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Abstract

A pot-economical total synthesis of antifungal Sch-725674, 1 is reported. The approach takes 

advantage of a number of one-pot, sequential transformations, including a phosphate tether-

mediated one-pot, sequential RCM/CM/chemoselective hydrogenation protocol, a one-pot 

tosylation/acrylation sequence, and a one-pot, sequential Finkelstein reaction/Boord olefination/

acetonide deprotection procedure to streamline the synthesis route by reducing isolation and 

purification procedures, thus saving time. Overall, an asymmetric route has been developed that is 

efficiently accomplished in seven pots from phosphate (S,S)-triene and with minimal purification.

Graphical abstract

Sch-725674, 1 is an antifungal macrolide that was isolated and structurally elucidated in 

2005 by Yang and co-workers from the culture of Aspergillus sp.1 This natural product 

exhibits activity against Saccharomyces cerevisiae and Candida albicans with MIC values of 

8 and 32 µg/mL, respectively. Key structural features of 1 include a 14-membered ring, an E-

configured α,β-unsaturated ester, a lipophilic n-pentyl side chain and a 1,3-anti-diol moiety 

embedded within a four-carbon subunit containing three stereogenic carbinol centers (Figure 

1). An intriguing feature of 1 is the absence of commonly found methyl groups on the 

backbone of macrolides (i.e. erythromycin and derivatives). The closest structural relatives 
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of Sch-725674 are the self-germination inhibitor gloeosporone, 22 and the recently isolated 

gliomasolides A to E, 3–73 (Figure 1), thus making 1 an attractive biological and synthetic 

target.

The Curran group reported the first total synthesis of Sch-725674 and a complete library of 

stereoisomers by using fluorous tagging technology developed in their laboratory, which 

also established the absolute stereochemistry of 1.4 In 2014, Prasad and co-workers reported 

an enantioselective synthesis of the macrolactone core,5 followed by the second reported 

total synthesis featuring a Ley dithiaketalization and ring-closing metathesis (RCM).6 

Kaliappan and co-workers later accomplished the total synthesis of 1 employing dithiane 

alkylation, cross-metathesis (CM) and Yamaguchi macrolactonization as strategic 

transformations.7 Most recent, a Wacker-type oxidation was showcased in a formal total 

synthesis of 1 by Reddy and co-workers, along with the first total synthesis of structural 

relative gliomasolide C, 5.8

Given that 14-membered macrolactones lacking methyl group substitutions are rare in nature 

and underexplored in biological studies, we wish to provide a streamlined and library 

amenable synthetic method to access 1. In this regard, pot-economical9 processes have 

emerged as valuable tools for the synthesis of natural products as they enable the formation 

of several bonds and stereocenters while using minimal synthesis steps.10 Pot economy is 

achieved via one-pot reactions, which combine multiple transformations into a single 

reaction flask without the need for work-up and chromatography operations between 

sequential reactions. The application of one-pot protocols in natural products and medicinal 

drugs has recently been reviewed,10b and among several elegant examples contained in this 

review, seminal efforts by Hayashi11 are highly notable in that they demonstrate use of 

multiple one-pot transformations to streamline the synthesis of complex molecules.

Taken together, a pot economic route attains a streamlined process that saves operational 

time and minimizes waste by carrying out successive reactions in one pot. Herein, we report 

a pot-economical total synthesis of Sch-725674 by incorporating technically simple and 

effective one-pot, sequential protocols to the route, reducing post-reaction workup and 

overall purification events.

Previous reports in our group have emphasized the utilization of phosphate tethers to 

mediate reactions in a chemo- and diastereoselective fashion, with recent work incorporating 

one-pot, sequential protocols to the synthesis of 1,3-anti-diol containing natural products12 

and complex polyols.13 To continue our efforts toward the development of modular and pot-

economical approaches for the synthesis of complex molecules, we planned an asymmetric 

synthesis of Sch-725674 by carrying out a series of one-pot, sequential protocols in an 

overall minimal number of pots.

From a retrosynthetic viewpoint, macrocyclization to 1 can be accomplished via RCM of 

linear diene 14 (Scheme 1). Derivation of triol 14 was planned using two consecutive one-

pot, sequential protocols from epoxide 12, namely a Finkelstein substitution/Boord 

olefination/acetonide deprotection procedure and a two-reaction sequence involving 

tosylation and acrylation. Epoxide 12 can be synthesized from bicyclic phosphate 10 
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following reductive tether removal and employing a Sharpless asymmetric epoxidation 

(SAE) on cis-olefin at C4-C3. The phosphate tethered-triol 10 can be accessed from triene 

phosphate (S,S)-8 following a one-pot RCM/CM/chemoselective hydrogenation [“H2”] 

sequence utilizing 9 as the CM partner, simultaneously installing the requisite the C13 n-

pentyl side chain and the C5-C7 1,3-anti-diol subunit.14 A salient feature of this approach is 

the modular installation of the C13–C9 fragment via CM, as well as introduction of the 

acrylate at a later stage, opening opportunities for future analog generation.

Following optimized conditions for one-pot, sequential RCM/CM/[“H2”],15 triene (S,S)-8 
was subjected to an RCM reaction using the second-generation Hoveyda-Grubbs catalyst16 

(HG-II) (2 mol %) in refluxing CH2Cl2 (Scheme 2). After RCM completion (30 min), the 

solvent was changed17 to 1,2-dichloroethane (DCE) and the n-pentyl-substituted CM partner 

9 was introduced to the same pot, followed by a second addition of HG-II (4 mol %). The 

CM event proceeded for 5 h under reflux and subsequent chemoselective diimide reduction 

at the external olefin was achieved by addition of o-nitrobenzenesulfonylhydrazine (o-

NBSH)18 into the reaction mixture. This one-pot, three-reaction, sequential operation 

provided bicyclic phosphate 10 in 59% yield over one-pot, representing an average yield of 

84% per reaction (84% av/rxn).

Next, the phosphate tether in 10 was removed under reductive conditions using LiAlH4 

(THF, 0 °C) (Scheme 2). The corresponding tetrol was obtained in high purity following the 

Fieser workup,19 and without chromatography purification the crude 1,3-anti-diol was 

subsequently subjected to a selective acetonide protection. The crude triol was treated with 

2,2-dimethoxypropane (2,2-DMP) and catalytic amounts of camphorsulfonic acid (CSA) as 

outlined in Scheme 2, providing 1,3-acetonide 11 in 71% yield after two reactions in two 

pots. The strategy proceeded with a SAE20 event [(−)-diethyl tartrate (DET), Ti(OiPr)4, 

cumene hydroperoxide]21 on sterically hindered cis-allyl alcohol 11 to give the 

corresponding diastereomeric products in 72% yield (80% brsm) with 12 as the desired 

major diastereomer (ds = 88%) (Scheme 2).22

Following the successful assembly of epoxide 12 in scalable quantities, a second one-pot, 

sequential protocol consisting of tosylation and acrylation was applied. To this end, the 

primary alcohol in 12 was chemoselectively transformed to tosylate (TsCl, Et3N, DMAP) in 

the presence of the C13 carbinol following overnight reaction. Next, acryloyl chloride was 

simply added to the same pot at 0° C to afford acrylate 13 in 86% yield over two reactions in 

one-pot (93% av/rxn) (Scheme 2).

A subsequent, consecutive one-pot, sequential protocol was established by treating 13 to a 

Finkelstein substitution, Boord olefination (Zn, EtOH), and acetonide deprotection sequence 

to assemble triol 14. This three-reaction, one-pot process commenced by exposing the tosyl 

group in 13 to Finkelstein conditions (NaI, acetone, reflux), followed by a solvent change 

from acetone to ethanol and addition of activated zinc powder to promote Boord elimination 

over a 2 h period under reflux. Final addition of HCl at room temperature released the 1,3-

anti-diol to deliver triol 14 in 79% yield over three reactions in a single pot operation (93% 

av/rxn).23
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With 14 in hand, Sch-725674, 1 was accessed via a final RCM as reported by Prasad and co-

workers, and characterization data was in good accord with that reported by the authors.6 

Overall, the total synthesis of 1 was accomplished in seven pots from triene (S,S)-8 and 

olefin 9. Chromatography isolations were also reduced to six procedures, which saved time 

and minimized chemical waste generation. While we were unable to match the reported 

RCM yield (36%),24 we found that simple protection of the alcohols significantly increased 

the efficiency of this final macrocyclization event. In this regard, we developed a two-

reaction, one-pot sequential method that consists of RCM and methoxymethyl (MOM) 

deprotection to further streamline the synthesis toward 1.

To this end, the carbinols in 14 were protected as MOM ethers, in which the tri-protected 

diene 15 was obtained in 97% yield after treating with MOMCl in basic conditions (Scheme 

2). Next, the one-pot protocol began by treating metathesis precursor 15 with the second-

generation Grubbs catalyst25 (GII) (10 mol %) in refluxing CH2Cl2. Following metathesis 

completion (12 h), the solvent volume was reduced and MOM deprotection proceeded after 

adding trifluoroacetic acid [TFA (60 v/v%)] to the same pot, delivering natural product 1 in 

84% yield over two-reactions in one-pot (92% av/rxn). This alternative approach 

considerably improved the yield of the RCM event, providing Sch-725674 in 14.6% total 

yield from triene (S,S)-8 and olefin 9 following eight pots and seven chromatography 

purifications.

In summary, we have disclosed a pot-economical synthesis route to the antifungal natural 

product Sch-725674. Overall, a seven-pot route was developed from readily prepared 

phosphate triene (S,S)-8 and olefin fragment 9, including seven isolations and six 

chromatography purifications. Key to the strategy is the application of a phosphate tether-

mediated one-pot, sequential RCM/CM/hydrogenation process, a one-pot tosylation/

acrylation sequence, and a one-pot, sequential Finkelstein reaction/Boord olefination/

acetonide deprotection protocol. An alternative approach was introduced at the final stage of 

the synthesis involving a one-pot, sequential RCM/MOM-deprotection protocol to overcome 

efficiency challenges during the macrocyclization event. Taken together, the use of 

sequential reactions in the same pot provided a streamlined synthesis of Sch-725674 in 

minimal production time by allowing multiple bond transformations in a single flask without 

the need for purification of several intermediates, thus also reducing waste generation.

We anticipate that the outlined pot-efficient approach can be exploited for the synthesis of 

related macrocycles, such as 1,3-anti-diol containing gliomasolides (Figure 1) and 

derivatives in a rapid, efficient, and pot-economical manner, thus augmenting opportunities 

to explore this class of understudied structures in biological settings. Efforts from our 

laboratory in this regard will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Natural Product Macrolactones Sch-725674 (1), Gloeosporone, 2 and Gliomasolides A–E, 

3–7.
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Scheme 1. 
Synthesis Plan Toward Sch-725674, 1
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Scheme 2. 
Total Synthesis of Sch-725674, 1
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