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Background: Epithelial ovarian cancer (EOC) remains one of the leading causes of cancer-related deaths among
women worldwide, despite gains in diagnostics and treatments made over the last three decades. Existing markers of
ovarian cancer possess very limited clinical relevance highlighting the emerging need for identification of novel prognostic
biomarkers as well as better predictive factors that might allow the stratification of patients who could benefit from a more
targeted approach.
Patients and methods: A summary of molecular genetics of EOC.
Results: Large-scale high-throughput genomic technologies appear to be powerful tools for investigations into the
genetic abnormalities in ovarian tumors, including studies on dysregulated genes and aberrantly activated signaling
pathways. Such technologies can complement well-established clinical histopathology analysis and tumor grading and
will hope to result in better, more tailored treatments in the future. Genomic signatures obtained by gene expression profil-
ing of EOC may be able to predict survival outcomes and other important clinical outcomes, such as the success of surgi-
cal treatment. Finally, genomic analyses may allow for the identification of novel predictive biomarkers for purposes of
treatment planning. These data combined suggest a pathway to progress in the treatment of advanced ovarian cancer
and the promise of fulfilling the objective of providing personalized medicine to women with ovarian cancer.
Conclusions: The understanding of basic molecular events in the tumorigenesis and chemoresistance of EOC together
with discovery of potential biomarkers may be greatly enhanced through large-scale genomic studies. In order to
maximize the impact of these technologies, however, extensive validation studies are required.
Key words: ovarian cancer, genomics, biomarkers, clinical trials

introduction
According to the World Health Organization, epithelial ovarian
cancer (EOC) accounts for over 150 000 deaths each year world-
wide. In the United States alone, ∼22 000 new cases are diag-
nosed each year resulting in 15 000 deaths, making EOC the
most lethal gynecologic cancer [1].
The high mortality rate associated with EOC is primarily due to

the clinical presentation and diagnosis; most women present with
symptoms associated with advanced disease which often extends
beyond the ovary to involve the peritoneal cavity. Standard treat-
ment of EOC includes cytoreductive surgery (whenever possible)
followed by platinum-based chemotherapy, although more and
more primary chemotherapy followed by surgical treatment is
often utilized in women who are not ideal candidates for surgery
at presentation. While ∼80% of women presenting with EOC
initially respond to this therapy, most will relapse. Although some

data suggest that survival after the initial diagnosis of EOC has
improved over time, there has been no real progress in the rate of
cure, which in the United States has improved from 12% in the
1970s to only 14% by the year 2000 [2]. Death from disease is
often heralded by the evolution of drug-resistant disease [3]. Taken
together, these statistics highlight the importance of research in
ovarian cancer, including the need for novel treatment approaches,
therapies, and better prognostic and predictive biomarkers.
Improvement in the outcomes for women with EOC may be

achieved through a better understanding of the biology of this
disease, which can be accomplished by using modern tools, in-
cluding high-throughput technologies, such as comparative
genomic hybridization and gene expression profiling [4–8] and
next-generation sequencing [9]. In this paper, we review studies
discussed at the 10th International Symposium on Advanced
Ovarian Cancer, held in Valencia, Spain.

clinical and genetic aspects of EOC by
histology
It is now recognized that EOC is a highly heterogeneous disease
characterized by significant genomics, morphologic, and clinical
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differences observed between categories [10]. The most preva-
lent histologic subtype of EOC is high-grade serous carcinoma
(HGSC), accounting for 50%–60% of all EOC. These tumors are
thought to more often arise from the fallopian tube rather than
ovarian surface epithelium, and have been reported to be asso-
ciated with serous tubal intraepithelial carcinoma as a precursor
lesion [11]. Clinically, they usually present at advanced stage with
diffuse carcinomatosis. The Cancer Genome Atlas (TCGA)
Project revealed that 10% of cases of advanced HGSC are asso-
ciated with the presence of multiple areas of chromosomal gain or
loss containing over 30 growth-stimulatory genes amplifications
[9]. In addition, activating mutations in TP53 were shown to be a
hallmark of HGSC (>90%). BRCA1/2, homologous recombination
(HR) repair effectors were also found inactivated in an overall rate
of 20% of the patients, due to either germline or somatic mutation
and epigenetic silencing. An additional group of low-frequency
mutations (PALB2, RAD51, fanconi-anemia pathway) was
demonstrated to have a common tumorigenic mechanism linked
to HR deficiency as BRCA1/2, and together account for up to half
of late-stage serous OC cases.
In contrast, low-grade serous carcinoma (LGSC) represents

5% of EOC [12]. Unlike HGSC, it is characterized by a relatively
indolent behavior [13, 14]. In addition, LGSC is often not as
sensitive to platinum-based chemotherapy as HGSC, and as a
result, surgery is the mainstay of treatment in these diseases.
Existing clinical [15] and genomic data indicate crucial differ-
ences between LGSC and HGSC [16, 17], as well as some simi-
larities between LGSC and tumors of low malignant potential
(LMP) [12, 18–22] (Figure 2). For example, expression profiling
of HGSC revealed enhanced expression of genes involved in
chromosomal instability and cell proliferation, whereas profiling
of LGSC revealed less overall karyotype instability and lower
rate of mutations [19]. These LGSC have mutations in BRAF
and KRAS, leading to the constitutive activation of MAPK/Erk

signaling and its downstream pathway and result in an enhance-
ment of tumor cell survival and proliferation.
These data suggested that inhibition of MAPK hyperactiva-

tion may benefit patients with LGSC, which have been shown to
have a very poor response to conventional platinum-based
therapy. The Gynecologic Oncology Group (GOG) conducted a
phase II trial (GOG-239) using a small molecule inhibitor of
MEK1/2 selumetinib (AZD6244) in women with recurrent
LGSC [23]. In this experience, selumetinib induced a response
rate of 15%, whereas historically, chemotherapy was associated
with a response rate of <5%. In addition, over 65% of patients
presented with stable disease, suggesting that a larger clinical
benefit could be obtained with this agent. The median progres-
sion-free survival was 11 months. Despite these results, the
investigators were not able to identify a predictive mutation
associated with treatment efficacy. A separate study aimed to
identify biologic predictors of long-term response to selumeti-
nib among women with LGSC [24]. Using next-generation se-
quencing technology with in vitro and in vivo validation studies,
several potential factors were identified, including somatic 15-
nucleotides’ deletion in the MAP2K1 gene.
The endometrioid subtype, which represent 25% of all EOC

cases, is characterized by aberrant PI3K signaling as well as
mutations in CTNNB1, the main effector of WNT pathway [25,
26]. Mucinous EOC often have RAS mutations activating its
pathway in 50% of cases [27] with HER2 overexpression [28]
also present in 19% of cases.
Clear cell EOC often have inactivating mutations in SWI/SNF

chromatin remodeling factor [29, 30]. When clear cell tumors of
ovarian and endometrial origin are compared, they appear to
demonstrate a uniform gene expression pattern regardless of
their organ of origin. Interestingly, clear cell ovarian cancer has
shown to be highly similar to renal cell carcinoma, indicating
mTOR pathway and angiogenesis may be therapeutic targets
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Figure 1. Graphic depiction of principle component analysis of ovarian and endometrial cancers according to histology. Analysis of tumors with serous (A)
and endometrioid (B) histology showed two non-overlapping regions separating endometrial (top) from ovarian (bottom) specimens, whereas the analysis of
tumors with clear-cell histology (C) showed overlapping elliptical regions. (D) Analysis of tumors according to organ of origin shows three overlapping elliptic-
al regions among ovarian, endometrial, and renal clear cell specimens. Dendrograms produced by unsupervised hierarchical clustering according to (E) serous
histology, (F) endometrioid histology, and (G) clear cell histology. O, ovarian samples; E, endometrial samples; R, renal samples. Adapted from Zorn et al. [26].
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(Figure 1) [26]. Distinct molecular signatures of clear cell EOC
include overexpression of hypoxia inducible factor 1 α (HIF-1α)
and 2 α (HIF-2 α) with activation of this pathway [31, 32].
Preclinical studies that used knockdown assays of key players in
hypoxia pathway (ENO-1 and HIF-1α) showed that clear-cell
cell lines were sensitive to hypoxia and glucose deprivation [32].
These data informed the design of a currently ongoing phase II
clinical trial involving inhibitors of VEGFR and PDGFR for re-
current or persistent clear cell EOC (GOG 254, NCT00979992)
[33]. Additionally, PIK3CA mutations [34, 35] supported the
basis to test the pathway inhibition through downstream effectors
blockade, such as mTOR [36]. Phase II trials are ongoing and
interesting results are expected for newly diagnosed CCOC
[Gynecologic Oncology Group (GOG) 268, NCT01196429].

generation of clinically relevant
signatures in ovarian cancer
Although a number of microarray datasets have been published,
efforts to interrogate them remain premature to date and none
have had the power and robustness to inform clinical decisions.
To address this need, our group created a centralized curated
database [37] comprised of datasets focused on women with
HGSC treated surgically, in whom completely annotated sur-
vival information was available, and with a sample size of ≥40.
Furthermore, we carefully excluded duplicates that were present
among the data. Our goal was to obtain a signature based on
meta-analysis [38] which might also stratify patients prognostic-
ally. In comparison with existing prognostic factors and gene
signatures, the meta-analysis signature better carried out than
all previous established models, with the highest capability of
patient stratification into low- and high-risk groups of overall

survival. While encouraging, the signature requires prospective
validation (Figure 3A).
Through the same meta-analytic approach, we also aimed to

establish a gene expression signature for predicting the outcome
from primary debulking surgery. Our hypothesis assumed the ex-
istence of activated pathway profiles deemed to harbor an intrin-
sic aggressive biology and therefore to identify tumor that would
be less likely to be optimally cytoreduced (residual disease >1 cm)
[39]. The development of a debulking signature involved valid-
ation of selected genes such as POSTN, CXCL14, FAP, NUAK1,
PTCH1, and TGFBR2 by qRT–PCR and POSTN, CXCL14, and
phosphorylated Smad2/3 by immunohistochemistry in two inde-
pendent cohorts of patients, and our results indicated that these
genes appeared to be independent predictors of cytoreductive
surgery (Figure 3B). These results infer a relevant role in tumor
dissemination, based on TGFβ signaling activation (Figure 3C).
Again, these data require testing in a prospective fashion to deter-
mine whether these results are clinically useful.

new target identification for HGSC
Another potential use for genomic technology is to help identify
novel biomarkers for EOC. For example, at the Massachusetts
General Hospital, we developed an oligonucleotide array-based
comparative genomic hybridization (array CGH) analysis, based
on microdissected HGSC samples, which showed that amplifica-
tion of the 5q31–5q35.3 chromosome segment is significantly
associated with poor survival [7]. Furthermore, we identified
fibroblast growth factor 18 (FGF-18), which is located on this
chromosomal region, as strongly prognostic for poor survival.
FGF-18 was further validated as an independent prognostic bio-
marker by two other profiling studies [8, 9]. Consequently,
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Figure 2. Expression profiles of low malignant potential/low-grade serous and high-grade carcinomas. Unsupervised hierarchical clustering revealing an ex-
tensive molecular segregation between low malignant potential/low-grade serous and high-grade serous tumors. Adapted from Bonome et al. [19].
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Inclusion criteria
– Primary tumors (n = 2928)
– Serous histology (n = 2668)
– Late stage, high grade* (n = 2070)
– Survival information (n = 1760)
– Sample size >40* (n = 1691)
– Events (deaths) >15* (n = 1629)
– Not duplicated† (n = 1525)

Datasets with available debulking information
8 studies, n = 1061

Leave-one-dataset-out cross-validation
(Supplementary Figure 10, available online)

Pathway analysis (Figure 5)

Validation of selected genes by qRT-PCR in an
independent cohort of 78 patients (Figure 6)

Validation of 3 genes by immunohistochemistry in an
independent cohort of 179 patients (Figure 7)

Split datasets into 6 training (n = 1,218) and 7 test
(n = 307) datasets (see methods for criteria)

Leave-one-dataset-out cross-validation (Figure 2)

Pathway analysis (supplementary Figure 8, available online)

Validation in 7 independent datasets (Figure 3)

Invasion

TAF activation

Figure 3. Meta-analysis of 1525 late-stage ovarian cancer samples. (A) Flowchart of the study outlining the steps for training and validating the prognostic
models presented in this meta-analysis study. (B) Validation of POSTN, pSmad2/3, and CXCL14 in an independent cohort by immunohistochemistry and
Validation of selected genes associated with debulking status by quantitative reverse-transcription–polymerase chain reaction (qRT–PCR) in the Bonome et al.
validation data. (C) Pathway analysis of the debulking signature, using the Pathway Studio 7.1 (Ariadne Genomics) software and a novel signature of 200
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functional studies showed FGF-18 in vitro and in vivo promo-
tion of migration, invasion, and tumorigenicity of OC cells
(Figure 4) [40]. FGF-18-associated tumor progression appears
to proceed through the activation of NF-κβ, with subsequent
augmentation in the production of oncogenic cytokines and
chemokines, eventually leading to increased tumor-associated
macrophage (TAM) infiltration, more malignant M2 phenotype
polarization, and augmented angiogenesis [41, 42].
Immunohistochemical staining of FFPE samples of 25 human
high-grade, late-stage HGSC revealed significant correlation
between FGF-18 expression, microvessel density, and TAM infil-
tration, suggesting that FGF-18 modulated tumor microenviron-
ment by promoting vascularization and recruitment of TAMs
[40]. Further expression profiling studies using Affymetrix

Human U133 Plus 2.0 GeneChip array and validation by qRT–
PCR showed that FGF-18 activated multiple signaling pathways
such as EGF signaling, TGF-β signaling, JAK/STAT signaling,
and NF-κβ signaling. Functional studies using pan-FGFR in-
hibitor revealed the potential specificity of FGFR4 in FGF-18
signaling which was further confirmed by FGFR4 siRNA knock-
down experiments indicating that FGF-18 signals through
FGFR4 in ovarian cancer cells of HGSC [40]. Due to genomic
proximity and co-amplification of both FGF-18 and FGFR4
found previously [7], we elucidated that this co-amplification
may contribute toward the hyperactivation of FGF signaling de-
termining the poor patient survival.
Currently, FGF signaling can be targeted using several differ-

ent therapeutic approaches such as receptor tyrosine kinase
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inhibitors, receptor-neutralizing antibodies, and FGF ligand
traps [43–45]; however, many of those treatments demonstrated
important levels of toxicity in a long-term blockade. A soluble
decoy receptor FP-1039 capable of neutralizing multiple FGF
ligands has recently entered phase II clinical trials for endomet-
rial cancer after successfully completing phase I testing, whereas
another phase II triple VEGF/PDGFR/FGFR inhibitor BIBF-
1120 has been shown to display lower toxicity and to improve
progression-free survival [46]. These novel tools indicate FGF-
18/FGFR4 as an actionable signaling pathway, likely to offer a
targeted therapy to a subset of ovarian cancer patients with spe-
cific enriched activation of this pathway.

conclusions
Although throughout the last three decades, major improve-
ments have been made in the fields of surgical debulking as well
as chemotherapy regimes, the long-term survival of EOC
patients remains unchanged at ∼30%. With clinicopathological
features and traditional molecular predictors such as CA-125
protein proving to be insufficient for improving the overall
ovarian cancer outcomes, the importance of understanding the
basic molecular biology of EOC is further highlighted. Large-
scale high-throughput genomic technologies present us with op-
portunities for identification of novel biomarkers and drivers of
ovarian tumorigenesis and chemoresistance. Nevertheless, com-
prehensive functional as well as clinical studies are necessary for
more integrated validation of those potential biomarkers in light
of their implicated significance and application as therapeutic
treatment.
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