, or thing. For example,

“Michelle_Obama_1” represents the actual entity for a person whose name is “Michelle

Obama”; another individual with the same name would have another number. A relation
associates two (or more) entities, and represents the fact that there exists a relationship

between the participating entities. For example, “Barack_Obama_1” and

“Michelle_Obama_1” participate in the HasSpouse relation, which indicates that they are

married. These real-world entities and relationships are described in text; a mention is a

span of text in an input document that refers to an entity or relationship: “Michelle” may be

a mention of the entity “Michelle_Obama_1.” A relation mention is a phrase that connects

two mentions that participate in a relation such as “(Barack Obama, M. Obama)”. The

process of mapping mentions to entities is called entity linking.

2.2 The DeepDive Framework

DeepDive is an end-to-end framework for building KBC systems, as shown in Figure 1.5 We

walk through each phase. DeepDive supports both SQL and datalog, but we use datalog

syntax for exposition. The rules we describe in this section are manually created by the user

of DeepDive and the process of creating these rules is application-specific.

4http://www.itl.nist.gov/iad/mig/tests/ace/2000/
5For more information, including examples, please see http://deepdive.stanford.edu. Note that our engine is built on Postgres and
Greenplum for all SQL processing and UDFs. There is also a port to MySQL.

Shin et al. Page 5

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.itl.nist.gov/iad/mig/tests/ace/2000/
http://deepdive.stanford.edu

Candidate Generation and Feature Extraction: All data in DeepDive is stored in a

relational database. The first phase populates the database using a set of SQL queries and

user-defined functions (UDFs) that we call feature extractors. By default, DeepDive stores

all documents in the database in one sentence per row with markup produced by standard

NLP pre-processing tools, including HTML stripping, part-of-speech tagging, and linguistic

parsing. After this loading step, DeepDive executes two types of queries: (1) candidate
mappings, which are SQL queries that produce possible mentions, entities, and relations,

and (2) feature extractors that associate features to candidates, e.g., “… and his wife …” in

Example 2.1.

Example 2.2: Candidate mappings are usually simple. Here, we create a relation mention for
every pair of candidate persons in the same sentence (s):

(R1) MarriedCandidate

(m1, m2) : -

PersonCandidate

(s, m1),

PersonCandidate

(s, m2).

Candidate mappings are simply SQL queries with UDFs that look like low-precision but

high-recall ETL scripts. Such rules must be high recall: if the union of candidate mappings

misses a fact, DeepDive has no chance to extract it.

We also need to extract features, and we extend classical Markov Logic in two ways: (1)

user-defined functions and (2) weight tying, which we illustrate by example.

Example 2.3: Suppose that phrase(m1, m2, sent) returns the phrase between two mentions
in the sentence, e.g., “and his wife” in the above example. The phrase between two mentions
may indicate whether two people are married. We would write this as:

(FE1) MarriedMentions

(m1, m2) : -

Shin et al. Page 6

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

MarriedCandidate

(m1, m2),

Mention

(s, m1),

Mention

(s, m2),

Sentence

(s, sent)

 weight = phrase(m1, m2, sent).

One can think about this like a classifier: This rule says that whether the text indicates that
the mentions m1 and m2 are married is influenced by the phrase between those mention
pairs. The system will infer based on training data its confidence (by estimating the weight)
that two mentions are indeed indicated to be married.

Technically, phrase returns an identifier that determines which weights should be used for a

given relation mention in a sentence. If phrase returns the same result for two relation

mentions, they receive the same weight. We explain weight tying in more detail in Section

2.3. In general, phrase could be an arbitrary UDF that operates in a per-tuple fashion. This

allows DeepDive to support common examples of features such as “bag-of-words” to

context-aware NLP features to highly domain-specific dictionaries and ontologies. In

addition to specifying sets of classifiers, DeepDive inherits Markov Logic’s ability to

specify rich correlations between entities via weighted rules. Such rules are particularly

helpful for data cleaning and data integration.

Supervision: Just as in Markov Logic, DeepDive can use training data or evidence about

any relation; in particular, each user relation is associated with an evidence relation with the

same schema and an additional field that indicates whether the entry is true or false.

Continuing our example, the evidence relation MarriedMentions_Ev could contain mention

pairs with positive and negative labels. Operationally, two standard techniques generate

training data: (1) hand-labeling, and (2) distant supervision, which we illustrate below.

Example 2.4: Distant supervision [20, 27] is a popular technique to create evidence in KBC
systems. The idea is to use an incomplete KB of married entity pairs to heuristically label (as
True evidence) all relation mentions that link to a pair of married entities:

Shin et al. Page 7

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(S1) MarriedMentions_Ev

(m1, m2, true) : -

MarriedCandidates

(m1, m2),

EL

(m1, e1),

EL

(m2, e2),

Married

(e1, e2).

Here, Married is an (incomplete) list of married real-world persons that we wish to extend.

The relation EL is for “entity linking” that maps mentions to their candidate entities. At first

blush, this rule seems incorrect. However, it generates noisy, imperfect examples of

sentences that indicate two people are married. Machine learning techniques are able to

exploit redundancy to cope with the noise and learn the relevant phrases (e.g., “and his

wife”). Negative examples are generated by relations that are largely disjoint (e.g., siblings).

Similar to DIPRE [6] and Hearst patterns [19], distant supervision exploits the “duality” [6]

between patterns and relation instances; furthermore, it allows us to integrate this idea into

DeepDive’s unified probabilistic framework.

Learning and Inference: In the learning and inference phase, DeepDive generates a factor

graph, similar to Markov Logic, and uses techniques from Tuffy [30]. The inference and

learning are done using standard techniques (Gibbs Sampling) that we describe below after

introducing the formal semantics.

Error Analysis: DeepDive runs the above three phases in sequence, and at the end of the

learning and inference, it obtains a marginal probability p for each candidate fact. To

produce the final KB, the user often selects facts in which we are highly confident, e.g., p >

0.95. Typically, the user needs to inspect errors and repeat, a process that we call error
analysis. Error analysis is the process of understanding the most common mistakes

Shin et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(incorrect extractions, too-specific features, candidate mistakes, etc.) and deciding how to

correct them [34]. To facilitate error analysis, users write standard SQL queries.

2.3 Discussion of Design Choices

We have found three related aspects of the DeepDive approach that we believe enable non-

computer scientists to write DeepDive programs: (1) there is no reference in a DeepDive

program to the underlying machine learning algorithms. Thus, DeepDive programs are

declarative in a strong sense. Probabilistic semantics provide a way to debug the system

independently of any algorithm. (2) Deep-Dive allows users to write feature extraction code

in familiar languages (Python, SQL, and Scala). (3) DeepDive fits into the familiar SQL

stack, which allows standard tools to inspect and visualize the data. A second key property is

that the user constructs an end-to-end system and then refines the quality of the system in a

pay-as-you-go way [26]. In contrast, traditional pipeline-based ETL scripts may lead to time

and effort spent on extraction and integration–without the ability to evaluate how important

each step is for end-to-end application quality. Anecdotally, pay-as-you-go leads to more

informed decisions about how to improve quality.

Comparison with Markov Logic: Our language is based on Markov Logic [13, 30], and

our current language inherits Markov Logic’s formal semantics. However, there are three

differences in how we implement DeepDive’s language:

Weight Tying: As shown in rule FE1, DeepDive allows factors to share weights across

rules, which is used in every DeepDive system. As we will see declaring a classifier is a one-

liner in DeepDive: Class(x) : − R(x, f) with weight = w(f) declares a classifier for objects

(bindings of x); R(x, f) indicates that object x has features f. In standard MLNs, this would

require one rule for each feature.6 In MLNs, every rule introduces a single weight, and the

correlation structure and weight structure are coupled. DeepDive decouples them, which

makes writing some applications easier.

User-defined Functions: As shown in rule FE1, DeepDive allows the user to use user-

defined functions (phrase in FE1) to specify feature extraction rules. This allows DeepDive

to handle common feature extraction idioms using regular expressions, Python scripts, etc.

This brings more of the KBC pipeline into DeepDive, which allows DeepDive to find

optimization opportunities for a larger fraction of this pipeline.

Implication Semantics: In the next section, we introduce a function g that counts the

number of groundings in different ways. g is an example of transformation groups [22, Ch.

12], a technique from the Bayesian inference literature to model different noise distributions.

Experimentally, we show that different semantics (choices of g) affect the quality of KBC

applications (up to 10% in F1 score) compared with the default semantics of MLNs. After

some notation, we give an example to illustrate how g alters the semantics.

6Our system Tuffy introduced this feature to MLNs, but its semantics had not been described in the literature.

Shin et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.4 Semantics of a DeepDive Program

A DeepDive program is a set of rules with weights. During inference, the values of all

weights w are assumed to be known, while, in learning, one finds the set of weights that

maximizes the probability of the evidence. As shown in Figure 3, a DeepDive program

defines a standard structure called a factor graph [39]. First, we directly define the

probability distribution for rules that involve weights, as it may help clarify our motivation.

Then, we describe the corresponding factor graph on which inference takes place.

Each possible tuple in the user schema–both IDB and EDB predicates–defines a Boolean

random variable (r.v.). Let be the set of these r.v.’s. Some of the r.v.’s are fixed to a specific

value, e.g., as specified in a supervision rule or by training data. Thus, has two parts: a set

ℰ of evidence variables (those fixed to a specific values) and a set of query variables

whose value the system will infer. The class of evidence variables is further split into

positive evidence and negative evidence. We denote the set of positive evidence variables as

℘, and the set of negative evidence variables as . An assignment to each of the query

variables yields a possible world I that must contain all positive evidence variables, i.e., I ⊇

℘, and must not contain any negatives, i.e., I ∩ = ∅.

Boolean Rules: We first present the semantics of Boolean inference rules. For ease of

exposition only, we assume that there is a single domain A rule γ is a pair (q, w) such that

q is a Boolean query and w is a real number. An example is as follows:

We denote the body predicates of q as body(z̄) where z ̄ are all variables in the body of q(),

e.g., z̄ = (x, y) in the example above. Given a rule γ = (q, w) and a possible world I, we

define the sign of γ on I as sign(γ, I) = 1 if q() ∈ I and −1 otherwise.

Given c̄ ∈ |z̄|, a grounding of q w.r.t. c̄ is a substitution body(z̄/c̄), where the variables in z̄

are replaced with the values in c̄. For example, for q above with c ̄ = (a, b) then body(z̄/(a, b))

yields the grounding R(a, b), S(b), which is a conjunction of facts. The support n(γ, I) of a

rule γ in a possible world I is the number of groundings c̄ for which body(z̄/c̄) is satisfied in

I:

The weight of γ in I is the product of three terms:

(1)

where g is a real-valued function defined on the natural numbers. For intuition, if w(γ, I) > 0,

it adds a weight that indicates that the world is more likely. If w(γ, I) < 0, it indicates that the

world is less likely. As motivated above, we introduce g to support multiple semantics.

Figure 4 shows choices for g that are supported by DeepDive, which we compare in an

example below.

Shin et al. Page 10

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Let Γ be a set of Boolean rules, the weight of Γ on a possible world I is defined as

This function allow us to define a probability distribution over the set J of possible worlds:

(2)

and Z is called the partition function. This framework is able to compactly specify much

more sophisticated distributions than traditional probabilistic databases [37].

Example 2.5: We illustrate the semantics by example. From the Web, we could extract a set
of relation mentions that supports “Barack Obama is born in Hawaii” and another set of
relation mentions that support “Barack Obama is born in Kenya.” These relation mentions
provide conflicting information, and one common approach is to “vote.” We abstract this as
up or down votes about a fact q().

We can think of this as a having a single random variable q() in which the size of Up (resp.
Down) is an evidence relation that indicates the number of “Up” (resp. “Down”) votes.
There are only two possible worlds: one in which q() ∈ I (is true) and not. Let |Up| and |

Down| be the sizes of Up and Down. Following Equation 1 and 2, we have

where

Consider the case when |Up| = 106 and |Down| = 106 − 100. In some scenarios, this small
number of differing votes could be due to random noise in the data collection processes. One
would expect a probability for q() close to 0.5. In the linear semantics g(n) = n, the
probability of q is (1 + e−200)−1 ≈ 1 − e−200, which is extremely close to 1. In contrast, if we
set g(n) = log(1 + n), then Pr[q()] ≈ 0.5. Intuitively, the probability depends on their ratio of
these votes. The logical semantics g(n) = 𝟙n>0 gives exactly Pr[q()] = 0.5. However, it would
do the same if |Down| = 1. Thus, logical semantics may ignore the strength of the voting
information. At a high level, ratio semantics can learn weights from examples with different

Shin et al. Page 11

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

raw counts but similar ratios. In contrast, linear is appropriate when the raw counts
themselves are meaningful.

No semantic subsumes the other, and each is appropriate in some application. We have

found that in many cases the ratio semantics is more suitable for the application that the user

wants to model. We show in the full version that these semantics also affect efficiency

empirically and theoretically–even for the above simple example. Intuitively, sampling

converges faster in the logical or ratio semantics because the distribution is less sharply

peaked, which means that the sampler is less likely to get stuck in local minima.

Extension to General Rules: Consider a general inference rule γ = (q, w), written as:

where x̄ ⊆ z̄ and ȳ ⊆ z̄. This extension allows weight tying. Given b̄ ∈ |x̄ ∪ ȳ| where b̄
x

(resp. b̄
y) are the values of b̄ in x̄ (resp. ȳ), we expand γ to a set Γ of Boolean rules by

substituting x̄ ∪ ȳ with values from in all possible ways.

where each qb̄y() is a fresh symbol for distinct values of b̄
t, and wb̄x is a real number. Rules

created this way may have free variables in their bodies, e.g., q(x) : − R(x, y, z) with w(y)

create | 2 different rules of the form qa() : − R(a, b, z), one for each (a, b) ∈ 2, and rules

created with the same value of b share the same weight. Tying weights allows one to create

models succinctly.

Example 2.6: We use the following as an example:

This declares a binary classifier as follows. Each binding for x is an object to classify as in
Class or not. The relation R associates each object to its features. E.g., R(a, f) indicates that
object a has a feature f. weight = w(f) indicates that weights are functions of feature f; thus,
the same weights are tied across values for a. This rule declares a logistic regression
classifier.

It is straightforward formal extension to let weights be functions of the return values of

UDFs as we do in DeepDive.

2.5 Inference on Factor Graphs

As in Figure 3, DeepDive explicitly constructs a factor graph for inference and learning

using a set of SQL queries. Recall that a factor graph is a triple (V, F, ŵ) in which V is a set

of nodes that correspond to Boolean random variables, F is a set of hyperedges (for f ∈ F, f

⊆ V), and ŵ : F × {0, 1}V → ℝ is a weight function. We can identify possible worlds with

Shin et al. Page 12

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

assignments since each node corresponds to a tuple; moreover, in DeepDive, each hyperedge

f corresponds to the set of groundings for a rule γ. In DeepDive, V and F are explicitly

created using a set of SQL queries. These data structures are then passed to the sampler,

which runs outside the database, to estimate the marginal probability of each node or tuple in

the database. Each tuple is then reloaded into the database with its marginal probability.

Example 2.7: Take the database instances and rules in Figure 3 as an example, each tuple in

relation R, S, and Q is a random variable, and V contains all random variables. The
inference rules F1 and F2 ground factors with the same name in the factor graph as
illustrated in Figure 3. Both F1 and F2 are implemented as SQL in DeepDive.

To define the semantics, we use Equation 1 to define ŵ (f, I) = w(γ, I), in which γ is the rule

corresponding to f. As before, we define Ŵ(F, I) =Σf∈Fŵ(f, I), and then the probability of a

possible world is the following function:

The main task that DeepDive conducts on factor graphs is statistical inference, i.e., for a

given node, what is the marginal probability that this node takes the value 1? Since a node

takes value 1 when a tuple is in the output, this process computes the marginal probability

values returned to users. In general, computing these marginal probabilities is #P-hard [39].

Like many other systems, DeepDive uses Gibbs sampling [35] to estimate the marginal

probability of every tuple in the database.

3. INCREMENTAL KBC

To help the KBC system developer be more efficient, we developed techniques to

incrementally perform the grounding and inference step of KBC execution.

Problem Setting: Our approach to incrementally maintaining a KBC system runs in two

phases. (1) Incremental Grounding. The goal of the incremental grounding phase is to

evaluate an update of the DeepDive program to produce the “delta” of the modified factor

graph, i.e., the modified variables ΔV and factors ΔF. This phase consists of relational

operations, and we apply classic incremental view maintenance techniques. (2) Incremental
Inference. The goal of incremental inference is given (ΔV, ΔF) run statistical inference on

the changed factor graph.

3.1 Standard Techniques: Delta Rules

Because DeepDive is based on SQL, we are able to take advantage of decades of work on

incremental view maintenance. The input to this phase is the same as the input to the

grounding phase, a set of SQL queries and the user schema. The output of this phase is how

the output of grounding changes, i.e., a set of modified variables ΔV and their factors ΔF.

Since V and F are simply views over the database, any view maintenance techniques can be

applied to incremental grounding. DeepDive uses DRed algorithm [18] that handles both

Shin et al. Page 13

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

additions and deletions. Recall that in DRed, for each relation Ri in the user’s schema, we

create a delta relation, , with the same schema as Ri and an additional column count. For

each tuple t, t.count represents the number of derivations of t in Ri. On an update, DeepDive

updates delta relations in two steps. First, for tuples in , DeepDive directly updates the

corresponding counts. Second, a SQL query called a “delta rule”7 is executed which

processes these counts to generate modified variables ΔV and factors ΔF. We found that the

overhead DRed is modest and the gains may be substantial, and so DeepDive always runs

DRed–except on initial load.

3.2 Novel Techniques for Incremental Maintenance of Inference

We present three techniques for the incremental inference phase on factor graphs: given the

set of modified variables ΔV and modified factors ΔF produced in the incremental grounding

phase, our goal is to compute the new distribution. We split the problem into two phases. In

the materialization phase, we are given access to the entire Deep-Dive program, and we

attempt to store information about the original distribution, denoted Pr(0). Each approach

will store different information to use in the next phase, called the inference phase. The

input to the inference phase is the materialized data from the preceding phase and the

changes made to the factor graph, the modified variables ΔV and factors ΔF. Our goal is to

perform inference with respect to the changed distribution, denoted Pr(Δ). For each approach,

we study its space and time costs for materialization and the time cost for inference. We also

analyze the empirical trade-off between the approaches in Section 3.2.4.

3.2.1 Strawman: Complete Materialization—The strawman approach, complete

materialization, is computationally expensive and often infeasible. We use it to set a baseline

for other approaches.

Materialization Phase: We explicitly store the value of the probability Pr[I] for every

possible world I. This approach has perfect fidelity, but storing all possible worlds takes an

exponential amount of space and time in the number of variables in the original factor graph.

Thus, the strawman approach is often infeasible on even moderate-sized graphs.8

Inference Phase: We use Gibbs sampling: even if the distribution has changed to Pr(Δ), we

only need access to the new factors in ΔΠℱ and to Pr[I] to perform the Gibbs update. The

speed improvement arises from the fact that we do not need to access all factors from the

original graph and perform a computation with them, since we can look them up in Pr[I].

3.2.2 Sampling Approach—The sampling approach is a standard technique to improve

over the strawman approach by storing a set of possible worlds sampled from the original

distribution instead of storing all possible worlds. However, as the updated distribution Pr(Δ)

is different from the distribution used to draw the stored samples, we cannot reuse them

7For example, for the grounding procedure illustrated in Figure 3, the delta rule for F1 is qδ(x) : −Rδ(x, y).
8Compared with running inference from scratch, the strawman approach does not materialize any factors. Therefore, it is necessary for
strawman to enumerate each possible world and save their probability because we do not know a priori which possible world will be
used in the inference phase.

Shin et al. Page 14

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

directly. We use a (standard) Metropolis-Hastings scheme to ensure convergence to the

updated distribution.

Materialization Phase: In the materialization phase, we store a set of possible worlds

drawn from the original distribution. For each variable, we store the set of samples as a tuple
bundle, as in MCDB [21]. A single sample for one random variable only requires 1 bit of

storage. Therefore, the sampling approach can be efficient in terms of materialization space.

In the KBC systems we evaluated, 100 samples require less than 5% of the space of the

original factor graph.

Inference Phase: We use the samples to generate proposals and adapt them to estimate the

up-to-date distribution. This idea of using samples from similar distributions as proposals is

standard in statistics, e.g., importance sampling, rejection sampling, and different variants of

Metropolis-Hastings methods. After investigating these approaches, in Deep-Dive, we use

the independent Metropolis-Hastings approach [2, 35], which generates proposal samples

and accepts these samples with an acceptance test. We choose this method only because the

acceptance test can be evaluated using the sample, ΔV, and ΔF–without the entire factor

graph. Thus, we may fetch many fewer factors than in the original graph, but we still

converge to the correct answer.

Algorithm 1

Variational Approach (Materialization)

Input: Factor graph FG = (V, F), regularization parameter λ, number of samples N for approximation.

Output: An approximated factor graph FG′ = (V, F′)

1: I1, …, IN ← N samples drawn from FG.

2: NZ ← {(vi, vj): vi and vj are in some factor in FG}.

3: M ← covariance matrix estimated using I1, …, IN, such that Mij is the covariance between variable i and variable j.
Set Mij = 0 if (vi, vj) ∉ NZ.

4: Solve the following optimization problem using gradient descent [4], and let the result be X̂

arg maxX log det X

s.t., Xkk = Mkk + 1/3,

∣ Xkj − Mkj ∣ ≤ λ

Xkj = 0 if (vk, vj) ∉ NZ

5: for all i, j s.t. X̂
ij ≠ 0 do

6: Add in F′ a factor from (vi, vj) with weight X̂
ij.

7: end for

8: return FG′ = (V, F′).

The fraction of accepted samples is called the acceptance rate, and it is a key parameter in

the efficiency of this approach. The approach may exhaust the stored samples, in which case

the method resorts to another evaluation method or generates fresh samples.

Shin et al. Page 15

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2.3 Variational Approach—The intuition behind our variational approach is as follows:

rather than storing the exact original distribution, we store a factor graph with fewer factors
that approximates the original distribution. On the smaller graph, running inference and

learning is often faster.

Materialization Phase: The key idea of the variational approach is to approximate the

distribution using simpler or sparser correlations. To learn a sparser model, we use

Algorithm 1 which is a log-determinant relaxation [38] with a ℓ1 penalty term [4]. We want

to understand its strengths and limitations on KBC problems, which is novel. This approach

uses standard techniques for learning that are already implemented in DeepDive [45].

The input is the original factor graph and two parameters: the number of samples N to use

for approximating the covariance matrix, and the regularization parameter λ, which controls

the sparsity of the approximation. The output is a new factor graph that has only binary

potentials. The intuition for this procedure comes from graphical model structure learning:

an entry (i, j) is present in the inverse covariance matrix only if variables i and j are

connected in the factor graph. Given these inputs, the algorithm first draws a set of N

possible worlds by running Gibbs sampling on the original factor graph. It then estimates the

covariance matrix based on these samples (Lines 1–3). Using the estimated covariance

matrix, our algorithms solves the optimization problem in Line 4 to estimate the inverse

covariance matrix X̂. Then, the algorithm creates one factor for each pair of variables such

that the corresponding entry in X̂ is non-zero, using the value in X̂ as the new weight (Line

5–7). These are all the factors of the approximated factor graph (Line 8).

Inference Phase: Given an update to the factor graph (e.g., new variables or new factors),

we simply apply this update to the approximated graph, and run inference and learning

directly on the resulting factor graph. As shown in Figure 5(c), the execution time of the

variational approach is roughly linear in the sparsity of the approximated factor graph.

Indeed, the execution time of running statistical inference using Gibbs sampling is

dominated by the time needed to fetch the factors for each random variable, which is an

expensive operation requiring random access. Therefore, as the approximated graph

becomes sparser, the number of factors decreases and so does the running time.

Parameter Tuning: We are among the first to use these methods in KBC applications, and

there is little literature about tuning λ. Intuitively, the smaller λ is, the better the

approximation is–but the less sparse the approximation is. To understand the impact of λ on

quality, we show in Figure 6 the quality F1 score of a DeepDive program called News (see

Section 4) as we vary the regularization parameter. As long as the regularization parameter λ

is small (e.g., less than 0.1), the quality does not change significantly. In all of our

applications we observe that there is a relatively large “safe” region from which to choose λ.

In fact, for all five systems in Section 4, even if we set λ at 0.1 or 0.01, the impact on quality

is minimal (within 1%), while the impact on speed is significant (up to an order of

magnitude). Based on Figure 6, DeepDive supports a simple search protocol to set λ. We

start with a small λ, e.g., 0.001, and increase it by 10× until the KL-divergence is larger than

a user-specified threshold, specified as a parameter in DeepDive.

Shin et al. Page 16

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2.4 Tradeoffs—We studied the tradeoff between different approaches and summarize the

empirical results of our study in Figure 5. The performance of different approaches may

differ by more than two orders of magnitude, and neither of them dominates the other. We

use a synthetic factor graph with pairwise factors9 and control the following axes:

1. Number of variables in the factor graph. In our experiments, we set the number of

variables to values in {2, 10, 17, 100, 1000, 10000}.

2. Amount of change. How much the distribution changes affects efficiency, which

manifests itself in the acceptance rate: the smaller the acceptance rate is, the more

difference there will be in the distribution. We set the acceptance rate to values in

{1.0, 0.5, 0.1, 0.01}.

3. Sparsity of correlations. This is the ratio between the number of non-zero weights

and the total weight. We set the sparsity to values in {0.1, 0.2, 0.3, 0.4, 0.5, 1.0} by

selecting uniformly at random a subset of factors and set their weight to zero.

We now discuss the results of our exploration of the trade-off space, presented in Figure 5(a–

c).

Size of the Factor Graph: Since the materialization cost of the strawman is exponential in

the size of the factor graph, we observe that, for graphs with more than 20 variables, the

strawman is significantly slower than either the sampling approach or the variational

approach. Factor graphs arising from KBC systems usually contain a much larger number of

variables; therefore, from now on, we focus on the tradeoff between sampling and

variational approaches.

Amount of Change: As shown in Figure 5(b), when the acceptance rate is high, the

sampling approach could outperform the variational one by more than two orders of

magnitude. When the acceptance rate is high, the sampling approach requires no

computation and so is much faster than Gibbs sampling. In contrast, when the acceptance

rate is low, e.g., 0.1%, the variational approach could be more than 5× faster than the

sampling approach. An acceptance rate lower than 0.1% occurs for KBC operations when

one updates the training data, adds many new features, or concept drift happens during the

development of KBC systems.

Sparsity of Correlations: As shown in Figure 5(c), when the original factor graph is sparse,

the variational approach can be 11× faster than the sampling approach. This is because the

approximate factor graph contains less than 10% of the factors than the original graph, and it

is therefore much faster to run inference on the approximate graph. On the other hand, if the

original factor graph is too dense, the variational approach could be more than 7× slower

than the sampling one, as it is essentially performing inference on a factor graph with a size

similar to that of the original graph.

9In Figure 5, the numbers are reported for a factor graph whose factor weights are sampled at random from [−0.5, 0.5]. We also
experimented with different intervals ([−0.1, 0.1], [−1, 1], [−10, 10]), but these had no impact on the tradeoff

Shin et al. Page 17

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Discussion: Theoretical Guarantees: We discuss the theoretical guarantee that each

materialization strategy provides. Each materialization method inherits the guarantee of that

inference technique. The strawman approach retains the same guarantees as Gibbs sampling;

For the sampling approach use standard Metropolis-Hasting scheme. Given enough time,

this approach will converge to the true distribution. For the variational approach, the

guarantees are more subtle and we point the reader to the consistency of structure estimation

of Gaussian Markov random field [33] and log-determinate relaxation [38]. These results are

theoretically incomparable, motivating our empirical study.

3.3 Choosing Between Different Approaches

From the study of the tradeoff space, neither the sampling approach nor the variational

approach dominates the other, and their relative performance depends on how they are being

used in KBC. We propose to materialize the factor graph using both the sampling approach

and the variational approach, and defer the decision to the inference phase when we can

observe the workload.

Materialization Phase: Both approaches need samples from the original factor graph, and

this is the dominant cost during materialization. A key question is “How many samples
should we collect?” We experimented with several heuristic methods to estimate the number

of samples that are needed, which requires understanding how likely future changes are,

statistical considerations, etc. These approaches were difficult for users to understand, so

DeepDive takes a best-effort approach: it generates as many samples as possible when idle

or within a user-specified time interval.

Inference Phase: Based on the tradeoffs analysis, we developed a rule-based optimizer with

the following set of rules:

• If an update does not change the structure of the graph, choose the sampling

approach.

• If an update modifies the evidence, choose the variational approach.

• If an update introduces new features, choose the sampling approach.

• Finally, if we run out of samples, use the variational approach.

This simple set of rules is used in our experiments.

4. EXPERIMENTS

We conducted an experimental evaluation of DeepDive for incremental maintenance of KBC

systems.

4.1 Experimental Settings

To evaluate DeepDive, we used DeepDive programs developed by our users over the last

three years from paleontologists, geologists, biologists, a defense contractor, and a KBC

competition. These are high-quality KBC systems: two of our KBC systems for natural

sciences achieved quality comparable to (and sometimes better than) human experts, as

Shin et al. Page 18

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

assessed by double-blind experiments, and our KBC system for a KBC competition is the

top system among all 45 submissions from 18 teams as assessed by professional annotators.

To simulate the development process, we took snapshots of DeepDive programs at the end of

every development iteration, and we use this dataset of snapshots in the experiments to

understand our hypothesis that incremental techniques can be used to improve development

speed.

Datasets and Workloads: To study the efficiency of Deep-Dive, we selected five KBC

systems, namely (1) News, (2) Genomics, (3) Adversarial, (4) Pharmacogenomics, and (5)

Paleontology. Their names refers to the specific domains on which they focus. Figure 7

illustrates the statistics of these KBC systems and of their input datasets. We group all rules

in each system into six rule templates with four workload categories. We focus on the News

system below.

The News system builds a knowledge base between persons, locations, and organizations,

and contains 34 different relations, e.g., HasSpouse or MemberOf. The input to the KBC

system is a corpus that contains 1.8 million news articles and Web pages. We use four types

of rules in News in our experiments, as shown in Figure 8, error analysis (rule A1),

candidate generation and feature extraction (FE1, FE2), supervision (S1, S2), and inference

(I1), corresponding to the steps where these rules are used.

Other applications are different in terms of the quality of the text. We choose these systems

as they span a large range in the spectrum of quality: Adversarial contains advertisements

collected from websites where each document may have only 1–2 sentences with

grammatical errors; in contrast, Paleontology contains well-curated journal articles with

precise, unambiguous writing and simple relationships. Genomics and Pharma have precise

texts, but the goal is to extract relationships that are more linguistically ambiguous compared

to the Paleontology text. News has slightly degraded writing and ambiguous relationships,

e.g., “member of.” Rules with the same prefix, e.g., FE1 and FE2, belong to the same

category, e.g., feature extraction.

DeepDive Details: DeepDive is implemented in Scala and C++, and we use Greenplum to

handle all SQL. All feature extractors are written in Python. The statistical inference and

learning and the incremental maintenance component are all written in C++. All experiments

are run on a machine with four CPUs (each CPU is a 12-core 2.40 GHz Xeon E5-4657L), 1

TB RAM, and 12×1TB hard drives and running Ubuntu 12.04. For these experiments, we

compiled DeepDive with Scala 2.11.2, g++-4.9.0 with -O3 optimization, and Python 2.7.3.

In Genomics and Adversarial, Python 3.4.0 is used for feature extractors.

4.2 End-to-end Performance and Quality

We built a modified version of DeepDive called Rerun, which given an update on the KBC

system, runs the Deep-Dive program from scratch. DeepDive, which uses all techniques, is

called Incremental. The results of our evaluation show that DeepDive is able to speed up the

development of high-quality KBC systems through incremental maintenance with little

impact on quality. We set the number of samples to collect during execution to {10, 100,

Shin et al. Page 19

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1000} and the number of samples to collect during materialization to {1000, 2000}. We

report results for (1000, 2000), as results for other combinations of parameters are similar.

Quality Over Time: We first compare Rerun and Incremental in terms of the wait time that

developers experience to improve the quality of a KBC system. We focus on News because

it is a well-known benchmark competition. We run all six rules sequentially for both Rerun

and Incremental, and after executing each rule, we report the quality of the system measured

by the F1 score and the cumulative execution time. Materialization in the Incremental

system is performed only once. Figure 10(a) shows the results. Using Incremental takes

significantly less time than Rerun to achieve the same quality. To achieve an F1 score of 0.36

(a competition-winning score), Incremental is 22× faster than Rerun. Indeed, each run of

Rerun takes ≈ 6 hours, while a run of Incremental takes at most 30 minutes.

We further compare the facts extracted by Incremental and Rerun and find that these two

systems not only have similar end-to-end quality, but are also similar enough to support

common debugging tasks. We examine the facts with high-confidence in Rerun (> 0.9

probability), 99% of them also appear in Incremental, and vice versa. High confidence

extractions are used by the developer to debug precision issues. Among all facts, we find that

at most 4% of them have a probability that differs by more than 0.05. The similarity between

snapshots suggests, our incremental maintenance techniques can be used for debugging.

Efficiency of Evaluating Updates: We now compare Rerun and Incremental in terms of

their speed in evaluating a given update to the KBC system. To better understand the impact

of our technical contribution, we divide the total execution time into parts: (1) the time used

for feature extraction and grounding; and (2) the time used for statistical inference and

learning. We implemented classical incremental materialization techniques for feature

extraction and grounding, which achieves up to a 360× speedup for rule FE1 in News. We

get this speedup for free using standard RDBMS techniques, a key design decision in

DeepDive.

Figure 9 shows the execution time of statistical inference and learning for each update on

different systems. We see from Figure 9 that Incremental achieves a 7× to 112× speedup for

News across all categories of rules. The analysis rule A1 achieves the highest speedup – this

is not surprising because, after applying A1, we do not need to rerun statistical learning, and

the updated distribution does not change compared with the original distribution, so the

sampling approach has a 100% acceptance rate. The execution of rules for feature extraction

(FE1, FE2), supervision (S1, S2), and inference (I1) has a 10× speedup. For these rules, the

speedup over Rerun is to be attributed to the fact that the materialized graph contains only

10% of the factors in the full original graph. Below, we show that both the sampling

approach and variational approach contribute to the speed-up. Compared with A1, the

speedup is smaller because these rules produce a factor graph whose distribution changes

more than A1. Because the difference in distribution is larger, the benefit of incremental

evaluation is lower.

The execution of other KBC applications showed similar speedups, but there are also several

interesting data points. For Pharmacogenomics, rule I1 speeds-up only 3×. This is caused by

Shin et al. Page 20

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the fact that I1 introduces many new factors, and the new factor graph is 1.4× larger than the

original one. In this case, DeepDive needs to evaluate those new factors, which is expensive.

For Paleontology, we see that the analysis rule A1 gets a 10× speed-up because as illustrated

in the corpus statistics (Figure 7), the Paleontology factor graph has fewer factors for each

variable than other systems. Therefore, executing inference on the whole factor graph is

cheaper.

Materialization Time: One factor that we need to consider is the materialization time for

Incremental. Incremental took 12 hours to complete the materialization (2000 samples), for

each of the five systems. Most of this time is spent in getting 2× more samples than for a

single run of Rerun. We argue that paying this cost is worthwhile given that it is a one-time

cost and the materialization can be used for many successive updates, amortizing the one-

time cost.

4.3 Lesion Studies

We conducted lesion studies to verify the effect of the tradeoff space on the performance of

DeepDive. In each lesion study, we disable a component of DeepDive, and leave all other

components untouched. We report the execution time for statistical inference and learning.

We evaluate the impact of each materialization strategy on the final end-to-end performance.

We disabled either the sampling approach or the variational approach and left all other

components of the system untouched. Figure 11 shows the results for News. Disabling either

the sampling approach or the variational approach slows down the execution compared to

the “full” system. For analysis rule A1, disabling the sampling approach leads to a more than

11× slow down, because the sampling approach has, for this rule, a 100% acceptance rate

because the distribution does not change. For feature extraction rules, disabling the sampling

approach slows down the system by 5× because it forces the use of the variational approach

even when the distribution for a group of variables does not change. For supervision rules,

disabling the variational approach is 36× slower because the introduction of training

examples decreases the acceptance rate of the sampling approach.

Optimizer: Using different materialization strategies for different groups of variables

positively affects the performance of DeepDive. We compare Incremental with a strong

baseline NoWorkloadInfo which, for each group, first runs the sampling approach. After all

samples have been used, we switch to the variational approach. Note that this baseline is

stronger than the strategy that fixes the same strategy for all groups. Figure 11 shows the

results of the experiment. We see that with the ability to choose between the sampling

approach and variational approach according to the workload, DeepDive can be up to 2×

faster than NoWorkloadInfo.

5. CONCLUSION

We described the DeepDive approach to KBC and our experience building KBC systems

over the last few years. To improve quality, we argued that a key challenge is to accelerate

the development loop. We described the semantic choices that we made in our language. By

Shin et al. Page 21

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

building on SQL, DeepDive is able to use classical techniques to provide incremental

processing for the SQL components. However, these classical techniques do not help with

statistical inference, and we described a novel tradeoff space for approximate inference

techniques. We used these approximate inference techniques to improve end-to-end

execution time in the face of changes both to the program and the data; they improved

system performance by two orders of magnitude in five real KBC scenarios while keeping

the quality high enough to aid in the development process.

Acknowledgments

We gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA) XDATA
program under No. FA8750-12-2-0335 and DEFT program under No. FA8750-13-2-0039, DARPA’s MEMEX
program and SIMPLEX program, the National Science Foundation (NSF) CAREER Award under No. IIS-1353606,
the Office of Naval Research (ONR) under awards No. N000141210041 and No. N000141310129, the National
Institutes of Health Grant U54EB020405 awarded by the National Institute of Biomedical Imaging and
Bioengineering (NIBIB) through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative, the
Sloan Research Fellowship, the Moore Foundation, American Family Insurance, Google, and Toshiba. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA, AFRL, NSF, ONR, NIH, or the U.S. government.

References

1. Acar, UA.; Ihler, A.; Mettu, R.; Sümer, O. UAI. 2008. Adaptive inference on general graphical
models.

2. Andrieu C, De Freitas N, Doucet A, Jordan MI. An introduction to MCMC for machine learning.
Machine Learning. 2003

3. Angeli G, Gupta S, Jose M, Manning CD, Ré C, Tibshirani J, Wu JY, Wu S, Zhang C. Stanford’s
2014 slot filling systems. TAC KBP. 2014

4. Banerjee O, El Ghaoui L, d’Aspremont A. Model selection through sparse maximum likelihood
estimation for multivariate gaussian or binary data. JMLR. 2008

5. Betteridge, J.; Carlson, A.; Hong, SA.; Hruschka, ER., Jr; Law, EL.; Mitchell, TM.; Wang, SH.
AAAI Spring Symposium. 2009. Toward never ending language learning.

6. Brin, S. WebDB. 1999. Extracting patterns and relations from the world wide web.

7. Brown E, Epstein E, Murdock JW, Fin T-H. Tools and methods for building watson. IBM Research
Report. 2013

8. Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka, ER., Jr; Mitchell, TM. AAAI. 2010.
Toward an architecture for never-ending language learning.

9. Chen, F.; Doan, A.; Yang, J.; Ramakrishnan, R. ICDE. 2008. Efficient information extraction over
evolving text data.

10. Chen, F.; Feng, X.; Re, C.; Wang, M. ICDE. 2012. Optimizing statistical information extraction
programs over evolving text.

11. Chen, Y.; Wang, DZ. SIGMOD. 2014. Knowledge expansion over probabilistic knowledge bases.

12. Delcher AL, Grove A, Kasif S, Pearl J. Logarithmic-time updates and queries in probabilistic
networks. J Artif Intell Res. 1996

13. Domingos, P.; Lowd, D. Markov Logic: An Interface Layer for Artificial Intelligence. Morgan &
Claypool; 2009.

14. Dong, XL.; Gabrilovich, E.; Heitz, G.; Horn, W.; Murphy, K.; Sun, S.; Zhang, W. VLDB. 2014.
From data fusion to knowledge fusion.

15. Etzioni, O.; Cafarella, M.; Downey, D.; Kok, S.; Popescu, A-M.; Shaked, T.; Soderland, S.; Weld,
DS.; Yates, A. WWW. 2004. Web-scale information extraction in KnowItAll: (preliminary results).

16. Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW,
Nyberg E, Prager J, Schlaefer N, Welty C. Building Watson: An overview of the DeepQA project.
AI Magazine. 2010

Shin et al. Page 22

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17. Gottlob, G.; Koch, C.; Baumgartner, R.; Herzog, M.; Flesca, S. PODS. 2004. The Lixto data
extraction project: Back and forth between theory and practice.

18. Gupta A, Mumick IS, Subrahmanian VS. Maintaining views incrementally. SIGMOD Rec. 1993

19. Hearst, MA. COLING. 1992. Automatic acquisition of hyponyms from large text corpora.

20. Hoffmann, R.; Zhang, C.; Ling, X.; Zettlemoyer, L.; Weld, DS. ACL. 2011. Knowledge-based
weak supervision for information extraction of overlapping relations.

21. Jampani, R.; Xu, F.; Wu, M.; Perez, LL.; Jermaine, C.; Haas, PJ. SIGMOD. 2008. MCDB: A
Monte Carlo approach to managing uncertain data.

22. Jaynes, ET. Probability Theory: The Logic of Science. Cambridge University Press; 2003.

23. Jiang, S.; Lowd, D.; Dou, D. ICDM. 2012. Learning to refine an automatically extracted
knowledge base using Markov logic.

24. Koc ML, Ré C. Incrementally maintaining classification using an RDBMS. PVLDB. 2011

25. Li, Y.; Reiss, FR.; Chiticariu, L. HLT. 2011. SystemT: A declarative information extraction system.

26. Madhavan, J.; Jeffery, S.; Cohen, S.; Dong, X.; Ko, D.; Yu, C.; Halevy, A. CIDR. 2007. Web-scale
data integration: You can only afford to pay as you go.

27. Mintz, M.; Bills, S.; Snow, R.; Jurafsky, D. ACL. 2009. Distant supervision for relation extraction
without labeled data.

28. Nakashole, N.; Theobald, M.; Weikum, G. WSDM. 2011. Scalable knowledge harvesting with high
precision and high recall.

29. Nath, A.; Domingos, P. AAAI. 2010. Efficient belief propagation for utility maximization and
repeated inference.

30. Niu F, Ré C, Doan A, Shavlik J. Tuffy: Scaling up statistical inference in Markov logic networks
using an RDBMS. PVLDB. 2011

31. Niu F, Zhang C, Ré C, Shavlik J. Elementary: Large-scale knowledge-base construction via
machine learning and statistical inference. Int J Semantic Web Inf Syst. 2012

32. Peters SE, Zhang C, Livny M, Ré C. A machine reading system for assembling synthetic
Paleontological databases. PloS ONE. 2014

33. Ravikumar, PD.; Raskutti, G.; Wainwright, MJ.; Yu, B. NIPS. 2008. Model selection in gaussian
graphical models: High-dimensional consistency of ℓ1-regularized MLE.

34. Ré C, Sadeghian AA, Shan Z, Shin J, Wang F, Wu S, Zhang C. Feature engineering for knowledge
base construction. IEEE Data Eng Bull. 2014

35. Robert, CP.; Casella, G. Monte Carlo Statistical Methods. Springer-Verlag New York, Inc;
Secaucus, NJ, USA: 2005.

36. Shen, W.; Doan, A.; Naughton, JF.; Ramakrishnan, R. VLDB. 2007. Declarative information
extraction using datalog with embedded extraction predicates.

37. Suciu, D.; Olteanu, D.; Ré, C.; Koch, C. Probabilistic Databases. Morgan & Claypool; 2011.

38. Wainwright M, Jordan M. Log-determinant relaxation for approximate inference in discrete
Markov random fields. Trans Sig Proc. 2006

39. Wainwright MJ, Jordan MI. Graphical models, exponential families, and variational inference.
FTML. 2008

40. Weikum, G.; Theobald, M. PODS. 2010. From information to knowledge: Harvesting entities and
relationships from web sources.

41. Wick, M.; McCallum, A. NIPS. 2011. Query-aware MCMC.

42. Wick M, McCallum A, Miklau G. Scalable probabilistic databases with factor graphs and MCMC.
PVLDB. 2010

43. Yao, L.; Riedel, S.; McCallum, A. EMNLP. 2010. Collective cross-document relation extraction
without labelled data.

44. Zhang, C.; Ré, C. SIGMOD. 2013. Towards high-throughput Gibbs sampling at scale: A study
across storage managers.

45. Zhang C, Ré C. DimmWitted: A study of main-memory statistical analytics. PVLDB. 2014

Shin et al. Page 23

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
A KBC system takes as input unstructured documents and outputs a structured knowledge

base. The runtimes are for the TAC-KBP competition system (News). To improve quality,

the developer adds new rules and new data.

Shin et al. Page 24

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
An example KBC system. See Section 2.2 for details.

Shin et al. Page 25

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Schematic illustration of grounding. Each tuple corresponds to a Boolean random variable

and node in the factor graph. We create one factor for every set of groundings.

Shin et al. Page 26

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Semantics for g in Equation 1.

Shin et al. Page 27

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
A Summary of the tradeoffs. Left: An analytical cost model for different approaches; Right:

Empirical examples that illustrate the tradeoff space. All converge to <0.1% loss, and thus,

have comparable quality.

Shin et al. Page 28

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Quality and number of factors of the News corpus with different regularization parameters

for the variational approach.

Shin et al. Page 29

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Statistics of KBC systems we used in experiments. The # vars and # factors are for factor

graphs that contain all rules.

Shin et al. Page 30

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
The set of rules in News. See Section 4.1

Shin et al. Page 31

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
End-to-end efficiency of incremental inference and learning. All execution times are in

hours. The column × refers to the speedup of Incremental (Inc.) over Rerun.

Shin et al. Page 32

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
(a) Quality improvement over time; (b) Quality for different semantics.

Shin et al. Page 33

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Study of the tradeoff space on News.

Shin et al. Page 34

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1. INTRODUCTION
	Incremental Grounding
	Incremental Inference
	Experimental Evaluation Highlights
	Outline

	Related Work
	Knowledge Base Construction (KBC): KBC has been an area of intense study over the last decade, moving from pattern matching [19] and rule-based systems [25] to systems that use machine learning for KBC [5, 8, 14, 15, 28]. Many groups have studied how to improve the quality of specific components of KBC systems [27, 43]. We build on this line of work. We formalized the development process and built DeepDive to ease and accelerate the KBC process, which we hope is of interest to many of these systems as well. Deep-Dive has many common features to Chen and Wang [11], Google’s Knowledge Vault [14], and a forerunner of Deep-Dive, Tuffy [30]. We focus on the incremental evaluation from feature extraction to inference.Declarative Information Extraction: The database community has proposed declarative languages for information extraction, a task with similar goals to knowledge base construction, by extending relational operations [17, 25, 36], or rule-based approaches [28]. These approaches can take advantage of classic view maintenance techniques to make the execution incremental, but they do not study how to incrementally maintain the result of statistical inference and learning, which is the focus of our work.Incremental Maintenance of Statistical Inference and Learning: Related work has focused on incremental inference for specific classes of graphs (tree-structured [12] or low-degree [1] graphical models). We deal instead with the class of factor graphs that arise from the KBC process, which is much more general than the ones examined in previous approaches. Nath and Domingos [29] studied how to extend belief propagation on factor graphs with new evidence, but without any modification to the structure of the graph. Wick and McCallum [41] proposed a “query-aware MCMC” method. They designed a proposal scheme so that query variables tend to be sampled more frequently than other variables. We frame our problem as approximate inference, which allows us to handle changes to the program and the data in a single approach.
	Knowledge Base Construction (KBC): KBC has been an area of intense study over the last decade, moving from pattern matching [19] and rule-based systems [25] to systems that use machine learning for KBC [5, 8, 14, 15, 28]. Many groups have studied how to improve the quality of specific components of KBC systems [27, 43]. We build on this line of work. We formalized the development process and built DeepDive to ease and accelerate the KBC process, which we hope is of interest to many of these systems as well. Deep-Dive has many common features to Chen and Wang [11], Google’s Knowledge Vault [14], and a forerunner of Deep-Dive, Tuffy [30]. We focus on the incremental evaluation from feature extraction to inference.Declarative Information Extraction: The database community has proposed declarative languages for information extraction, a task with similar goals to knowledge base construction, by extending relational operations [17, 25, 36], or rule-based approaches [28]. These approaches can take advantage of classic view maintenance techniques to make the execution incremental, but they do not study how to incrementally maintain the result of statistical inference and learning, which is the focus of our work.Incremental Maintenance of Statistical Inference and Learning: Related work has focused on incremental inference for specific classes of graphs (tree-structured [12] or low-degree [1] graphical models). We deal instead with the class of factor graphs that arise from the KBC process, which is much more general than the ones examined in previous approaches. Nath and Domingos [29] studied how to extend belief propagation on factor graphs with new evidence, but without any modification to the structure of the graph. Wick and McCallum [41] proposed a “query-aware MCMC” method. They designed a proposal scheme so that query variables tend to be sampled more frequently than other variables. We frame our problem as approximate inference, which allows us to handle changes to the program and the data in a single approach.
	Knowledge Base Construction (KBC)
	Declarative Information Extraction
	Incremental Maintenance of Statistical Inference and Learning

	2. KBC USING DEEPDIVE
	2.1 Definitions for KBC Systems
	Example 2.1: Figure 1 illustrates our running example: a knowledge base with pairs of individuals that are married to each other. The input to the system is a collection of news articles and an incomplete set of married persons; the output is a KB containing pairs of person that are married. A KBC system extracts linguistic patterns, e.g., “… and his wife …” between a pair of mentions of individuals (e.g., “Barack Obama” and “M. Obama”). Roughly, these patterns are then used as features in a classifier deciding whether this pair of mentions indicates that they are married (in the HasSpouse) relation.We adopt standard terminology from KBC, e.g., ACE.44http://www.itl.nist.gov/iad/mig/tests/ace/2000/ There are four types of objects that a KBC system seeks to extract from input documents, namely entities, relations, mentions, and relation mentions. An entity is a real-world person, place, or thing. For example, “Michelle_Obama_1” represents the actual entity for a person whose name is “Michelle Obama”; another individual with the same name would have another number. A relation associates two (or more) entities, and represents the fact that there exists a relationship between the participating entities. For example, “Barack_Obama_1” and “Michelle_Obama_1” participate in the HasSpouse relation, which indicates that they are married. These real-world entities and relationships are described in text; a mention is a span of text in an input document that refers to an entity or relationship: “Michelle” may be a mention of the entity “Michelle_Obama_1.” A relation mention is a phrase that connects two mentions that participate in a relation such as “(Barack Obama, M. Obama)”. The process of mapping mentions to entities is called entity linking.
	Example 2.1: Figure 1 illustrates our running example: a knowledge base with pairs of individuals that are married to each other. The input to the system is a collection of news articles and an incomplete set of married persons; the output is a KB containing pairs of person that are married. A KBC system extracts linguistic patterns, e.g., “… and his wife …” between a pair of mentions of individuals (e.g., “Barack Obama” and “M. Obama”). Roughly, these patterns are then used as features in a classifier deciding whether this pair of mentions indicates that they are married (in the HasSpouse) relation.We adopt standard terminology from KBC, e.g., ACE.44http://www.itl.nist.gov/iad/mig/tests/ace/2000/ There are four types of objects that a KBC system seeks to extract from input documents, namely entities, relations, mentions, and relation mentions. An entity is a real-world person, place, or thing. For example, “Michelle_Obama_1” represents the actual entity for a person whose name is “Michelle Obama”; another individual with the same name would have another number. A relation associates two (or more) entities, and represents the fact that there exists a relationship between the participating entities. For example, “Barack_Obama_1” and “Michelle_Obama_1” participate in the HasSpouse relation, which indicates that they are married. These real-world entities and relationships are described in text; a mention is a span of text in an input document that refers to an entity or relationship: “Michelle” may be a mention of the entity “Michelle_Obama_1.” A relation mention is a phrase that connects two mentions that participate in a relation such as “(Barack Obama, M. Obama)”. The process of mapping mentions to entities is called entity linking.
	Example 2.1

	2.2 The DeepDive Framework
	Candidate Generation and Feature Extraction: All data in DeepDive is stored in a relational database. The first phase populates the database using a set of SQL queries and user-defined functions (UDFs) that we call feature extractors. By default, DeepDive stores all documents in the database in one sentence per row with markup produced by standard NLP pre-processing tools, including HTML stripping, part-of-speech tagging, and linguistic parsing. After this loading step, DeepDive executes two types of queries: (1) candidate mappings, which are SQL queries that produce possible mentions, entities, and relations, and (2) feature extractors that associate features to candidates, e.g., “… and his wife …” in Example 2.1.Example 2.2: Candidate mappings are usually simple. Here, we create a relation mention for every pair of candidate persons in the same sentence (s):

(R1) MarriedCandidate

(m1, m2) : -

PersonCandidate

(s, m1),

PersonCandidate

(s, m2).
Candidate mappings are simply SQL queries with UDFs that look like low-precision but high-recall ETL scripts. Such rules must be high recall: if the union of candidate mappings misses a fact, DeepDive has no chance to extract it.We also need to extract features, and we extend classical Markov Logic in two ways: (1) user-defined functions and (2) weight tying, which we illustrate by example.Example 2.3: Suppose that phrase(m1, m2, sent) returns the phrase between two mentions in the sentence, e.g., “and his wife” in the above example. The phrase between two mentions may indicate whether two people are married. We would write this as:

(FE1) MarriedMentions

(m1, m2) : -

MarriedCandidate

(m1, m2),

Mention

(s, m1),

Mention

(s, m2),

Sentence

(s, sent)
 weight = phrase(m1, m2, sent).
One can think about this like a classifier: This rule says that whether the text indicates that the mentions m1 and m2 are married is influenced by the phrase between those mention pairs. The system will infer based on training data its confidence (by estimating the weight) that two mentions are indeed indicated to be married.Technically, phrase returns an identifier that determines which weights should be used for a given relation mention in a sentence. If phrase returns the same result for two relation mentions, they receive the same weight. We explain weight tying in more detail in Section 2.3. In general, phrase could be an arbitrary UDF that operates in a per-tuple fashion. This allows DeepDive to support common examples of features such as “bag-of-words” to context-aware NLP features to highly domain-specific dictionaries and ontologies. In addition to specifying sets of classifiers, DeepDive inherits Markov Logic’s ability to specify rich correlations between entities via weighted rules. Such rules are particularly helpful for data cleaning and data integration.Supervision: Just as in Markov Logic, DeepDive can use training data or evidence about any relation; in particular, each user relation is associated with an evidence relation with the same schema and an additional field that indicates whether the entry is true or false. Continuing our example, the evidence relation MarriedMentions_Ev could contain mention pairs with positive and negative labels. Operationally, two standard techniques generate training data: (1) hand-labeling, and (2) distant supervision, which we illustrate below.Example 2.4: Distant supervision [20, 27] is a popular technique to create evidence in KBC systems. The idea is to use an incomplete KB of married entity pairs to heuristically label (as True evidence) all relation mentions that link to a pair of married entities:

(S1) MarriedMentions_Ev

(m1, m2, true) : -

MarriedCandidates

(m1, m2),

EL

(m1, e1),

EL

(m2, e2),

Married

(e1, e2).
Here, Married is an (incomplete) list of married real-world persons that we wish to extend. The relation EL is for “entity linking” that maps mentions to their candidate entities. At first blush, this rule seems incorrect. However, it generates noisy, imperfect examples of sentences that indicate two people are married. Machine learning techniques are able to exploit redundancy to cope with the noise and learn the relevant phrases (e.g., “and his wife”). Negative examples are generated by relations that are largely disjoint (e.g., siblings). Similar to DIPRE [6] and Hearst patterns [19], distant supervision exploits the “duality” [6] between patterns and relation instances; furthermore, it allows us to integrate this idea into DeepDive’s unified probabilistic framework.Learning and Inference: In the learning and inference phase, DeepDive generates a factor graph, similar to Markov Logic, and uses techniques from Tuffy [30]. The inference and learning are done using standard techniques (Gibbs Sampling) that we describe below after introducing the formal semantics.Error Analysis: DeepDive runs the above three phases in sequence, and at the end of the learning and inference, it obtains a marginal probability p for each candidate fact. To produce the final KB, the user often selects facts in which we are highly confident, e.g., p > 0.95. Typically, the user needs to inspect errors and repeat, a process that we call error analysis. Error analysis is the process of understanding the most common mistakes (incorrect extractions, too-specific features, candidate mistakes, etc.) and deciding how to correct them [34]. To facilitate error analysis, users write standard SQL queries.
	Candidate Generation and Feature Extraction
	Example 2.2
	Example 2.3

	Supervision
	Example 2.4

	Learning and Inference
	Error Analysis

	2.3 Discussion of Design Choices
	Comparison with Markov Logic: Our language is based on Markov Logic [13, 30], and our current language inherits Markov Logic’s formal semantics. However, there are three differences in how we implement DeepDive’s language:Weight Tying: As shown in rule FE1, DeepDive allows factors to share weights across rules, which is used in every DeepDive system. As we will see declaring a classifier is a one-liner in DeepDive: Class(x) : − R(x, f) with weight = w(f) declares a classifier for objects (bindings of x); R(x, f) indicates that object x has features f. In standard MLNs, this would require one rule for each feature.66Our system Tuffy introduced this feature to MLNs, but its semantics had not been described in the literature. In MLNs, every rule introduces a single weight, and the correlation structure and weight structure are coupled. DeepDive decouples them, which makes writing some applications easier.User-defined Functions: As shown in rule FE1, DeepDive allows the user to use user-defined functions (phrase in FE1) to specify feature extraction rules. This allows DeepDive to handle common feature extraction idioms using regular expressions, Python scripts, etc. This brings more of the KBC pipeline into DeepDive, which allows DeepDive to find optimization opportunities for a larger fraction of this pipeline.Implication Semantics: In the next section, we introduce a function g that counts the number of groundings in different ways. g is an example of transformation groups [22, Ch. 12], a technique from the Bayesian inference literature to model different noise distributions. Experimentally, we show that different semantics (choices of g) affect the quality of KBC applications (up to 10% in F1 score) compared with the default semantics of MLNs. After some notation, we give an example to illustrate how g alters the semantics.
	Comparison with Markov Logic
	Weight Tying
	User-defined Functions
	Implication Semantics

	2.4 Semantics of a DeepDive Program
	Boolean Rules: We first present the semantics of Boolean inference rules. For ease of exposition only, we assume that there is a single domain
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
 A rule γ is a pair (q, w) such that q is a Boolean query and w is a real number. An example is as follows:We denote the body predicates of q as body(z̄) where z̄ are all variables in the body of q(), e.g., z̄ = (x, y) in the example above. Given a rule γ = (q, w) and a possible world I, we define the sign of γ on I as sign(γ, I) = 1 if q() ∈ I and −1 otherwise.Given c̄ ∈
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
|z̄|, a grounding of q w.r.t. c̄ is a substitution body(z̄/c̄), where the variables in z̄ are replaced with the values in c̄. For example, for q above with c̄ = (a, b) then body(z̄/(a, b)) yields the grounding R(a, b), S(b), which is a conjunction of facts. The support n(γ, I) of a rule γ in a possible world I is the number of groundings c̄ for which body(z̄/c̄) is satisfied in I:The weight of γ in I is the product of three terms:(1)where g is a real-valued function defined on the natural numbers. For intuition, if w(γ, I) > 0, it adds a weight that indicates that the world is more likely. If w(γ, I) < 0, it indicates that the world is less likely. As motivated above, we introduce g to support multiple semantics. Figure 4 shows choices for g that are supported by DeepDive, which we compare in an example below.Let Γ be a set of Boolean rules, the weight of Γ on a possible world I is defined asThis function allow us to define a probability distribution over the set J of possible worlds:(2)and Z is called the partition function. This framework is able to compactly specify much more sophisticated distributions than traditional probabilistic databases [37].Example 2.5: We illustrate the semantics by example. From the Web, we could extract a set of relation mentions that supports “Barack Obama is born in Hawaii” and another set of relation mentions that support “Barack Obama is born in Kenya.” These relation mentions provide conflicting information, and one common approach is to “vote.” We abstract this as up or down votes about a fact q().We can think of this as a having a single random variable q() in which the size of Up (resp. Down) is an evidence relation that indicates the number of “Up” (resp. “Down”) votes. There are only two possible worlds: one in which q() ∈ I (is true) and not. Let |Up| and |Down| be the sizes of Up and Down. Following Equation 1 and 2, we havewhereConsider the case when |Up| = 106 and |Down| = 106 − 100. In some scenarios, this small number of differing votes could be due to random noise in the data collection processes. One would expect a probability for q() close to 0.5. In the linear semantics g(n) = n, the probability of q is (1 + e−200)−1 ≈ 1 − e−200, which is extremely close to 1. In contrast, if we set g(n) = log(1 + n), then Pr[q()] ≈ 0.5. Intuitively, the probability depends on their ratio of these votes. The logical semantics g(n) = 𝟙n>0
gives exactly Pr[q()] = 0.5. However, it would do the same if |Down| = 1. Thus, logical semantics may ignore the strength of the voting information. At a high level, ratio semantics can learn weights from examples with different raw counts but similar ratios. In contrast, linear is appropriate when the raw counts themselves are meaningful.No semantic subsumes the other, and each is appropriate in some application. We have found that in many cases the ratio semantics is more suitable for the application that the user wants to model. We show in the full version that these semantics also affect efficiency empirically and theoretically–even for the above simple example. Intuitively, sampling converges faster in the logical or ratio semantics because the distribution is less sharply peaked, which means that the sampler is less likely to get stuck in local minima.Extension to General Rules: Consider a general inference rule γ = (q, w), written as:
 where x̄ ⊆ z̄ and ȳ ⊆ z̄. This extension allows weight tying. Given b̄ ∈
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
|x̄ ∪ ȳ| where b̄x (resp. b̄y) are the values of b̄ in x̄ (resp. ȳ), we expand γ to a set Γ of Boolean rules by substituting x̄ ∪ ȳ with values from
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
in all possible ways.
 where each qb̄y() is a fresh symbol for distinct values of b̄t, and wb̄x is a real number. Rules created this way may have free variables in their bodies, e.g., q(x) : − R(x, y, z) with w(y) create |
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
2 different rules of the form qa() : − R(a, b, z), one for each (a, b) ∈
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
2, and rules created with the same value of b share the same weight. Tying weights allows one to create models succinctly.Example 2.6: We use the following as an example:
This declares a binary classifier as follows. Each binding for x is an object to classify as in Class or not. The relation R associates each object to its features. E.g., R(a, f) indicates that object a has a feature f. weight = w(f) indicates that weights are functions of feature f; thus, the same weights are tied across values for a. This rule declares a logistic regression classifier.It is straightforward formal extension to let weights be functions of the return values of UDFs as we do in DeepDive.
	Boolean Rules
	Example 2.5

	Extension to General Rules
	Example 2.6

	2.5 Inference on Factor Graphs
	Example 2.7: Take the database instances and rules in Figure 3 as an example, each tuple in relation R, S, and Q is a random variable, and V contains all random variables. The inference rules F1 and F2 ground factors with the same name in the factor graph as illustrated in Figure 3. Both F1 and F2 are implemented as SQL in DeepDive.To define the semantics, we use Equation 1 to define ŵ (f, I) = w(γ, I), in which γ is the rule corresponding to f. As before, we define Ŵ(F, I) =Σf∈Fŵ(f, I), and then the probability of a possible world is the following function:The main task that DeepDive conducts on factor graphs is statistical inference, i.e., for a given node, what is the marginal probability that this node takes the value 1? Since a node takes value 1 when a tuple is in the output, this process computes the marginal probability values returned to users. In general, computing these marginal probabilities is #P-hard [39]. Like many other systems, DeepDive uses Gibbs sampling [35] to estimate the marginal probability of every tuple in the database.
	Example 2.7: Take the database instances and rules in Figure 3 as an example, each tuple in relation R, S, and Q is a random variable, and V contains all random variables. The inference rules F1 and F2 ground factors with the same name in the factor graph as illustrated in Figure 3. Both F1 and F2 are implemented as SQL in DeepDive.To define the semantics, we use Equation 1 to define ŵ (f, I) = w(γ, I), in which γ is the rule corresponding to f. As before, we define Ŵ(F, I) =Σf∈Fŵ(f, I), and then the probability of a possible world is the following function:The main task that DeepDive conducts on factor graphs is statistical inference, i.e., for a given node, what is the marginal probability that this node takes the value 1? Since a node takes value 1 when a tuple is in the output, this process computes the marginal probability values returned to users. In general, computing these marginal probabilities is #P-hard [39]. Like many other systems, DeepDive uses Gibbs sampling [35] to estimate the marginal probability of every tuple in the database.
	Example 2.7

	3. INCREMENTAL KBC
	Problem Setting: Our approach to incrementally maintaining a KBC system runs in two phases. (1) Incremental Grounding. The goal of the incremental grounding phase is to evaluate an update of the DeepDive program to produce the “delta” of the modified factor graph, i.e., the modified variables ΔV and factors ΔF. This phase consists of relational operations, and we apply classic incremental view maintenance techniques. (2) Incremental Inference. The goal of incremental inference is given (ΔV, ΔF) run statistical inference on the changed factor graph.
	Problem Setting: Our approach to incrementally maintaining a KBC system runs in two phases. (1) Incremental Grounding. The goal of the incremental grounding phase is to evaluate an update of the DeepDive program to produce the “delta” of the modified factor graph, i.e., the modified variables ΔV and factors ΔF. This phase consists of relational operations, and we apply classic incremental view maintenance techniques. (2) Incremental Inference. The goal of incremental inference is given (ΔV, ΔF) run statistical inference on the changed factor graph.
	Problem Setting

	3.1 Standard Techniques: Delta Rules
	3.2 Novel Techniques for Incremental Maintenance of Inference
	3.2.1 Strawman: Complete Materialization
	Materialization Phase
	Inference Phase

	3.2.2 Sampling Approach
	Materialization Phase
	Inference Phase

	Algorithm 1
	3.3 Choosing Between Different Approaches
	Materialization Phase: Both approaches need samples from the original factor graph, and this is the dominant cost during materialization. A key question is “How many samples should we collect?” We experimented with several heuristic methods to estimate the number of samples that are needed, which requires understanding how likely future changes are, statistical considerations, etc. These approaches were difficult for users to understand, so DeepDive takes a best-effort approach: it generates as many samples as possible when idle or within a user-specified time interval.Inference Phase: Based on the tradeoffs analysis, we developed a rule-based optimizer with the following set of rules:•If an update does not change the structure of the graph, choose the sampling approach.•If an update modifies the evidence, choose the variational approach.•If an update introduces new features, choose the sampling approach.•Finally, if we run out of samples, use the variational approach.This simple set of rules is used in our experiments.
	Materialization Phase
	Inference Phase

	4. EXPERIMENTS
	4.1 Experimental Settings
	Datasets and Workloads: To study the efficiency of Deep-Dive, we selected five KBC systems, namely (1) News, (2) Genomics, (3) Adversarial, (4) Pharmacogenomics, and (5) Paleontology. Their names refers to the specific domains on which they focus. Figure 7 illustrates the statistics of these KBC systems and of their input datasets. We group all rules in each system into six rule templates with four workload categories. We focus on the News system below.The News system builds a knowledge base between persons, locations, and organizations, and contains 34 different relations, e.g., HasSpouse or MemberOf. The input to the KBC system is a corpus that contains 1.8 million news articles and Web pages. We use four types of rules in News in our experiments, as shown in Figure 8, error analysis (rule A1), candidate generation and feature extraction (FE1, FE2), supervision (S1, S2), and inference (I1), corresponding to the steps where these rules are used.Other applications are different in terms of the quality of the text. We choose these systems as they span a large range in the spectrum of quality: Adversarial contains advertisements collected from websites where each document may have only 1–2 sentences with grammatical errors; in contrast, Paleontology contains well-curated journal articles with precise, unambiguous writing and simple relationships. Genomics and Pharma have precise texts, but the goal is to extract relationships that are more linguistically ambiguous compared to the Paleontology text. News has slightly degraded writing and ambiguous relationships, e.g., “member of.” Rules with the same prefix, e.g., FE1 and FE2, belong to the same category, e.g., feature extraction.DeepDive Details: DeepDive is implemented in Scala and C++, and we use Greenplum to handle all SQL. All feature extractors are written in Python. The statistical inference and learning and the incremental maintenance component are all written in C++. All experiments are run on a machine with four CPUs (each CPU is a 12-core 2.40 GHz Xeon E5-4657L), 1 TB RAM, and 12×1TB hard drives and running Ubuntu 12.04. For these experiments, we compiled DeepDive with Scala 2.11.2, g++-4.9.0 with -O3 optimization, and Python 2.7.3. In Genomics and Adversarial, Python 3.4.0 is used for feature extractors.
	Datasets and Workloads
	DeepDive Details

	4.2 End-to-end Performance and Quality
	Quality Over Time: We first compare Rerun and Incremental in terms of the wait time that developers experience to improve the quality of a KBC system. We focus on News because it is a well-known benchmark competition. We run all six rules sequentially for both Rerun and Incremental, and after executing each rule, we report the quality of the system measured by the F1 score and the cumulative execution time. Materialization in the Incremental system is performed only once. Figure 10(a) shows the results. Using Incremental takes significantly less time than Rerun to achieve the same quality. To achieve an F1 score of 0.36 (a competition-winning score), Incremental is 22× faster than Rerun. Indeed, each run of Rerun takes ≈ 6 hours, while a run of Incremental takes at most 30 minutes.We further compare the facts extracted by Incremental and Rerun and find that these two systems not only have similar end-to-end quality, but are also similar enough to support common debugging tasks. We examine the facts with high-confidence in Rerun (> 0.9 probability), 99% of them also appear in Incremental, and vice versa. High confidence extractions are used by the developer to debug precision issues. Among all facts, we find that at most 4% of them have a probability that differs by more than 0.05. The similarity between snapshots suggests, our incremental maintenance techniques can be used for debugging.Efficiency of Evaluating Updates: We now compare Rerun and Incremental in terms of their speed in evaluating a given update to the KBC system. To better understand the impact of our technical contribution, we divide the total execution time into parts: (1) the time used for feature extraction and grounding; and (2) the time used for statistical inference and learning. We implemented classical incremental materialization techniques for feature extraction and grounding, which achieves up to a 360× speedup for rule FE1 in News. We get this speedup for free using standard RDBMS techniques, a key design decision in DeepDive.Figure 9 shows the execution time of statistical inference and learning for each update on different systems. We see from Figure 9 that Incremental achieves a 7× to 112× speedup for News across all categories of rules. The analysis rule A1 achieves the highest speedup – this is not surprising because, after applying A1, we do not need to rerun statistical learning, and the updated distribution does not change compared with the original distribution, so the sampling approach has a 100% acceptance rate. The execution of rules for feature extraction (FE1, FE2), supervision (S1, S2), and inference (I1) has a 10× speedup. For these rules, the speedup over Rerun is to be attributed to the fact that the materialized graph contains only 10% of the factors in the full original graph. Below, we show that both the sampling approach and variational approach contribute to the speed-up. Compared with A1, the speedup is smaller because these rules produce a factor graph whose distribution changes more than A1. Because the difference in distribution is larger, the benefit of incremental evaluation is lower.The execution of other KBC applications showed similar speedups, but there are also several interesting data points. For Pharmacogenomics, rule I1 speeds-up only 3×. This is caused by the fact that I1 introduces many new factors, and the new factor graph is 1.4× larger than the original one. In this case, DeepDive needs to evaluate those new factors, which is expensive. For Paleontology, we see that the analysis rule A1 gets a 10× speed-up because as illustrated in the corpus statistics (Figure 7), the Paleontology factor graph has fewer factors for each variable than other systems. Therefore, executing inference on the whole factor graph is cheaper.Materialization Time: One factor that we need to consider is the materialization time for Incremental. Incremental took 12 hours to complete the materialization (2000 samples), for each of the five systems. Most of this time is spent in getting 2× more samples than for a single run of Rerun. We argue that paying this cost is worthwhile given that it is a one-time cost and the materialization can be used for many successive updates, amortizing the one-time cost.
	Quality Over Time
	Efficiency of Evaluating Updates
	Materialization Time

	4.3 Lesion Studies
	Optimizer: Using different materialization strategies for different groups of variables positively affects the performance of DeepDive. We compare Incremental with a strong baseline NoWorkloadInfo which, for each group, first runs the sampling approach. After all samples have been used, we switch to the variational approach. Note that this baseline is stronger than the strategy that fixes the same strategy for all groups. Figure 11 shows the results of the experiment. We see that with the ability to choose between the sampling approach and variational approach according to the workload, DeepDive can be up to 2× faster than NoWorkloadInfo.
	Optimizer

	5. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

