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Abstract

Populating a database with unstructured information is a long-standing problem in industry and 

research that encompasses problems of extraction, cleaning, and integration. Recent names used 

for this problem include dealing with dark data and knowledge base construction (KBC). In this 

work, we describe DeepDive, a system that combines database and machine learning ideas to help 

develop KBC systems, and we present techniques to make the KBC process more efficient. We 

observe that the KBC process is iterative, and we develop techniques to incrementally produce 

inference results for KBC systems. We propose two methods for incremental inference, based 

respectively on sampling and variational techniques. We also study the tradeoff space of these 

methods and develop a simple rule-based optimizer. DeepDive includes all of these contributions, 

and we evaluate Deep-Dive on five KBC systems, showing that it can speed up KBC inference 

tasks by up to two orders of magnitude with negligible impact on quality.

1. INTRODUCTION

The process of populating a structured relational database from unstructured sources has 

received renewed interest in the database community through high-profile start-up 

companies (e.g., Tamr and Trifacta), established companies like IBM’s Watson [7, 16], and a 

variety of research efforts [11, 25, 28, 36, 40]. At the same time, communities such as 

natural language processing and machine learning are attacking similar problems under the 

name knowledge base construction (KBC) [5, 14, 23]. While different communities place 

differing emphasis on the extraction, cleaning, and integration phases, all communities seem 

to be converging toward a common set of techniques that include a mix of data processing, 

machine learning, and engineers-in-the-loop.

The ultimate goal of KBC is to obtain high-quality structured data from unstructured 

information. These databases are richly structured with tens of different entity types in 
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complex relationships. Typically, quality is assessed using two complementary measures: 

precision (how often a claimed tuple is correct) and recall (of the possible tuples to extract, 

how many are actually extracted). These systems can ingest massive numbers of documents–

far outstripping the document counts of even well-funded human curation efforts. 

Industrially, KBC systems are constructed by skilled engineers in a months-long (or longer) 

process–not a one-shot algorithmic task. Arguably, the most important question in such 

systems is how to best use skilled engineers’ time to rapidly improve data quality. In its full 

generality, this question spans a number of areas in computer science, including 

programming languages, systems, and HCI. We focus on a narrower question, with the 

axiom that the more rapid the programmer moves through the KBC construction loop, the 
more quickly she obtains high-quality data.

This paper presents DeepDive, our open-source engine for knowledge base construction.1 

DeepDive’s language and execution model are similar to other KBC systems: DeepDive 

uses a high-level declarative language [11, 28, 30]. From a database perspective, DeepDive’s 

language is based on SQL. From a machine learning perspective, DeepDive’s language is 

based on Markov Logic [13, 30]: DeepDive’s language inherits Markov Logic Networks’ 

(MLN’s) formal semantics.2 Moreover, it uses a standard execution model for such systems 

[11, 28, 30] in which programs go through two main phases: grounding, in which one 

evaluates a sequence of SQL queries to produce a data structure called a factor graph that 

describes a set of random variables and how they are correlated. Essentially, every tuple in 

the database or result of a query is a random variable (node) in this factor graph. The 

inference phase takes the factor graph from grounding and performs statistical inference 

using standard techniques, e.g., Gibbs sampling [42, 44]. The output of inference is the 

marginal probability of every tuple in the database. As with Google’s Knowledge Vault [14] 

and others [31], DeepDive also produces marginal probabilities that are calibrated: if one 

examined all facts with probability 0.9, we would expect that approximately 90% of these 

facts would be correct. To calibrate these probabilities, DeepDive estimates (i.e., learns) 

parameters of the statistical model from data. Inference is a subroutine of the learning 

procedure and is the critical loop. Inference and learning are computationally intense (hours 

on 1TB RAM/48-core machines).

In our experience with DeepDive, we found that KBC is an iterative process. In the past few 

years, DeepDive has been used to build dozens of high-quality KBC systems by a handful of 

technology companies, a number law enforcement agencies via DARPA’s MEMEX, and 

scientists in fields such as paleobiology, drug repurposing, and genomics. Recently, we 

compared a DeepDive system’s extractions to the quality of extractions provided by human 

volunteers over the last ten years for a paleobiology database, and we found that the 

DeepDive system had higher quality (both precision and recall) on many entities and 

relationships. Moreover, on all of the extracted entities and relationships, DeepDive had no 

worse quality [32]. Additionally, the winning entry of the 2014 TAC-KBC competition was 

built on DeepDive [3]. In all cases, we have seen the process of developing KBC systems is 

1http://deepdive.stanford.edu
2DeepDive has some technical differences from Markov Logic that we have found useful in building applications. We discuss these 
differences in Section 2.3.
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iterative: quality requirements change, new data sources arrive, and new concepts are needed 

in the application. This led us to develop techniques to make the entire pipeline incremental 

in the face of changes both to the data and to the DeepDive program. Our primary technical 

contributions are to make the grounding and inference phases more incremental.3

Incremental Grounding

Grounding and feature extraction are performed by a series of SQL queries. To make this 

phase incremental, we adapt the algorithm of Gupta, Mumick, and Subrahmanian [18]. In 

particular, DeepDive allows one to specify “delta rules” that describe how the output will 

change as a result of changes to the input. Although straightforward, this optimization has 

not been applied systematically in such systems and can yield up to 360× speedup in KBC 

systems.

Incremental Inference

Due to our choice of incremental grounding, the input to DeepDive’s inference phase is a 

factor graph along with a set of changed data and rules. The goal is to compute the output 

probabilities computed by the system. Our approach is to frame the incremental maintenance 

problem as one of approximate inference. Previous work in the database community has 

looked at how machine learning data products change in response to both to new labels [24] 

and to new data [9,10]. In KBC, both the program and data change on each iteration. Our 

proposed approach can cope with both types of change simultaneously.

The technical question is which approximate inference algorithms to use in KBC 

applications. We choose to study two popular classes of approximate inference techniques: 

sampling-based materialization (inspired by sampling-based probabilistic databases such as 

MCDB [21]) and variational-based materialization (inspired by techniques for 

approximating graphical models [38]). Applying these techniques to incremental 

maintenance for KBC is novel, and it is not theoretically clear how the techniques compare. 

Thus, we conducted an experimental evaluation of these two approaches on a diverse set of 

DeepDive programs.

We found these two approaches are sensitive to changes along three largely orthogonal axes: 

the size of the factor graph, the sparsity of correlations, and the anticipated number of future 

changes. The performance varies by up to two orders of magnitude in different points of the 

space. Our study of the tradeoff space highlights that neither materialization strategy 

dominates the other. To automatically choose the materialization strategy, we develop a 

simple rule-based optimizer.

Experimental Evaluation Highlights

We used DeepDive programs developed by our group and DeepDive users to understand 

whether the improvements we describe can speed up the iterative development process of 

DeepDive programs. To understand the extent to which DeepDive’s techniques improve 

development time, we took a sequence of six snapshots of a KBC system and ran them with 

3As incremental learning uses standard techniques, we cover it only in the full version of this paper.
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our incremental techniques and completely from scratch. In these snapshots, our incremental 

techniques are 22× faster. The results for each snapshot differ at most by 1% for high-quality 

facts (90%+ accuracy); fewer than 4% of facts differ by more than 0.05 in probability 

between approaches. Thus, essentially the same facts were given to the developer throughout 

execution using the two techniques, but the incremental techniques delivered them more 

quickly.

Outline

The rest of the paper is organized as follows. Section 2 contains an in-depth analysis of the 

KBC development process, and the presentation of our language for modeling KBC systems. 

We discuss the different techniques for incremental maintenance in Section 3. We also 

present the results of the exploration of the tradeoff space and the description of our 

optimizer. Our experimental evaluation is presented in Section 4.

Related Work

Knowledge Base Construction (KBC): KBC has been an area of intense study over the last 

decade, moving from pattern matching [19] and rule-based systems [25] to systems that use 

machine learning for KBC [5, 8, 14, 15, 28]. Many groups have studied how to improve the 

quality of specific components of KBC systems [27, 43]. We build on this line of work. We 

formalized the development process and built DeepDive to ease and accelerate the KBC 

process, which we hope is of interest to many of these systems as well. Deep-Dive has many 

common features to Chen and Wang [11], Google’s Knowledge Vault [14], and a forerunner 

of Deep-Dive, Tuffy [30]. We focus on the incremental evaluation from feature extraction to 

inference.

Declarative Information Extraction: The database community has proposed declarative 

languages for information extraction, a task with similar goals to knowledge base 

construction, by extending relational operations [17, 25, 36], or rule-based approaches [28]. 

These approaches can take advantage of classic view maintenance techniques to make the 

execution incremental, but they do not study how to incrementally maintain the result of 

statistical inference and learning, which is the focus of our work.

Incremental Maintenance of Statistical Inference and Learning: Related work has 

focused on incremental inference for specific classes of graphs (tree-structured [12] or low-

degree [1] graphical models). We deal instead with the class of factor graphs that arise from 

the KBC process, which is much more general than the ones examined in previous 

approaches. Nath and Domingos [29] studied how to extend belief propagation on factor 

graphs with new evidence, but without any modification to the structure of the graph. Wick 

and McCallum [41] proposed a “query-aware MCMC” method. They designed a proposal 

scheme so that query variables tend to be sampled more frequently than other variables. We 

frame our problem as approximate inference, which allows us to handle changes to the 

program and the data in a single approach.
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2. KBC USING DEEPDIVE

We describe DeepDive, an end-to-end framework for building KBC systems with a 

declarative language. We first recall standard definitions, and then introduce the essentials of 

the framework by example, compare our framework with Markov Logic, and describe 

DeepDive’s formal semantics.

2.1 Definitions for KBC Systems

The input to a KBC system is a heterogeneous collection of unstructured, semi-structured, 

and structured data, ranging from text documents to existing but incomplete KBs. The output 
of the system is a relational database containing facts extracted from the input and put into 

the appropriate schema. Creating the knowledge base may involve extraction, cleaning, and 

integration.

Example 2.1: Figure 1 illustrates our running example: a knowledge base with pairs of 

individuals that are married to each other. The input to the system is a collection of news 

articles and an incomplete set of married persons; the output is a KB containing pairs of 

person that are married. A KBC system extracts linguistic patterns, e.g., “… and his wife 

…” between a pair of mentions of individuals (e.g., “Barack Obama” and “M. Obama”). 

Roughly, these patterns are then used as features in a classifier deciding whether this pair of 

mentions indicates that they are married (in the HasSpouse) relation.

We adopt standard terminology from KBC, e.g., ACE.4 There are four types of objects that a 

KBC system seeks to extract from input documents, namely entities, relations, mentions, 

and relation mentions. An entity is a real-world person, place, or thing. For example, 

“Michelle_Obama_1” represents the actual entity for a person whose name is “Michelle 

Obama”; another individual with the same name would have another number. A relation 
associates two (or more) entities, and represents the fact that there exists a relationship 

between the participating entities. For example, “Barack_Obama_1” and 

“Michelle_Obama_1” participate in the HasSpouse relation, which indicates that they are 

married. These real-world entities and relationships are described in text; a mention is a 

span of text in an input document that refers to an entity or relationship: “Michelle” may be 

a mention of the entity “Michelle_Obama_1.” A relation mention is a phrase that connects 

two mentions that participate in a relation such as “(Barack Obama, M. Obama)”. The 

process of mapping mentions to entities is called entity linking.

2.2 The DeepDive Framework

DeepDive is an end-to-end framework for building KBC systems, as shown in Figure 1.5 We 

walk through each phase. DeepDive supports both SQL and datalog, but we use datalog 

syntax for exposition. The rules we describe in this section are manually created by the user 

of DeepDive and the process of creating these rules is application-specific.

4http://www.itl.nist.gov/iad/mig/tests/ace/2000/
5For more information, including examples, please see http://deepdive.stanford.edu. Note that our engine is built on Postgres and 
Greenplum for all SQL processing and UDFs. There is also a port to MySQL.
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Candidate Generation and Feature Extraction: All data in DeepDive is stored in a 

relational database. The first phase populates the database using a set of SQL queries and 

user-defined functions (UDFs) that we call feature extractors. By default, DeepDive stores 

all documents in the database in one sentence per row with markup produced by standard 

NLP pre-processing tools, including HTML stripping, part-of-speech tagging, and linguistic 

parsing. After this loading step, DeepDive executes two types of queries: (1) candidate 
mappings, which are SQL queries that produce possible mentions, entities, and relations, 

and (2) feature extractors that associate features to candidates, e.g., “… and his wife …” in 

Example 2.1.

Example 2.2: Candidate mappings are usually simple. Here, we create a relation mention for 
every pair of candidate persons in the same sentence (s):

(R1) MarriedCandidate

(m1, m2) : -

    

PersonCandidate

(s, m1), 

PersonCandidate

(s, m2).

Candidate mappings are simply SQL queries with UDFs that look like low-precision but 

high-recall ETL scripts. Such rules must be high recall: if the union of candidate mappings 

misses a fact, DeepDive has no chance to extract it.

We also need to extract features, and we extend classical Markov Logic in two ways: (1) 

user-defined functions and (2) weight tying, which we illustrate by example.

Example 2.3: Suppose that phrase(m1, m2, sent) returns the phrase between two mentions 
in the sentence, e.g., “and his wife” in the above example. The phrase between two mentions 
may indicate whether two people are married. We would write this as:

(FE1) MarriedMentions

(m1, m2) : -
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MarriedCandidate

(m1, m2), 

Mention

(s, m1),

     

Mention

(s, m2), 

Sentence

(s, sent)

     weight = phrase(m1, m2, sent).

One can think about this like a classifier: This rule says that whether the text indicates that 
the mentions m1 and m2 are married is influenced by the phrase between those mention 
pairs. The system will infer based on training data its confidence (by estimating the weight) 
that two mentions are indeed indicated to be married.

Technically, phrase returns an identifier that determines which weights should be used for a 

given relation mention in a sentence. If phrase returns the same result for two relation 

mentions, they receive the same weight. We explain weight tying in more detail in Section 

2.3. In general, phrase could be an arbitrary UDF that operates in a per-tuple fashion. This 

allows DeepDive to support common examples of features such as “bag-of-words” to 

context-aware NLP features to highly domain-specific dictionaries and ontologies. In 

addition to specifying sets of classifiers, DeepDive inherits Markov Logic’s ability to 

specify rich correlations between entities via weighted rules. Such rules are particularly 

helpful for data cleaning and data integration.

Supervision: Just as in Markov Logic, DeepDive can use training data or evidence about 

any relation; in particular, each user relation is associated with an evidence relation with the 

same schema and an additional field that indicates whether the entry is true or false. 

Continuing our example, the evidence relation MarriedMentions_Ev could contain mention 

pairs with positive and negative labels. Operationally, two standard techniques generate 

training data: (1) hand-labeling, and (2) distant supervision, which we illustrate below.

Example 2.4: Distant supervision [20, 27] is a popular technique to create evidence in KBC 
systems. The idea is to use an incomplete KB of married entity pairs to heuristically label (as 
True evidence) all relation mentions that link to a pair of married entities:
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(S1) MarriedMentions_Ev

(m1, m2, true) : -

    

MarriedCandidates

(m1, m2), 

EL

(m1, e1),

    

EL

(m2, e2), 

Married

(e1, e2).

Here, Married is an (incomplete) list of married real-world persons that we wish to extend. 

The relation EL is for “entity linking” that maps mentions to their candidate entities. At first 

blush, this rule seems incorrect. However, it generates noisy, imperfect examples of 

sentences that indicate two people are married. Machine learning techniques are able to 

exploit redundancy to cope with the noise and learn the relevant phrases (e.g., “and his 

wife”). Negative examples are generated by relations that are largely disjoint (e.g., siblings). 

Similar to DIPRE [6] and Hearst patterns [19], distant supervision exploits the “duality” [6] 

between patterns and relation instances; furthermore, it allows us to integrate this idea into 

DeepDive’s unified probabilistic framework.

Learning and Inference: In the learning and inference phase, DeepDive generates a factor 

graph, similar to Markov Logic, and uses techniques from Tuffy [30]. The inference and 

learning are done using standard techniques (Gibbs Sampling) that we describe below after 

introducing the formal semantics.

Error Analysis: DeepDive runs the above three phases in sequence, and at the end of the 

learning and inference, it obtains a marginal probability p for each candidate fact. To 

produce the final KB, the user often selects facts in which we are highly confident, e.g., p > 

0.95. Typically, the user needs to inspect errors and repeat, a process that we call error 
analysis. Error analysis is the process of understanding the most common mistakes 
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(incorrect extractions, too-specific features, candidate mistakes, etc.) and deciding how to 

correct them [34]. To facilitate error analysis, users write standard SQL queries.

2.3 Discussion of Design Choices

We have found three related aspects of the DeepDive approach that we believe enable non-

computer scientists to write DeepDive programs: (1) there is no reference in a DeepDive 

program to the underlying machine learning algorithms. Thus, DeepDive programs are 

declarative in a strong sense. Probabilistic semantics provide a way to debug the system 

independently of any algorithm. (2) Deep-Dive allows users to write feature extraction code 

in familiar languages (Python, SQL, and Scala). (3) DeepDive fits into the familiar SQL 

stack, which allows standard tools to inspect and visualize the data. A second key property is 

that the user constructs an end-to-end system and then refines the quality of the system in a 

pay-as-you-go way [26]. In contrast, traditional pipeline-based ETL scripts may lead to time 

and effort spent on extraction and integration–without the ability to evaluate how important 

each step is for end-to-end application quality. Anecdotally, pay-as-you-go leads to more 

informed decisions about how to improve quality.

Comparison with Markov Logic: Our language is based on Markov Logic [13, 30], and 

our current language inherits Markov Logic’s formal semantics. However, there are three 

differences in how we implement DeepDive’s language:

Weight Tying: As shown in rule FE1, DeepDive allows factors to share weights across 

rules, which is used in every DeepDive system. As we will see declaring a classifier is a one-

liner in DeepDive: Class(x) : − R(x, f) with weight = w(f) declares a classifier for objects 

(bindings of x); R(x, f) indicates that object x has features f. In standard MLNs, this would 

require one rule for each feature.6 In MLNs, every rule introduces a single weight, and the 

correlation structure and weight structure are coupled. DeepDive decouples them, which 

makes writing some applications easier.

User-defined Functions: As shown in rule FE1, DeepDive allows the user to use user-

defined functions (phrase in FE1) to specify feature extraction rules. This allows DeepDive 

to handle common feature extraction idioms using regular expressions, Python scripts, etc. 

This brings more of the KBC pipeline into DeepDive, which allows DeepDive to find 

optimization opportunities for a larger fraction of this pipeline.

Implication Semantics: In the next section, we introduce a function g that counts the 

number of groundings in different ways. g is an example of transformation groups [22, Ch. 

12], a technique from the Bayesian inference literature to model different noise distributions. 

Experimentally, we show that different semantics (choices of g) affect the quality of KBC 

applications (up to 10% in F1 score) compared with the default semantics of MLNs. After 

some notation, we give an example to illustrate how g alters the semantics.

6Our system Tuffy introduced this feature to MLNs, but its semantics had not been described in the literature.
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2.4 Semantics of a DeepDive Program

A DeepDive program is a set of rules with weights. During inference, the values of all 

weights w are assumed to be known, while, in learning, one finds the set of weights that 

maximizes the probability of the evidence. As shown in Figure 3, a DeepDive program 

defines a standard structure called a factor graph [39]. First, we directly define the 

probability distribution for rules that involve weights, as it may help clarify our motivation. 

Then, we describe the corresponding factor graph on which inference takes place.

Each possible tuple in the user schema–both IDB and EDB predicates–defines a Boolean 

random variable (r.v.). Let be the set of these r.v.’s. Some of the r.v.’s are fixed to a specific 

value, e.g., as specified in a supervision rule or by training data. Thus, has two parts: a set 

ℰ of evidence variables (those fixed to a specific values) and a set  of query variables 

whose value the system will infer. The class of evidence variables is further split into 

positive evidence and negative evidence. We denote the set of positive evidence variables as 

℘, and the set of negative evidence variables as . An assignment to each of the query 

variables yields a possible world I that must contain all positive evidence variables, i.e., I ⊇ 

℘, and must not contain any negatives, i.e., I ∩  = ∅.

Boolean Rules: We first present the semantics of Boolean inference rules. For ease of 

exposition only, we assume that there is a single domain  A rule γ is a pair (q, w) such that 

q is a Boolean query and w is a real number. An example is as follows:

We denote the body predicates of q as body(z̄) where z ̄ are all variables in the body of q(), 

e.g., z̄ = (x, y) in the example above. Given a rule γ = (q, w) and a possible world I, we 

define the sign of γ on I as sign(γ, I) = 1 if q() ∈ I and −1 otherwise.

Given c̄ ∈ |z̄|, a grounding of q w.r.t. c̄ is a substitution body(z̄/c̄), where the variables in z̄ 

are replaced with the values in c̄. For example, for q above with c ̄ = (a, b) then body(z̄/(a, b)) 

yields the grounding R(a, b), S(b), which is a conjunction of facts. The support n(γ, I) of a 

rule γ in a possible world I is the number of groundings c̄ for which body(z̄/c̄) is satisfied in 

I:

The weight of γ in I is the product of three terms:

(1)

where g is a real-valued function defined on the natural numbers. For intuition, if w(γ, I) > 0, 

it adds a weight that indicates that the world is more likely. If w(γ, I) < 0, it indicates that the 

world is less likely. As motivated above, we introduce g to support multiple semantics. 

Figure 4 shows choices for g that are supported by DeepDive, which we compare in an 

example below.
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Let Γ be a set of Boolean rules, the weight of Γ on a possible world I is defined as

This function allow us to define a probability distribution over the set J of possible worlds:

(2)

and Z is called the partition function. This framework is able to compactly specify much 

more sophisticated distributions than traditional probabilistic databases [37].

Example 2.5: We illustrate the semantics by example. From the Web, we could extract a set 
of relation mentions that supports “Barack Obama is born in Hawaii” and another set of 
relation mentions that support “Barack Obama is born in Kenya.” These relation mentions 
provide conflicting information, and one common approach is to “vote.” We abstract this as 
up or down votes about a fact q().

We can think of this as a having a single random variable q() in which the size of Up (resp. 
Down) is an evidence relation that indicates the number of “Up” (resp. “Down”) votes. 
There are only two possible worlds: one in which q() ∈ I (is true) and not. Let |Up| and |

Down| be the sizes of Up and Down. Following Equation 1 and 2, we have

where

Consider the case when |Up| = 106 and |Down| = 106 − 100. In some scenarios, this small 
number of differing votes could be due to random noise in the data collection processes. One 
would expect a probability for q() close to 0.5. In the linear semantics g(n) = n, the 
probability of q is (1 + e−200)−1 ≈ 1 − e−200, which is extremely close to 1. In contrast, if we 
set g(n) = log(1 + n), then Pr[q()] ≈ 0.5. Intuitively, the probability depends on their ratio of 
these votes. The logical semantics g(n) = 𝟙n>0 gives exactly Pr[q()] = 0.5. However, it would 
do the same if |Down| = 1. Thus, logical semantics may ignore the strength of the voting 
information. At a high level, ratio semantics can learn weights from examples with different 
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raw counts but similar ratios. In contrast, linear is appropriate when the raw counts 
themselves are meaningful.

No semantic subsumes the other, and each is appropriate in some application. We have 

found that in many cases the ratio semantics is more suitable for the application that the user 

wants to model. We show in the full version that these semantics also affect efficiency 

empirically and theoretically–even for the above simple example. Intuitively, sampling 

converges faster in the logical or ratio semantics because the distribution is less sharply 

peaked, which means that the sampler is less likely to get stuck in local minima.

Extension to General Rules: Consider a general inference rule γ = (q, w), written as:

where x̄ ⊆ z̄ and ȳ ⊆ z̄. This extension allows weight tying. Given b̄ ∈ |x̄ ∪ ȳ| where b̄
x 

(resp. b̄
y) are the values of b̄ in x̄ (resp. ȳ), we expand γ to a set Γ of Boolean rules by 

substituting x̄ ∪ ȳ with values from in all possible ways.

where each qb̄y() is a fresh symbol for distinct values of b̄
t, and wb̄x is a real number. Rules 

created this way may have free variables in their bodies, e.g., q(x) : − R(x, y, z) with w(y) 

create | 2 different rules of the form qa() : − R(a, b, z), one for each (a, b) ∈ 2, and rules 

created with the same value of b share the same weight. Tying weights allows one to create 

models succinctly.

Example 2.6: We use the following as an example:

This declares a binary classifier as follows. Each binding for x is an object to classify as in 
Class or not. The relation R associates each object to its features. E.g., R(a, f) indicates that 
object a has a feature f. weight = w(f) indicates that weights are functions of feature f; thus, 
the same weights are tied across values for a. This rule declares a logistic regression 
classifier.

It is straightforward formal extension to let weights be functions of the return values of 

UDFs as we do in DeepDive.

2.5 Inference on Factor Graphs

As in Figure 3, DeepDive explicitly constructs a factor graph for inference and learning 

using a set of SQL queries. Recall that a factor graph is a triple (V, F, ŵ) in which V is a set 

of nodes that correspond to Boolean random variables, F is a set of hyperedges (for f ∈ F, f 

⊆ V), and ŵ : F × {0, 1}V → ℝ is a weight function. We can identify possible worlds with 
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assignments since each node corresponds to a tuple; moreover, in DeepDive, each hyperedge 

f corresponds to the set of groundings for a rule γ. In DeepDive, V and F are explicitly 

created using a set of SQL queries. These data structures are then passed to the sampler, 

which runs outside the database, to estimate the marginal probability of each node or tuple in 

the database. Each tuple is then reloaded into the database with its marginal probability.

Example 2.7: Take the database instances and rules in Figure 3 as an example, each tuple in 

relation R, S, and Q is a random variable, and V contains all random variables. The 
inference rules F1 and F2 ground factors with the same name in the factor graph as 
illustrated in Figure 3. Both F1 and F2 are implemented as SQL in DeepDive.

To define the semantics, we use Equation 1 to define ŵ (f, I) = w(γ, I), in which γ is the rule 

corresponding to f. As before, we define Ŵ(F, I) =Σf∈Fŵ(f, I), and then the probability of a 

possible world is the following function:

The main task that DeepDive conducts on factor graphs is statistical inference, i.e., for a 

given node, what is the marginal probability that this node takes the value 1? Since a node 

takes value 1 when a tuple is in the output, this process computes the marginal probability 

values returned to users. In general, computing these marginal probabilities is #P-hard [39]. 

Like many other systems, DeepDive uses Gibbs sampling [35] to estimate the marginal 

probability of every tuple in the database.

3. INCREMENTAL KBC

To help the KBC system developer be more efficient, we developed techniques to 

incrementally perform the grounding and inference step of KBC execution.

Problem Setting: Our approach to incrementally maintaining a KBC system runs in two 

phases. (1) Incremental Grounding. The goal of the incremental grounding phase is to 

evaluate an update of the DeepDive program to produce the “delta” of the modified factor 

graph, i.e., the modified variables ΔV and factors ΔF. This phase consists of relational 

operations, and we apply classic incremental view maintenance techniques. (2) Incremental 
Inference. The goal of incremental inference is given (ΔV, ΔF) run statistical inference on 

the changed factor graph.

3.1 Standard Techniques: Delta Rules

Because DeepDive is based on SQL, we are able to take advantage of decades of work on 

incremental view maintenance. The input to this phase is the same as the input to the 

grounding phase, a set of SQL queries and the user schema. The output of this phase is how 

the output of grounding changes, i.e., a set of modified variables ΔV and their factors ΔF. 

Since V and F are simply views over the database, any view maintenance techniques can be 

applied to incremental grounding. DeepDive uses DRed algorithm [18] that handles both 
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additions and deletions. Recall that in DRed, for each relation Ri in the user’s schema, we 

create a delta relation, , with the same schema as Ri and an additional column count. For 

each tuple t, t.count represents the number of derivations of t in Ri. On an update, DeepDive 

updates delta relations in two steps. First, for tuples in , DeepDive directly updates the 

corresponding counts. Second, a SQL query called a “delta rule”7 is executed which 

processes these counts to generate modified variables ΔV and factors ΔF. We found that the 

overhead DRed is modest and the gains may be substantial, and so DeepDive always runs 

DRed–except on initial load.

3.2 Novel Techniques for Incremental Maintenance of Inference

We present three techniques for the incremental inference phase on factor graphs: given the 

set of modified variables ΔV and modified factors ΔF produced in the incremental grounding 

phase, our goal is to compute the new distribution. We split the problem into two phases. In 

the materialization phase, we are given access to the entire Deep-Dive program, and we 

attempt to store information about the original distribution, denoted Pr(0). Each approach 

will store different information to use in the next phase, called the inference phase. The 

input to the inference phase is the materialized data from the preceding phase and the 

changes made to the factor graph, the modified variables ΔV and factors ΔF. Our goal is to 

perform inference with respect to the changed distribution, denoted Pr(Δ). For each approach, 

we study its space and time costs for materialization and the time cost for inference. We also 

analyze the empirical trade-off between the approaches in Section 3.2.4.

3.2.1 Strawman: Complete Materialization—The strawman approach, complete 

materialization, is computationally expensive and often infeasible. We use it to set a baseline 

for other approaches.

Materialization Phase: We explicitly store the value of the probability Pr[I] for every 

possible world I. This approach has perfect fidelity, but storing all possible worlds takes an 

exponential amount of space and time in the number of variables in the original factor graph. 

Thus, the strawman approach is often infeasible on even moderate-sized graphs.8

Inference Phase: We use Gibbs sampling: even if the distribution has changed to Pr(Δ), we 

only need access to the new factors in ΔΠℱ and to Pr[I] to perform the Gibbs update. The 

speed improvement arises from the fact that we do not need to access all factors from the 

original graph and perform a computation with them, since we can look them up in Pr[I].

3.2.2 Sampling Approach—The sampling approach is a standard technique to improve 

over the strawman approach by storing a set of possible worlds sampled from the original 

distribution instead of storing all possible worlds. However, as the updated distribution Pr(Δ) 

is different from the distribution used to draw the stored samples, we cannot reuse them 

7For example, for the grounding procedure illustrated in Figure 3, the delta rule for F1 is qδ(x) : −Rδ(x, y).
8Compared with running inference from scratch, the strawman approach does not materialize any factors. Therefore, it is necessary for 
strawman to enumerate each possible world and save their probability because we do not know a priori which possible world will be 
used in the inference phase.
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directly. We use a (standard) Metropolis-Hastings scheme to ensure convergence to the 

updated distribution.

Materialization Phase: In the materialization phase, we store a set of possible worlds 

drawn from the original distribution. For each variable, we store the set of samples as a tuple 
bundle, as in MCDB [21]. A single sample for one random variable only requires 1 bit of 

storage. Therefore, the sampling approach can be efficient in terms of materialization space. 

In the KBC systems we evaluated, 100 samples require less than 5% of the space of the 

original factor graph.

Inference Phase: We use the samples to generate proposals and adapt them to estimate the 

up-to-date distribution. This idea of using samples from similar distributions as proposals is 

standard in statistics, e.g., importance sampling, rejection sampling, and different variants of 

Metropolis-Hastings methods. After investigating these approaches, in Deep-Dive, we use 

the independent Metropolis-Hastings approach [2, 35], which generates proposal samples 

and accepts these samples with an acceptance test. We choose this method only because the 

acceptance test can be evaluated using the sample, ΔV, and ΔF–without the entire factor 

graph. Thus, we may fetch many fewer factors than in the original graph, but we still 

converge to the correct answer.

Algorithm 1

Variational Approach (Materialization)

Input: Factor graph FG = (V, F), regularization parameter λ, number of samples N for approximation.

Output: An approximated factor graph FG′ = (V, F′)

1: I1, …, IN ← N samples drawn from FG.

2: NZ ← {(vi, vj): vi and vj are in some factor in FG}.

3: M ← covariance matrix estimated using I1, …, IN, such that Mij is the covariance between variable i and variable j. 
Set Mij = 0 if (vi, vj) ∉ NZ.

4: Solve the following optimization problem using gradient descent [4], and let the result be X̂

arg maxX log det X

s.t., Xkk = Mkk + 1/3,

∣ Xkj − Mkj ∣ ≤ λ

Xkj = 0 if (vk, vj) ∉ NZ

5: for all i, j s.t. X̂
ij ≠ 0 do

6:  Add in F′ a factor from (vi, vj) with weight X̂
ij.

7: end for

8: return FG′ = (V, F′).

The fraction of accepted samples is called the acceptance rate, and it is a key parameter in 

the efficiency of this approach. The approach may exhaust the stored samples, in which case 

the method resorts to another evaluation method or generates fresh samples.
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3.2.3 Variational Approach—The intuition behind our variational approach is as follows: 

rather than storing the exact original distribution, we store a factor graph with fewer factors 
that approximates the original distribution. On the smaller graph, running inference and 

learning is often faster.

Materialization Phase: The key idea of the variational approach is to approximate the 

distribution using simpler or sparser correlations. To learn a sparser model, we use 

Algorithm 1 which is a log-determinant relaxation [38] with a ℓ1 penalty term [4]. We want 

to understand its strengths and limitations on KBC problems, which is novel. This approach 

uses standard techniques for learning that are already implemented in DeepDive [45].

The input is the original factor graph and two parameters: the number of samples N to use 

for approximating the covariance matrix, and the regularization parameter λ, which controls 

the sparsity of the approximation. The output is a new factor graph that has only binary 

potentials. The intuition for this procedure comes from graphical model structure learning: 

an entry (i, j) is present in the inverse covariance matrix only if variables i and j are 

connected in the factor graph. Given these inputs, the algorithm first draws a set of N 

possible worlds by running Gibbs sampling on the original factor graph. It then estimates the 

covariance matrix based on these samples (Lines 1–3). Using the estimated covariance 

matrix, our algorithms solves the optimization problem in Line 4 to estimate the inverse 

covariance matrix X̂. Then, the algorithm creates one factor for each pair of variables such 

that the corresponding entry in X̂ is non-zero, using the value in X̂ as the new weight (Line 

5–7). These are all the factors of the approximated factor graph (Line 8).

Inference Phase: Given an update to the factor graph (e.g., new variables or new factors), 

we simply apply this update to the approximated graph, and run inference and learning 

directly on the resulting factor graph. As shown in Figure 5(c), the execution time of the 

variational approach is roughly linear in the sparsity of the approximated factor graph. 

Indeed, the execution time of running statistical inference using Gibbs sampling is 

dominated by the time needed to fetch the factors for each random variable, which is an 

expensive operation requiring random access. Therefore, as the approximated graph 

becomes sparser, the number of factors decreases and so does the running time.

Parameter Tuning: We are among the first to use these methods in KBC applications, and 

there is little literature about tuning λ. Intuitively, the smaller λ is, the better the 

approximation is–but the less sparse the approximation is. To understand the impact of λ on 

quality, we show in Figure 6 the quality F1 score of a DeepDive program called News (see 

Section 4) as we vary the regularization parameter. As long as the regularization parameter λ 

is small (e.g., less than 0.1), the quality does not change significantly. In all of our 

applications we observe that there is a relatively large “safe” region from which to choose λ. 

In fact, for all five systems in Section 4, even if we set λ at 0.1 or 0.01, the impact on quality 

is minimal (within 1%), while the impact on speed is significant (up to an order of 

magnitude). Based on Figure 6, DeepDive supports a simple search protocol to set λ. We 

start with a small λ, e.g., 0.001, and increase it by 10× until the KL-divergence is larger than 

a user-specified threshold, specified as a parameter in DeepDive.

Shin et al. Page 16

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2.4 Tradeoffs—We studied the tradeoff between different approaches and summarize the 

empirical results of our study in Figure 5. The performance of different approaches may 

differ by more than two orders of magnitude, and neither of them dominates the other. We 

use a synthetic factor graph with pairwise factors9 and control the following axes:

1. Number of variables in the factor graph. In our experiments, we set the number of 

variables to values in {2, 10, 17, 100, 1000, 10000}.

2. Amount of change. How much the distribution changes affects efficiency, which 

manifests itself in the acceptance rate: the smaller the acceptance rate is, the more 

difference there will be in the distribution. We set the acceptance rate to values in 

{1.0, 0.5, 0.1, 0.01}.

3. Sparsity of correlations. This is the ratio between the number of non-zero weights 

and the total weight. We set the sparsity to values in {0.1, 0.2, 0.3, 0.4, 0.5, 1.0} by 

selecting uniformly at random a subset of factors and set their weight to zero.

We now discuss the results of our exploration of the trade-off space, presented in Figure 5(a–

c).

Size of the Factor Graph: Since the materialization cost of the strawman is exponential in 

the size of the factor graph, we observe that, for graphs with more than 20 variables, the 

strawman is significantly slower than either the sampling approach or the variational 

approach. Factor graphs arising from KBC systems usually contain a much larger number of 

variables; therefore, from now on, we focus on the tradeoff between sampling and 

variational approaches.

Amount of Change: As shown in Figure 5(b), when the acceptance rate is high, the 

sampling approach could outperform the variational one by more than two orders of 

magnitude. When the acceptance rate is high, the sampling approach requires no 

computation and so is much faster than Gibbs sampling. In contrast, when the acceptance 

rate is low, e.g., 0.1%, the variational approach could be more than 5× faster than the 

sampling approach. An acceptance rate lower than 0.1% occurs for KBC operations when 

one updates the training data, adds many new features, or concept drift happens during the 

development of KBC systems.

Sparsity of Correlations: As shown in Figure 5(c), when the original factor graph is sparse, 

the variational approach can be 11× faster than the sampling approach. This is because the 

approximate factor graph contains less than 10% of the factors than the original graph, and it 

is therefore much faster to run inference on the approximate graph. On the other hand, if the 

original factor graph is too dense, the variational approach could be more than 7× slower 

than the sampling one, as it is essentially performing inference on a factor graph with a size 

similar to that of the original graph.

9In Figure 5, the numbers are reported for a factor graph whose factor weights are sampled at random from [−0.5, 0.5]. We also 
experimented with different intervals ([−0.1, 0.1], [−1, 1], [−10, 10]), but these had no impact on the tradeoff
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Discussion: Theoretical Guarantees: We discuss the theoretical guarantee that each 

materialization strategy provides. Each materialization method inherits the guarantee of that 

inference technique. The strawman approach retains the same guarantees as Gibbs sampling; 

For the sampling approach use standard Metropolis-Hasting scheme. Given enough time, 

this approach will converge to the true distribution. For the variational approach, the 

guarantees are more subtle and we point the reader to the consistency of structure estimation 

of Gaussian Markov random field [33] and log-determinate relaxation [38]. These results are 

theoretically incomparable, motivating our empirical study.

3.3 Choosing Between Different Approaches

From the study of the tradeoff space, neither the sampling approach nor the variational 

approach dominates the other, and their relative performance depends on how they are being 

used in KBC. We propose to materialize the factor graph using both the sampling approach 

and the variational approach, and defer the decision to the inference phase when we can 

observe the workload.

Materialization Phase: Both approaches need samples from the original factor graph, and 

this is the dominant cost during materialization. A key question is “How many samples 
should we collect?” We experimented with several heuristic methods to estimate the number 

of samples that are needed, which requires understanding how likely future changes are, 

statistical considerations, etc. These approaches were difficult for users to understand, so 

DeepDive takes a best-effort approach: it generates as many samples as possible when idle 

or within a user-specified time interval.

Inference Phase: Based on the tradeoffs analysis, we developed a rule-based optimizer with 

the following set of rules:

• If an update does not change the structure of the graph, choose the sampling 

approach.

• If an update modifies the evidence, choose the variational approach.

• If an update introduces new features, choose the sampling approach.

• Finally, if we run out of samples, use the variational approach.

This simple set of rules is used in our experiments.

4. EXPERIMENTS

We conducted an experimental evaluation of DeepDive for incremental maintenance of KBC 

systems.

4.1 Experimental Settings

To evaluate DeepDive, we used DeepDive programs developed by our users over the last 

three years from paleontologists, geologists, biologists, a defense contractor, and a KBC 

competition. These are high-quality KBC systems: two of our KBC systems for natural 

sciences achieved quality comparable to (and sometimes better than) human experts, as 
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assessed by double-blind experiments, and our KBC system for a KBC competition is the 

top system among all 45 submissions from 18 teams as assessed by professional annotators. 

To simulate the development process, we took snapshots of DeepDive programs at the end of 

every development iteration, and we use this dataset of snapshots in the experiments to 

understand our hypothesis that incremental techniques can be used to improve development 

speed.

Datasets and Workloads: To study the efficiency of Deep-Dive, we selected five KBC 

systems, namely (1) News, (2) Genomics, (3) Adversarial, (4) Pharmacogenomics, and (5) 

Paleontology. Their names refers to the specific domains on which they focus. Figure 7 

illustrates the statistics of these KBC systems and of their input datasets. We group all rules 

in each system into six rule templates with four workload categories. We focus on the News 

system below.

The News system builds a knowledge base between persons, locations, and organizations, 

and contains 34 different relations, e.g., HasSpouse or MemberOf. The input to the KBC 

system is a corpus that contains 1.8 million news articles and Web pages. We use four types 

of rules in News in our experiments, as shown in Figure 8, error analysis (rule A1), 

candidate generation and feature extraction (FE1, FE2), supervision (S1, S2), and inference 

(I1), corresponding to the steps where these rules are used.

Other applications are different in terms of the quality of the text. We choose these systems 

as they span a large range in the spectrum of quality: Adversarial contains advertisements 

collected from websites where each document may have only 1–2 sentences with 

grammatical errors; in contrast, Paleontology contains well-curated journal articles with 

precise, unambiguous writing and simple relationships. Genomics and Pharma have precise 

texts, but the goal is to extract relationships that are more linguistically ambiguous compared 

to the Paleontology text. News has slightly degraded writing and ambiguous relationships, 

e.g., “member of.” Rules with the same prefix, e.g., FE1 and FE2, belong to the same 

category, e.g., feature extraction.

DeepDive Details: DeepDive is implemented in Scala and C++, and we use Greenplum to 

handle all SQL. All feature extractors are written in Python. The statistical inference and 

learning and the incremental maintenance component are all written in C++. All experiments 

are run on a machine with four CPUs (each CPU is a 12-core 2.40 GHz Xeon E5-4657L), 1 

TB RAM, and 12×1TB hard drives and running Ubuntu 12.04. For these experiments, we 

compiled DeepDive with Scala 2.11.2, g++-4.9.0 with -O3 optimization, and Python 2.7.3. 

In Genomics and Adversarial, Python 3.4.0 is used for feature extractors.

4.2 End-to-end Performance and Quality

We built a modified version of DeepDive called Rerun, which given an update on the KBC 

system, runs the Deep-Dive program from scratch. DeepDive, which uses all techniques, is 

called Incremental. The results of our evaluation show that DeepDive is able to speed up the 

development of high-quality KBC systems through incremental maintenance with little 

impact on quality. We set the number of samples to collect during execution to {10, 100, 

Shin et al. Page 19

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1000} and the number of samples to collect during materialization to {1000, 2000}. We 

report results for (1000, 2000), as results for other combinations of parameters are similar.

Quality Over Time: We first compare Rerun and Incremental in terms of the wait time that 

developers experience to improve the quality of a KBC system. We focus on News because 

it is a well-known benchmark competition. We run all six rules sequentially for both Rerun 

and Incremental, and after executing each rule, we report the quality of the system measured 

by the F1 score and the cumulative execution time. Materialization in the Incremental 

system is performed only once. Figure 10(a) shows the results. Using Incremental takes 

significantly less time than Rerun to achieve the same quality. To achieve an F1 score of 0.36 

(a competition-winning score), Incremental is 22× faster than Rerun. Indeed, each run of 

Rerun takes ≈ 6 hours, while a run of Incremental takes at most 30 minutes.

We further compare the facts extracted by Incremental and Rerun and find that these two 

systems not only have similar end-to-end quality, but are also similar enough to support 

common debugging tasks. We examine the facts with high-confidence in Rerun (> 0.9 

probability), 99% of them also appear in Incremental, and vice versa. High confidence 

extractions are used by the developer to debug precision issues. Among all facts, we find that 

at most 4% of them have a probability that differs by more than 0.05. The similarity between 

snapshots suggests, our incremental maintenance techniques can be used for debugging.

Efficiency of Evaluating Updates: We now compare Rerun and Incremental in terms of 

their speed in evaluating a given update to the KBC system. To better understand the impact 

of our technical contribution, we divide the total execution time into parts: (1) the time used 

for feature extraction and grounding; and (2) the time used for statistical inference and 

learning. We implemented classical incremental materialization techniques for feature 

extraction and grounding, which achieves up to a 360× speedup for rule FE1 in News. We 

get this speedup for free using standard RDBMS techniques, a key design decision in 

DeepDive.

Figure 9 shows the execution time of statistical inference and learning for each update on 

different systems. We see from Figure 9 that Incremental achieves a 7× to 112× speedup for 

News across all categories of rules. The analysis rule A1 achieves the highest speedup – this 

is not surprising because, after applying A1, we do not need to rerun statistical learning, and 

the updated distribution does not change compared with the original distribution, so the 

sampling approach has a 100% acceptance rate. The execution of rules for feature extraction 

(FE1, FE2), supervision (S1, S2), and inference (I1) has a 10× speedup. For these rules, the 

speedup over Rerun is to be attributed to the fact that the materialized graph contains only 

10% of the factors in the full original graph. Below, we show that both the sampling 

approach and variational approach contribute to the speed-up. Compared with A1, the 

speedup is smaller because these rules produce a factor graph whose distribution changes 

more than A1. Because the difference in distribution is larger, the benefit of incremental 

evaluation is lower.

The execution of other KBC applications showed similar speedups, but there are also several 

interesting data points. For Pharmacogenomics, rule I1 speeds-up only 3×. This is caused by 
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the fact that I1 introduces many new factors, and the new factor graph is 1.4× larger than the 

original one. In this case, DeepDive needs to evaluate those new factors, which is expensive. 

For Paleontology, we see that the analysis rule A1 gets a 10× speed-up because as illustrated 

in the corpus statistics (Figure 7), the Paleontology factor graph has fewer factors for each 

variable than other systems. Therefore, executing inference on the whole factor graph is 

cheaper.

Materialization Time: One factor that we need to consider is the materialization time for 

Incremental. Incremental took 12 hours to complete the materialization (2000 samples), for 

each of the five systems. Most of this time is spent in getting 2× more samples than for a 

single run of Rerun. We argue that paying this cost is worthwhile given that it is a one-time 

cost and the materialization can be used for many successive updates, amortizing the one-

time cost.

4.3 Lesion Studies

We conducted lesion studies to verify the effect of the tradeoff space on the performance of 

DeepDive. In each lesion study, we disable a component of DeepDive, and leave all other 

components untouched. We report the execution time for statistical inference and learning.

We evaluate the impact of each materialization strategy on the final end-to-end performance. 

We disabled either the sampling approach or the variational approach and left all other 

components of the system untouched. Figure 11 shows the results for News. Disabling either 

the sampling approach or the variational approach slows down the execution compared to 

the “full” system. For analysis rule A1, disabling the sampling approach leads to a more than 

11× slow down, because the sampling approach has, for this rule, a 100% acceptance rate 

because the distribution does not change. For feature extraction rules, disabling the sampling 

approach slows down the system by 5× because it forces the use of the variational approach 

even when the distribution for a group of variables does not change. For supervision rules, 

disabling the variational approach is 36× slower because the introduction of training 

examples decreases the acceptance rate of the sampling approach.

Optimizer: Using different materialization strategies for different groups of variables 

positively affects the performance of DeepDive. We compare Incremental with a strong 

baseline NoWorkloadInfo which, for each group, first runs the sampling approach. After all 

samples have been used, we switch to the variational approach. Note that this baseline is 

stronger than the strategy that fixes the same strategy for all groups. Figure 11 shows the 

results of the experiment. We see that with the ability to choose between the sampling 

approach and variational approach according to the workload, DeepDive can be up to 2× 

faster than NoWorkloadInfo.

5. CONCLUSION

We described the DeepDive approach to KBC and our experience building KBC systems 

over the last few years. To improve quality, we argued that a key challenge is to accelerate 

the development loop. We described the semantic choices that we made in our language. By 
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building on SQL, DeepDive is able to use classical techniques to provide incremental 

processing for the SQL components. However, these classical techniques do not help with 

statistical inference, and we described a novel tradeoff space for approximate inference 

techniques. We used these approximate inference techniques to improve end-to-end 

execution time in the face of changes both to the program and the data; they improved 

system performance by two orders of magnitude in five real KBC scenarios while keeping 

the quality high enough to aid in the development process.
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Figure 1. 
A KBC system takes as input unstructured documents and outputs a structured knowledge 

base. The runtimes are for the TAC-KBP competition system (News). To improve quality, 

the developer adds new rules and new data.
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Figure 2. 
An example KBC system. See Section 2.2 for details.
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Figure 3. 
Schematic illustration of grounding. Each tuple corresponds to a Boolean random variable 

and node in the factor graph. We create one factor for every set of groundings.
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Figure 4. 
Semantics for g in Equation 1.
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Figure 5. 
A Summary of the tradeoffs. Left: An analytical cost model for different approaches; Right: 

Empirical examples that illustrate the tradeoff space. All converge to <0.1% loss, and thus, 

have comparable quality.
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Figure 6. 
Quality and number of factors of the News corpus with different regularization parameters 

for the variational approach.
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Figure 7. 
Statistics of KBC systems we used in experiments. The # vars and # factors are for factor 

graphs that contain all rules.
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Figure 8. 
The set of rules in News. See Section 4.1
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Figure 9. 
End-to-end efficiency of incremental inference and learning. All execution times are in 

hours. The column × refers to the speedup of Incremental (Inc.) over Rerun.
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Figure 10. 
(a) Quality improvement over time; (b) Quality for different semantics.
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Figure 11. 
Study of the tradeoff space on News.
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	2.2 The DeepDive Framework
	Candidate Generation and Feature Extraction: All data in DeepDive is stored in a relational database. The first phase populates the database using a set of SQL queries and user-defined functions (UDFs) that we call feature extractors. By default, DeepDive stores all documents in the database in one sentence per row with markup produced by standard NLP pre-processing tools, including HTML stripping, part-of-speech tagging, and linguistic parsing. After this loading step, DeepDive executes two types of queries: (1) candidate mappings, which are SQL queries that produce possible mentions, entities, and relations, and (2) feature extractors that associate features to candidates, e.g., “… and his wife …” in Example 2.1.Example 2.2: Candidate mappings are usually simple. Here, we create a relation mention for every pair of candidate persons in the same sentence (s):

(R1) MarriedCandidate

(m1, m2) : -
    

PersonCandidate

(s, m1), 

PersonCandidate

(s, m2).
Candidate mappings are simply SQL queries with UDFs that look like low-precision but high-recall ETL scripts. Such rules must be high recall: if the union of candidate mappings misses a fact, DeepDive has no chance to extract it.We also need to extract features, and we extend classical Markov Logic in two ways: (1) user-defined functions and (2) weight tying, which we illustrate by example.Example 2.3: Suppose that phrase(m1, m2, sent) returns the phrase between two mentions in the sentence, e.g., “and his wife” in the above example. The phrase between two mentions may indicate whether two people are married. We would write this as:

(FE1) MarriedMentions

(m1, m2) : -
     

MarriedCandidate

(m1, m2), 

Mention

(s, m1),
     

Mention

(s, m2), 

Sentence

(s, sent)
     weight = phrase(m1, m2, sent).
One can think about this like a classifier: This rule says that whether the text indicates that the mentions m1 and m2 are married is influenced by the phrase between those mention pairs. The system will infer based on training data its confidence (by estimating the weight) that two mentions are indeed indicated to be married.Technically, phrase returns an identifier that determines which weights should be used for a given relation mention in a sentence. If phrase returns the same result for two relation mentions, they receive the same weight. We explain weight tying in more detail in Section 2.3. In general, phrase could be an arbitrary UDF that operates in a per-tuple fashion. This allows DeepDive to support common examples of features such as “bag-of-words” to context-aware NLP features to highly domain-specific dictionaries and ontologies. In addition to specifying sets of classifiers, DeepDive inherits Markov Logic’s ability to specify rich correlations between entities via weighted rules. Such rules are particularly helpful for data cleaning and data integration.Supervision: Just as in Markov Logic, DeepDive can use training data or evidence about any relation; in particular, each user relation is associated with an evidence relation with the same schema and an additional field that indicates whether the entry is true or false. Continuing our example, the evidence relation MarriedMentions_Ev could contain mention pairs with positive and negative labels. Operationally, two standard techniques generate training data: (1) hand-labeling, and (2) distant supervision, which we illustrate below.Example 2.4: Distant supervision [20, 27] is a popular technique to create evidence in KBC systems. The idea is to use an incomplete KB of married entity pairs to heuristically label (as True evidence) all relation mentions that link to a pair of married entities:

(S1) MarriedMentions_Ev

(m1, m2, true) : -
    

MarriedCandidates

(m1, m2), 

EL

(m1, e1),
    

EL

(m2, e2), 

Married

(e1, e2).
Here, Married is an (incomplete) list of married real-world persons that we wish to extend. The relation EL is for “entity linking” that maps mentions to their candidate entities. At first blush, this rule seems incorrect. However, it generates noisy, imperfect examples of sentences that indicate two people are married. Machine learning techniques are able to exploit redundancy to cope with the noise and learn the relevant phrases (e.g., “and his wife”). Negative examples are generated by relations that are largely disjoint (e.g., siblings). Similar to DIPRE [6] and Hearst patterns [19], distant supervision exploits the “duality” [6] between patterns and relation instances; furthermore, it allows us to integrate this idea into DeepDive’s unified probabilistic framework.Learning and Inference: In the learning and inference phase, DeepDive generates a factor graph, similar to Markov Logic, and uses techniques from Tuffy [30]. The inference and learning are done using standard techniques (Gibbs Sampling) that we describe below after introducing the formal semantics.Error Analysis: DeepDive runs the above three phases in sequence, and at the end of the learning and inference, it obtains a marginal probability p for each candidate fact. To produce the final KB, the user often selects facts in which we are highly confident, e.g., p > 0.95. Typically, the user needs to inspect errors and repeat, a process that we call error analysis. Error analysis is the process of understanding the most common mistakes (incorrect extractions, too-specific features, candidate mistakes, etc.) and deciding how to correct them [34]. To facilitate error analysis, users write standard SQL queries.
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	2.3 Discussion of Design Choices
	Comparison with Markov Logic: Our language is based on Markov Logic [13, 30], and our current language inherits Markov Logic’s formal semantics. However, there are three differences in how we implement DeepDive’s language:Weight Tying: As shown in rule FE1, DeepDive allows factors to share weights across rules, which is used in every DeepDive system. As we will see declaring a classifier is a one-liner in DeepDive: Class(x) : − R(x, f) with weight = w(f) declares a classifier for objects (bindings of x); R(x, f) indicates that object x has features f. In standard MLNs, this would require one rule for each feature.66Our system Tuffy introduced this feature to MLNs, but its semantics had not been described in the literature. In MLNs, every rule introduces a single weight, and the correlation structure and weight structure are coupled. DeepDive decouples them, which makes writing some applications easier.User-defined Functions: As shown in rule FE1, DeepDive allows the user to use user-defined functions (phrase in FE1) to specify feature extraction rules. This allows DeepDive to handle common feature extraction idioms using regular expressions, Python scripts, etc. This brings more of the KBC pipeline into DeepDive, which allows DeepDive to find optimization opportunities for a larger fraction of this pipeline.Implication Semantics: In the next section, we introduce a function g that counts the number of groundings in different ways. g is an example of transformation groups [22, Ch. 12], a technique from the Bayesian inference literature to model different noise distributions. Experimentally, we show that different semantics (choices of g) affect the quality of KBC applications (up to 10% in F1 score) compared with the default semantics of MLNs. After some notation, we give an example to illustrate how g alters the semantics.
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	2.4 Semantics of a DeepDive Program
	Boolean Rules: We first present the semantics of Boolean inference rules. For ease of exposition only, we assume that there is a single domain 
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 A rule γ is a pair (q, w) such that q is a Boolean query and w is a real number. An example is as follows:We denote the body predicates of q as body(z̄) where z̄ are all variables in the body of q(), e.g., z̄ = (x, y) in the example above. Given a rule γ = (q, w) and a possible world I, we define the sign of γ on I as sign(γ, I) = 1 if q() ∈ I and −1 otherwise.Given c̄ ∈ 
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|z̄|, a grounding of q w.r.t. c̄ is a substitution body(z̄/c̄), where the variables in z̄ are replaced with the values in c̄. For example, for q above with c̄ = (a, b) then body(z̄/(a, b)) yields the grounding R(a, b), S(b), which is a conjunction of facts. The support n(γ, I) of a rule γ in a possible world I is the number of groundings c̄ for which body(z̄/c̄) is satisfied in I:The weight of γ in I is the product of three terms:(1)where g is a real-valued function defined on the natural numbers. For intuition, if w(γ, I) > 0, it adds a weight that indicates that the world is more likely. If w(γ, I) < 0, it indicates that the world is less likely. As motivated above, we introduce g to support multiple semantics. Figure 4 shows choices for g that are supported by DeepDive, which we compare in an example below.Let Γ be a set of Boolean rules, the weight of Γ on a possible world I is defined asThis function allow us to define a probability distribution over the set J of possible worlds:(2)and Z is called the partition function. This framework is able to compactly specify much more sophisticated distributions than traditional probabilistic databases [37].Example 2.5: We illustrate the semantics by example. From the Web, we could extract a set of relation mentions that supports “Barack Obama is born in Hawaii” and another set of relation mentions that support “Barack Obama is born in Kenya.” These relation mentions provide conflicting information, and one common approach is to “vote.” We abstract this as up or down votes about a fact q().We can think of this as a having a single random variable q() in which the size of Up (resp. Down) is an evidence relation that indicates the number of “Up” (resp. “Down”) votes. There are only two possible worlds: one in which q() ∈ I (is true) and not. Let |Up| and |Down| be the sizes of Up and Down. Following Equation 1 and 2, we havewhereConsider the case when |Up| = 106 and |Down| = 106 − 100. In some scenarios, this small number of differing votes could be due to random noise in the data collection processes. One would expect a probability for q() close to 0.5. In the linear semantics g(n) = n, the probability of q is (1 + e−200)−1 ≈ 1 − e−200, which is extremely close to 1. In contrast, if we set g(n) = log(1 + n), then Pr[q()] ≈ 0.5. Intuitively, the probability depends on their ratio of these votes. The logical semantics g(n) = 𝟙n>0
gives exactly Pr[q()] = 0.5. However, it would do the same if |Down| = 1. Thus, logical semantics may ignore the strength of the voting information. At a high level, ratio semantics can learn weights from examples with different raw counts but similar ratios. In contrast, linear is appropriate when the raw counts themselves are meaningful.No semantic subsumes the other, and each is appropriate in some application. We have found that in many cases the ratio semantics is more suitable for the application that the user wants to model. We show in the full version that these semantics also affect efficiency empirically and theoretically–even for the above simple example. Intuitively, sampling converges faster in the logical or ratio semantics because the distribution is less sharply peaked, which means that the sampler is less likely to get stuck in local minima.Extension to General Rules: Consider a general inference rule γ = (q, w), written as: 
 where x̄ ⊆ z̄ and ȳ ⊆ z̄. This extension allows weight tying. Given b̄ ∈ 
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|x̄ ∪ ȳ| where b̄x (resp. b̄y) are the values of b̄ in x̄ (resp. ȳ), we expand γ to a set Γ of Boolean rules by substituting x̄ ∪ ȳ with values from 
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in all possible ways.
 where each qb̄y() is a fresh symbol for distinct values of b̄t, and wb̄x is a real number. Rules created this way may have free variables in their bodies, e.g., q(x) : − R(x, y, z) with w(y) create |
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2 different rules of the form qa() : − R(a, b, z), one for each (a, b) ∈ 
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2, and rules created with the same value of b share the same weight. Tying weights allows one to create models succinctly.Example 2.6: We use the following as an example: 
This declares a binary classifier as follows. Each binding for x is an object to classify as in Class or not. The relation R associates each object to its features. E.g., R(a, f) indicates that object a has a feature f. weight = w(f) indicates that weights are functions of feature f; thus, the same weights are tied across values for a. This rule declares a logistic regression classifier.It is straightforward formal extension to let weights be functions of the return values of UDFs as we do in DeepDive.
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	2.5 Inference on Factor Graphs
	Example 2.7: Take the database instances and rules in Figure 3 as an example, each tuple in relation R, S, and Q is a random variable, and V contains all random variables. The inference rules F1 and F2 ground factors with the same name in the factor graph as illustrated in Figure 3. Both F1 and F2 are implemented as SQL in DeepDive.To define the semantics, we use Equation 1 to define ŵ (f, I) = w(γ, I), in which γ is the rule corresponding to f. As before, we define Ŵ(F, I) =Σf∈Fŵ(f, I), and then the probability of a possible world is the following function:The main task that DeepDive conducts on factor graphs is statistical inference, i.e., for a given node, what is the marginal probability that this node takes the value 1? Since a node takes value 1 when a tuple is in the output, this process computes the marginal probability values returned to users. In general, computing these marginal probabilities is #P-hard [39]. Like many other systems, DeepDive uses Gibbs sampling [35] to estimate the marginal probability of every tuple in the database.
	Example 2.7: Take the database instances and rules in Figure 3 as an example, each tuple in relation R, S, and Q is a random variable, and V contains all random variables. The inference rules F1 and F2 ground factors with the same name in the factor graph as illustrated in Figure 3. Both F1 and F2 are implemented as SQL in DeepDive.To define the semantics, we use Equation 1 to define ŵ (f, I) = w(γ, I), in which γ is the rule corresponding to f. As before, we define Ŵ(F, I) =Σf∈Fŵ(f, I), and then the probability of a possible world is the following function:The main task that DeepDive conducts on factor graphs is statistical inference, i.e., for a given node, what is the marginal probability that this node takes the value 1? Since a node takes value 1 when a tuple is in the output, this process computes the marginal probability values returned to users. In general, computing these marginal probabilities is #P-hard [39]. Like many other systems, DeepDive uses Gibbs sampling [35] to estimate the marginal probability of every tuple in the database.
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	3. INCREMENTAL KBC
	Problem Setting: Our approach to incrementally maintaining a KBC system runs in two phases. (1) Incremental Grounding. The goal of the incremental grounding phase is to evaluate an update of the DeepDive program to produce the “delta” of the modified factor graph, i.e., the modified variables ΔV and factors ΔF. This phase consists of relational operations, and we apply classic incremental view maintenance techniques. (2) Incremental Inference. The goal of incremental inference is given (ΔV, ΔF) run statistical inference on the changed factor graph.
	Problem Setting: Our approach to incrementally maintaining a KBC system runs in two phases. (1) Incremental Grounding. The goal of the incremental grounding phase is to evaluate an update of the DeepDive program to produce the “delta” of the modified factor graph, i.e., the modified variables ΔV and factors ΔF. This phase consists of relational operations, and we apply classic incremental view maintenance techniques. (2) Incremental Inference. The goal of incremental inference is given (ΔV, ΔF) run statistical inference on the changed factor graph.
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	3.1 Standard Techniques: Delta Rules
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	3.2.1 Strawman: Complete Materialization
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	Algorithm 1
	3.3 Choosing Between Different Approaches
	Materialization Phase: Both approaches need samples from the original factor graph, and this is the dominant cost during materialization. A key question is “How many samples should we collect?” We experimented with several heuristic methods to estimate the number of samples that are needed, which requires understanding how likely future changes are, statistical considerations, etc. These approaches were difficult for users to understand, so DeepDive takes a best-effort approach: it generates as many samples as possible when idle or within a user-specified time interval.Inference Phase: Based on the tradeoffs analysis, we developed a rule-based optimizer with the following set of rules:•If an update does not change the structure of the graph, choose the sampling approach.•If an update modifies the evidence, choose the variational approach.•If an update introduces new features, choose the sampling approach.•Finally, if we run out of samples, use the variational approach.This simple set of rules is used in our experiments.
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	4. EXPERIMENTS
	4.1 Experimental Settings
	Datasets and Workloads: To study the efficiency of Deep-Dive, we selected five KBC systems, namely (1) News, (2) Genomics, (3) Adversarial, (4) Pharmacogenomics, and (5) Paleontology. Their names refers to the specific domains on which they focus. Figure 7 illustrates the statistics of these KBC systems and of their input datasets. We group all rules in each system into six rule templates with four workload categories. We focus on the News system below.The News system builds a knowledge base between persons, locations, and organizations, and contains 34 different relations, e.g., HasSpouse or MemberOf. The input to the KBC system is a corpus that contains 1.8 million news articles and Web pages. We use four types of rules in News in our experiments, as shown in Figure 8, error analysis (rule A1), candidate generation and feature extraction (FE1, FE2), supervision (S1, S2), and inference (I1), corresponding to the steps where these rules are used.Other applications are different in terms of the quality of the text. We choose these systems as they span a large range in the spectrum of quality: Adversarial contains advertisements collected from websites where each document may have only 1–2 sentences with grammatical errors; in contrast, Paleontology contains well-curated journal articles with precise, unambiguous writing and simple relationships. Genomics and Pharma have precise texts, but the goal is to extract relationships that are more linguistically ambiguous compared to the Paleontology text. News has slightly degraded writing and ambiguous relationships, e.g., “member of.” Rules with the same prefix, e.g., FE1 and FE2, belong to the same category, e.g., feature extraction.DeepDive Details: DeepDive is implemented in Scala and C++, and we use Greenplum to handle all SQL. All feature extractors are written in Python. The statistical inference and learning and the incremental maintenance component are all written in C++. All experiments are run on a machine with four CPUs (each CPU is a 12-core 2.40 GHz Xeon E5-4657L), 1 TB RAM, and 12×1TB hard drives and running Ubuntu 12.04. For these experiments, we compiled DeepDive with Scala 2.11.2, g++-4.9.0 with -O3 optimization, and Python 2.7.3. In Genomics and Adversarial, Python 3.4.0 is used for feature extractors.
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	4.2 End-to-end Performance and Quality
	Quality Over Time: We first compare Rerun and Incremental in terms of the wait time that developers experience to improve the quality of a KBC system. We focus on News because it is a well-known benchmark competition. We run all six rules sequentially for both Rerun and Incremental, and after executing each rule, we report the quality of the system measured by the F1 score and the cumulative execution time. Materialization in the Incremental system is performed only once. Figure 10(a) shows the results. Using Incremental takes significantly less time than Rerun to achieve the same quality. To achieve an F1 score of 0.36 (a competition-winning score), Incremental is 22× faster than Rerun. Indeed, each run of Rerun takes ≈ 6 hours, while a run of Incremental takes at most 30 minutes.We further compare the facts extracted by Incremental and Rerun and find that these two systems not only have similar end-to-end quality, but are also similar enough to support common debugging tasks. We examine the facts with high-confidence in Rerun (> 0.9 probability), 99% of them also appear in Incremental, and vice versa. High confidence extractions are used by the developer to debug precision issues. Among all facts, we find that at most 4% of them have a probability that differs by more than 0.05. The similarity between snapshots suggests, our incremental maintenance techniques can be used for debugging.Efficiency of Evaluating Updates: We now compare Rerun and Incremental in terms of their speed in evaluating a given update to the KBC system. To better understand the impact of our technical contribution, we divide the total execution time into parts: (1) the time used for feature extraction and grounding; and (2) the time used for statistical inference and learning. We implemented classical incremental materialization techniques for feature extraction and grounding, which achieves up to a 360× speedup for rule FE1 in News. We get this speedup for free using standard RDBMS techniques, a key design decision in DeepDive.Figure 9 shows the execution time of statistical inference and learning for each update on different systems. We see from Figure 9 that Incremental achieves a 7× to 112× speedup for News across all categories of rules. The analysis rule A1 achieves the highest speedup – this is not surprising because, after applying A1, we do not need to rerun statistical learning, and the updated distribution does not change compared with the original distribution, so the sampling approach has a 100% acceptance rate. The execution of rules for feature extraction (FE1, FE2), supervision (S1, S2), and inference (I1) has a 10× speedup. For these rules, the speedup over Rerun is to be attributed to the fact that the materialized graph contains only 10% of the factors in the full original graph. Below, we show that both the sampling approach and variational approach contribute to the speed-up. Compared with A1, the speedup is smaller because these rules produce a factor graph whose distribution changes more than A1. Because the difference in distribution is larger, the benefit of incremental evaluation is lower.The execution of other KBC applications showed similar speedups, but there are also several interesting data points. For Pharmacogenomics, rule I1 speeds-up only 3×. This is caused by the fact that I1 introduces many new factors, and the new factor graph is 1.4× larger than the original one. In this case, DeepDive needs to evaluate those new factors, which is expensive. For Paleontology, we see that the analysis rule A1 gets a 10× speed-up because as illustrated in the corpus statistics (Figure 7), the Paleontology factor graph has fewer factors for each variable than other systems. Therefore, executing inference on the whole factor graph is cheaper.Materialization Time: One factor that we need to consider is the materialization time for Incremental. Incremental took 12 hours to complete the materialization (2000 samples), for each of the five systems. Most of this time is spent in getting 2× more samples than for a single run of Rerun. We argue that paying this cost is worthwhile given that it is a one-time cost and the materialization can be used for many successive updates, amortizing the one-time cost.
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	4.3 Lesion Studies
	Optimizer: Using different materialization strategies for different groups of variables positively affects the performance of DeepDive. We compare Incremental with a strong baseline NoWorkloadInfo which, for each group, first runs the sampling approach. After all samples have been used, we switch to the variational approach. Note that this baseline is stronger than the strategy that fixes the same strategy for all groups. Figure 11 shows the results of the experiment. We see that with the ability to choose between the sampling approach and variational approach according to the workload, DeepDive can be up to 2× faster than NoWorkloadInfo.
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